Modell för fukt på vind Enligt figuren kan en energi balans ställas upp:
|
|
- Magnus Åberg
- för 7 år sedan
- Visningar:
Transkript
1 Mode för fk på d Eg fgre ka e eerg aas säas pp: förs för I fgre eda sas defoera för ärme oh fkaas. Om fgres koeoer föjs r ärmeaase (ge maera aas ha ågo ärmekapae (myke förekad mode oh ge sråg på sda eer sda as med sam sö på ake os.) q q q q Om fomsäge de är, kommer fe frå äkage oh omhsfe eg föjade Där afa ager ade a fe som kommer frå efe. Läggs de ekaoe erhås Omskrs Iför
2 Där dsemperare,, öses Iomhsemperare aas ara kosa, C, oh omhsemperare aas arerar perodsk eg föjade, är d måader: p am m 0 os Perodde, p, är : os 0 am m o är är ägsa emperare räffar, ke orma är ferar, d..s. o= (os jaar sarar som 0) os am m Årsmedeemperare, m är Bromma 6.75 C oh ampde, am, är 0.3 C då erhås för omhsemperares arao os Där ages per måad 0-. I fgre eda sreras dea
3 emperar På samma sä går a eskra hr åghae omhsfe arerar der e år. För Bromma r ryke os ke sreras fgre eda g/m 3 ågha Näsa seg är a säa pp fkaas för de. Fk förs eer orförs ear geom fkkoeko, d..s. ak oh jäkag är dffso äa. I dea exempe har de förs e äkagefakor, α, där f frå omhsfe går pp de geom e fsprga. Örga dear akjäkage är dffsosä oh fä. Fkaase är dea fa eke, fk förs a äkage frå omhsfe oh f kommer äe frå efe oh går seda omhsfe ge, erhåer f- oh fkaase för de: g g or så
4 Förekas des ågha r Le koro, om afa är ka med (ge fäkage frå omhsfe) r åghae på de ka med omhsåghae, ke är korrek. Om a f kommer frå omhsfe, ds afa ka med 0, r åghae ka med omhsåghae på de ke okså sämmer. Ma ser okså a åghae på de dea fa är oeroede a fomsäge,, oh des oym,. Ear adeara påerkar. Iomhsåghae,, är smma a omhsåghae,, oh fkskoe, f, f Om akjäkage är he ä (åg oh f) r åghae på de desamma som omhsåghae. eaa fkghee på de r då s F, Hr de soeras är ressa. Fakor ea eskrer dea. För a sdera dea äjs a jäkages oh akes -ärde arerar. Emeerd, de oaa ärmemosåde mea dem aas ara kosa o Iroderar fakor, µ, som ager ade a oaa ärmemosåde, ds -ärde eror på dea fakor, aså -ärde för ak r o Oh för jäkage r de o Geom dea ka -ärdeas erka sderas. Fakor ea r
5 Om fakor µ är ka med eär de a a ärmemosåd är jäkage. Om fakor är o eär de a a soerg är ake, d..s. ake är äsoera. Ige häsy as sö på ake. No eer e är e reassk dok, ke ör eakas. E aa fakor a a häsy är asråg. Då säks emperare på de, ke ka orsaka kodes. Emeerd, orra Serge ka dea effek ara e efersom de ofa har sö på ake. Mer söder, ka dea effek ara sörre. Dea ka eräkas på e föreka sä modee oa. Geom a rodera e kyfakor som eskrer hr ägre emperare r på ake. I eergaase as dea had om geom a säa e fakor som eskrer hr myke ägre emperare r på ake sda är jämför med omhsfe. Ma äjer sjä. Dea är myke föreka se a förfara. Eergaase för de ka då se eg föjade s Omskrs emp aksda s E yergare ea fakor kommer 3 dsemperare r 3 3 Där s 3 Iad ka de ara så a e hea ake har asråg, då får akes area,, mskas. I ekaoe as häsy asråg geom. der sommare är de rogs e ressa a de as häsy. På er orr är e heer ressa efersom de ofas har e söager på ake oh då ka dess erka försmmas. Dok der hös oh år ka de erka. I södra Serge oh eee meersa dee ka häsy as dea. Dea mode kommer e a aädas här efersom eräkgara sker måadss. I dea fa ske ehöas dygss. Då ske ekaoe för perodsk emperar skras os
6 Där ages dagar. Dag 46 är me ferar är ägsa emperare ppräder. Om ages mmar r ekaoe os esa Jag åerge påma om a modee är myke förekad. Dok sar resae e edes hr oka fakorer påerkar reaa fkghee på e d. I edasåede fgr sderas hr fomsäge,, påerkar rf på de. de framgår a erka är e. dra smergar med adra paramerar sar samma sak. Emeerd, är kra är öer de röda horsoea je r de kodes på de. esae sar a de r kodes der fera måader på de, rka 6 måader. Myke kodes erhås der ferar måad efersom rf är högs då. I edasåede fgr sreras hr fäkage påerkar rf på de. esae sar a de har sor erka, ke är föräa. Lfäkage ska dkas, fäa jäkage! Krora sar a de ofa r kodes på de för fkskoe 4 g/m 3.
