Lösning till TENTAMEN

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Lösning till TENTAMEN"

Transkript

1 Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO el A Strömslära EXAMINATOR Mats Jarlros TI FÖR TENTAMEN JÄMEE ANS ÄRARE: am Tyodkäd räkedosa, Matematska tabeller Eertekk formler oh tabeller, ata oh aram Teksk Formelsaml S Kaasa, Ist formelsaml Mats Jarlros telr besöker tetame kl 09.0 oh 0.0 ATUM FÖR ANSAG av resultat samt av td oh lats för rask ÖRIG INFORM. (ex.vs atal fråor, Sarast 50 oä. Godkät 0 oä, G 0 oä oh MG 0 oä ufter, oä o dyl) NAMN (tetad):

2 Isttutoe för Sjöfart oh Mar Tekk. Korta fråor korta svar. oä er fråa. a) lke aroxmato örs kurse för vätskors komressbltet? b) Beroulls rudläade ekvato fs tre varater. lka? ) u har två vetler av samma storlek me av olka ty. ur skall du avöra vlke vetl som har läst trykfall? d) E um er e trykusätt å 0 mv då de arbetar med e vätska med destete 950 m /k. ad blr trykusätte, meter vätskeelare, om vätskas destet ädras tll 000 m /k vd samma volymflöde? e) ad är skllade mella e fläkt oh e komressor? 0 oä ös a) ätskor betraktas kurse som komressbla. b) Beroulls ekvato fs följade varater Eerform Trykform öjdform. ) e vetl som har de bästa strömsblde, vd sektor, rak eomflöde et., er det lästa trykfallet. d) Trykusätte meter vätskeelare blr de samma. Alltså 0 mv. e) E fläkt har e så lte trykusätt att ma ka försumma förädre av destete, det å att räka komressbelt. För e komressor måste ma ta häsy tll destetsvaratoera. Ett mått å detta är att om trykusätte överster 0000 a så är det e komressor aat fall är det e fläkt.

3 Isttutoe för Sjöfart oh Mar Tekk. E rkulär luka