7 Äe fkskoe har sor erka, ke framgår a eräkgsresae fgre eda. d åg fksko omhs mskar rske för kodes Beraka fa r de e kodes på de är fkskoe är g/m 3. Me afa ärde dea fa är 0.3. Ske de ara sörre ske de e skad. ss sderas hr rf på de påerkas a a ake eer jäkage soeras. I edasåede fgr r de e kodes på de, aa kror är der de röda joka je för 00 % rf. Me, reaa fkghee på de mskar är ma soerar mer ake ä på jäkage. Me de kosar å adra sda mer a soera ake efersom de är e sörre ya. esae sar okså a reaa fkghee sjker der er oh ökar på sommare är ake är äsoera, µ=0.. Fae spegar för dem som or Norrad. När myke ka f kommer hse är åghae så åg så är de ppärms r rf ädg åg. De r omä är jäkage är äsoera, µ=0.9.
8 För a redera reaa fkghee ka föjade göras: Lfäa jäkage. Särsk kg är jäkage är myke soera, åg -ärde. När d äggs soerar jäkage ägg d på a fäa jäkage. Om möjg, redera fkskoe omhsfe. Dea kaske e är möjg prakke. E möjghe a redera rf på de är a soera e de ake. Dea mskar äe asråges erka på rf. Dok ka de dyr efersom ya är sörre ä jäkage. Me har ma proem ka de ara e ågärd. De fs apparaer som syr är de ädras. Dok, de är kgare försa had a fäa jäkage. Därefer ka ma syra hr de eeras. E sor o drama är fäkage. Soppa de förs. E myke eke mode har aäs för a ppskaa om de r kodes på de. De är måga fera aspeker som e eakas som ex: Ige söager på ake, ke soerar oh höjer emperare på de oh mskar reaa fkghee Ige asråg frå ake, ke ske höja rf. Ige sosråg på ake. Sora säsogsaraoer ädre, a aaga ärde aseras på medeärde. ka he aorda de eskda fae. Ige fkkapae maerae, ke ka ge ågo försora ärde. age rykdfferes mea omhsf oh d, eror dok a på yp a eaossysem. Ige häsy aeärme, d..s. de som frgörs d kodesao (ka erka). Sår a försäga fomsäg d, eror på måga paramerar. Sår a försäga hr sor äkage som förekommer dsjäkage, eror på hr måga hågheer som fs, akhöjd e. dffsosä,.ex. ake, me så ehöer de e ara erkghee Os
9 äk på a om d har kodes på de ka de ero på ågo aa. Dok de som sderas är ag förekommade fa som påerkar reaa fkghee på e d
Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
Läs merSOS HT10. Punktskattning. Inferens för medelvärde ( ) och varians (σ 2 ) för ett stickprov. Punktskattningen räcker inte!
aa O HT0 ervallkag uwe@mah.uu.e h://www.mah.uu.e/uwe/o_ht0 ervallkag rouko ere ör meelväre () och vara (σ ) ör e ckrov kag av är är kä kag av är är okä me or kag av är är okä och e heller or *A kaa e aaravvkele
Läs merFyra typer av förstärkare
1 Föreläsg 1, Ht2 Hambley astt 11.6 11.8, 11.11, 12.1, 12.3 Fyra tyer a förstärkare s 0 s ut s A ut L s L 0 ägsförstärkare ägströmförstärkare (trasadmttasförst.) 0 ut s s ut L s s A 0 L trömsägsförstärkare
Läs merFormelsamling Ljud i byggnad och samhälle
Formelsamlg jud bggad oh samhälle Några räkeregler för logarmer: log log log log log log log log log log log log Några grudläggade akusska defoer oh räkeregler -dmesoell la ljudåg som ubreder sg os -rkg:
Läs merTENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13.
HÖGSKOLAN I BORÅS Texthögoa Oe Homudd TENTAMEN TE 12 VÄVERITEKNIK, 4,5 högoepoäg, Ladood TVT10A Datum: 2012.11.09. Td: 09.00 13.00 Hjäpmede: Räare, färgpeor, upp, ja, petå, tejp Aayad och formead Ata dor:
Läs merJADO Gislavedsvägen 18, AMBJÖRNARP Tel UPPDRAG NR RITAD/KONSTR AV UPPDRAGSLEDARE 1143 J.A DATUM
FORESKRFTER. se x -. - PA B1 3289 EAST FÖRSAG PÅ MOUER OCH PACERG 9x4Ö 7 r l 1627 PTPA 3255 / 7 1628 l BS EA PTRA 1 mm ÄGRE se- se- 1-----J n 1627 3255 7 3187 34x12 W 1 n [ [ h h 34x12 BJAKAGSPA 34x12
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Läs merBegreppet rörelsemängd (eng. momentum)
Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och
Läs merKylvätska, tappa ur och fylla på
Kyväska, appa ur och fya på Nödvändiga speciaverkyg, konro- och mäinsrumen sam hjäpmede Adaper för ryckprovare för kysysem -V.A.G 1274/8- Rör för ryckprovare för kysysem -V.A.G 1274/10- Uppsamingskär för
Läs merFormelsamling Ljud i byggnad och samhälle
ormlsamlg jd bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grdläggad aksska dfor oh räkrglr -dmsoll la ljdfäl: Aos Effkärd rms för ljdrk k: ~ d jdrkså
Läs merInterpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system
Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar
Läs merStat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Läs merLINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Läs mer2009-11-20. Prognoser
29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska
Läs merKvinnors arbetsmiljö. Rapport 2012:11. Tillsynsaktivitet 2012 inom regeringsuppdraget om kvinnors arbetsmiljö. Delrapport
Kviors arbesmiljö Tillsysakivie 12 iom regerigsuppdrage om kviors arbesmiljö Delrappor Rappor 12:11 12-5-9 1 (9) Ehee för mäiska och omgivig Chrisia Josso, 8-73 94 18 arbesmiljoverke@av.se Delrappor Tillsysakivie
Läs merVad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Läs merSannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Läs merGOSPEL PÅ SVENSKA 2. Innehåll
GOSPEL PÅ SVENSKA 2 Innehåll Kom oh se 7 Lovsung vår Gud 8 Barmhärtige Gud 10 Igen 11 är min Herde 1 Ditt Ord estår 16 redo 18 När delar 21 Herre hör vår ön 2 Vår ader 2 ör mig 26 O Herre längtar 28 Hallelua,
Läs mer1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekviosssem. Gusselimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekviosssem med oek m m m m ss) och m ekvioer: E lföljd -ippel) s s s är e lösig ill
Läs merTidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.
Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller
Läs merKorrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Läs merTentamen 19 mars, 8:00 12:00, Q22, Q26
Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också
Läs merFRÖN. i parken, skogen, eller vid huset där du bor. Här har jag gjort en blomma och öron till min hare av askfrön. askfrö. askblad
KRISTINA DIGMAN FRÖN Frö ka se ut på tuse sätt. Somliga är så små och lätta att de kappt sys, adra är stora och tuga. Kastajer, ötter, kärora i äpplet eller apelsie du äter, de är frö allihop! Det fis
Läs merRäkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Läs mer5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
Läs merProgrammering Emme-makro rvinst_ic.mac version 2
Uppdragsr: 10109320 2008-08-27 Seh Svalgård PM Programmerig Emme-makro rvis_ic.mac versio 2 Iehållsföreckig Förusäigar...2 Beräkigsuryck...2 Daabaser...4 Marisplaser...4 Aropsparamerar...6 Udaa...6 L:\705x\_SAMSAM\3_Dokume\36_PM\PM
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs merLinjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Läs mer081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de.
1 esper H2 c oco Rec. 081129 Akt 2, Sce 7: Utomhus De örsta örtroededuette 207 ao c c p Vil -ke mid - dag! Vil -ket ö - ver-dåd. Ó Ma ick y - pa sig i ar-me. Trod-de att ma dröm-de. 5 isk - pi -ar och
Läs merb) När den brutna strålen fortsätter och nästa gång når en gränsyta mot luft kommer den att ha infallsvinkeln
Lösnngar t tentaen 089 ysk de för asåret. a) örst ehöer an äta upp och eräkna nfasnke och rytnngsnke. O an är osäker på trgonoetrn får an uppskatta nkarna och anända det. Geno att räkna rutor fguren får
Läs merParkerings- och handelsutredning Kristianstad centrum
Parkerigs- och hadelsutredig Kristiastad cetrum Del 1: Parkerigsstrategi, kompletterade iveterig 2011-11-21 Beställare Kristiastad kommu Aders Magusso Joha Gomér Lars Nyström Atkis Simo Radahl, Atkis Eli
Läs merFormler, grundläggande statistik
Formler, grudläggade aiik Medelvärde N X μ σ Sadardavvikele, populaio Sadardavvikele, ickprov Sadardavvikele, räkevälig z Z-poäg z z r Pearo korrelaio, urpruglig r Pearo korrelaio, räkeväligare Oe ample
Läs merENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Läs mer(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd.
Armi Hlilovic: EXTRA ÖVNINGAR Lijär ekvioem. Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () och m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
Läs merhelst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god
Teme i TEN, HF, Memisk sisik Dum -8-7 Kurskod HF Skrivid: 5-75 Lärre: Armi Hlilovi Hjälmedel: Bifog formelhäfe (" Formler oh beller i sisik ") oh miiräkre v vilke y som hels De är INTE TILLÅTET väd miilo,
Läs merF4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
03-0-4 F4 Matematirep Summatece Summatecet Potesräig Logaritmer Kombiatori Säg att vi har styce tal x,, x Summa av dessa tal (alltså x + + x ) srivs ortfattat med hjälp av summatece: x i i summa x i då
Läs merBESIKTNINGSRAPPORT. Energideklaration. Björkekärr 5:17
Utgåva 1:1 2014-11-19 BESIKTNINGSRAPPORT Eergidearatio Böreärr 5:17 INDEPENDIA ENERGI AB SISJÖ KULLEGATA 8 421 32 VÄSTRA FRÖLUNDA TEL :031-712 98 00/08-446 22 00 FAX: 031-712 98 10 WWW.INDEPENDIA.SE ENERGIDEKLARATION
Läs merLektion 3 Kärnan Bindningsenergi och massdefekt
Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där
Läs mervara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
Läs merFöreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills
Läs merIntervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Läs merMinsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera
Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig
Läs merUppgifter på värme och elektricitet Fysik 1-15, höst -09
Uppgifter på äre o eektriitet Fyik 1-15, öt -09 1. n auiniukopp ar aan 10 g o teperaturen. I koppen ä 150 art atten ed teperaturen 85. Vad koer attnet teperatur att i id jäikt ed koppen? Borte från oginingen
Läs merIntroduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
Läs merNöjd Medarbetar Index 2012
Kod: 35015738-87EF7A Kod: 35015795-3B35D5 Kod: 35015796-3D815E Kod: 35015797-C90766 Kod: 35015798-7D5035 Kod: 35015799-402D69 Kod: 35015800-F71BBD Kod: 35015801-FE5306 Kod: 35015802-D8EA92 Kod: 35015803-05D0A6
Läs merFOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.
Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.
Läs merFÖRSTUDIE. DRAGNINGSLISTAN A KOD Arkitekter AB TEL: A
FÖRKARIAR AA MÅTT AES I MIIMETER KOORDIATSYEM SWEREF 99 18 00 PACERI I FÖRHÅADE TI SÄT OCH ATA DE YA BYADE ÄR PACERAD SÅ ATT DE ÄRKER ATURUMMET MOT SPARBAKSVÄE OCH BIDRAR MED YA ETRÉER OCH E MÖJI OKA.
Läs merSANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Läs mer1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Läs merFöreläsning G04 Surveymetodik 732G19 Utredningskunskap I
Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och
Läs merRörsystem 7. Rörsystem
Rörsysem Rörsysem 82 Rörsysem Rörsysem Rörsyseme ransporerar amm oc maeria från arbespaserna i cenraeneen. Damme är vanigvis siane varför sanarrören är av 1,5 mm så. I samban me rök oc ren uf kan försärka
Läs merLINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär differenialekvaion (DE) av försa ordningen är en DE som kan skrivas på följande form ( = Q( () Formen kallas sandard form eller normaliserad form
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Läs merDÄR VÅRA VÄGAR KORSAS
DÄR VÅRA VÄAR KORSAS h yf föå fö, fä, ä, ä äy ch! h ö Sf, y ä ch ä fä j ö fö f. E fy å ch ö h å ch å. Å c å, ch å fö ö ch. PERSPEKTIV NYA PARKEN I RÅDUSESPLANADENS FÖRLÄNNIN SITUATIONSPLAN 1:1/A1 1:2/A3
Läs merPingsteld över Maramba, Zambia
Nyhesbrev Nr 10 2014 Jesus är desamme i går och idag och i evighe. (Hebr. 13:8) Pigseld över Maramba, Zambia Maramba är e kåksad srax uaför sade Livigsoe i Zambia. I dea yhesbrev vill jag rapporera frå
Läs mer1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:
Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr
Läs merProblem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.
UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt
Läs merKapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer
Kaiel 3-4 Kaiel 3, Inegralrelaioner reeiion energiekaionen Kaiel 4, Differenialrelaioner Berakelsesä maeriella eriaan koniniesekaionen imlsekaionen energiekaionen Reeiion, Kaiel 3 Ssem: En samling maeria
Läs merBokningsvillkor för Kårhuset Origo
Bonngo Kåhue Ogo Sd 1(3) Bonngo Kåhue Ogo Va å boa Ogo? Kåhue Ogo å boa a uden, eag am anäda d Umeå une. De ä ne möjg a boa Kåhue Ogo på dag-, edag- och dagäa, e de daga om Kåhue Ogo ha amhe. Aoho Kåhue
Läs merx 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Läs merJag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Läs merTentamen Metod C vid Uppsala universitet, , kl
Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark
Läs mer27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.
27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u
Läs merTNA001 Matematisk grundkurs Övningsuppgifter
TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri
Läs merTrygghet kring hållplatser Ett framtaget verktyg vid trygghetsanalysering i samband med hållplatser och dess närmaste omgivning
å å ä Ö öö ö ö Ö ö å å ä Ö ö Ö ö Ö Ö ö å å å å ä å å ö ö ä å å ä å ä å ä å å ä å å ö å ö ä ö å ä ä å å ö ä ö ö å ä ö ää ä ä ä å å ö ä å å ä å å ä ö ä åä å ä ö ä å ä å å ö ö å ö ö ö ö å å ä ä ö ö å ä ö
Läs merFrasstrukturgrammatik
UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik
Läs merOrderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
Läs merH1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Läs merFöreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Läs mer16.3. Projektion och Spegling
6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.
Läs merF4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.
Läs merTentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29
Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara
Läs merLösning till TENTAMEN
Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO050 005 el A Strömslära EXAMINATOR Mats Jarlros
Läs merc n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Läs mer1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Björkduge (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 1-2 22% 3-4 50% 5-6
Läs merS0005M V18, Föreläsning 10
S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är
Läs merÅngestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga
Ågestappote 2013 Om kvios efaehete som patiete och ahöiga 1 Måga eve sitt iv med ågest Måga fe kvio ä mä dabbas ågo gåg i ivet av e ågestsjukdom. Nämae 1 800 kvio ha i de hä udesökige svaat på vad de ha
Läs merSkattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?
Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merGrundläggande matematisk statistik
Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give
Läs mer2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.
Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig
Läs merFormelsamling Ljud i byggnad och samhälle
ormlsamlg jud bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grudläggad akusska dfor oh räkrglr -dmsoll la ljudåg som ubrdr sg os -rkg: Aos Effkärd rms
Läs merMening med ditt liv G/H. o n G/H
=132 J f s s Meg ed d v /H s s s Kr-ur Svesso 1.De vr e gåg e - e po so yc-e v - e vr för 2.To-år - e gc så sbb för-b, h ev - de v - e så - so h / s s ss s s s s J J f b J f J p o o o J p o o o b s s s
Läs merSammanträdesdatum. Bengt Sjöberg (M), ordförande Björn Thodenius (M) tjänstgörande ersättare. , 7,
Sammanrädedaum Sda Nämnden för ekonomadmnraon 29 Pa och d Töreboda kommunhu, Bå rumme, ondagen 18 okober 2017, kockan 10.10-10.55 Beuande Beng Sjöberg (M), ordförande Björn Thodenu (M) jängörande eräare
Läs merAerodynamik och kompressibel strömning
Aerodnamik och kompressibel srömning Kompressibelsrömning Ma < 0.3 Inkompressibel 0.3 < Ma < 0.8 Sbsonisk srömning 0.8 < Ma < 1. Transonisk srömning 1. < Ma < 3.0 Spersonisk srömning 3.0 < Ma Hpersonisk
Läs merTentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Läs merAv Henrik 01denburg\ Radikaler. För att lösa ekv.: x n = a (n helt, pos. tal) konstruerar man kurvan
Av Herik 01deburg\ Eligt gymasiets kurspla skall av lära om poteser medtagas huvudsaklige vad som är behövligt för viade av e säker isikt i lära om logaritmer. Alla torde vara ese därom, att det är syerlige
Läs merFöreläsning 6 (kap i Optics)
23 öeäsig 6 (kap 3.7-3.10 i Optics) Avbidig i säisk gäsyta Hittis ha vi baa avbidat puktomiga objekt som igge på de optiska axe, me de esta objekt ha e stoek d.v.s. bestå av me ä e pukt. Otast ita ma objektet
Läs merEkvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Läs merGenomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merHärlighetens väg procession 4. Hur kan jag tro 8. Vi vänder oss till dig Gud förbön 10. Gud, när du bjuder till bordet beredelse 13
Innehåll Härhetens väg procession 4 Hur kan ag tro 8 Vi oss Gud förön 10 när du u ordet eredel 13 Tack för slösande gåva tacksägel/lovsång 14 Härhetens väg recessionssång 16 Det var i samand iskopens visitation
Läs merBegreppet rörelsemängd (eng. momentum) (YF kap. 8.1)
Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d
Läs merÖversikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden.
Översikt av ouppklarade fall av dödligt våld i Skåe uder tide 1985-07-01 och framåt i tide. Översikte grudar sig på e iveterig, som hela tide är pågåede. Atalet och urval av ärede ka komma att förädras
Läs merelt10-1f,91rk, ~1~~(;11 lo 01 'CAYl. hlat.-lc;s:on ~veq~.se Ansökan om dispens från strandskyddet enligt 7 kap 15 Miljöbalken
AN&KAN 1 (4) om ds frå &ra1dskydd a11. 7 k 1s Mj9baka1 ÄNGELHOLMs KOMMUN Ansökan om dspens från strandskyddet engt 7 kap 15 Mjöbaken..., 1013-09- 11. Ansökan skckas t Kommun&yresa1 Ängehoms kommun ö&rav2
Läs merTentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Läs merTillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik
Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =
Läs merFråga: Erbjuder ni någon utbildning för förskrivare och apotekspersonal för att kunna använda webbapplikationerna på ett effektivt sätt?
FAQ för det ya licessystemet KLAS Fråga: Hur skickar jag som förskrivare i mi licesmotiverig i KLAS? Svar: Läk fis på lv.se/lices uder Skapa licesmotiverig. Fråga: Varför ska jag som förskrivare skicka
Läs merNOLLRUMMET och BILDRUMMET till en linjäravbildning. MATRISENS RANG. DIMENSIONSSATSEN.
Ari Hliloic: EXTRA ÖVNINGAR NOLLRUMMET och BILDRUMMET ill e lijärildig. MATRISENS RANG. DIMENSIONSSATSEN. NOLLRUM (Kerel (kär i kuroke Defiiio. Lå T r e lijär ildig frå R ill R. Mägde ll ekorer i R o ild
Läs mer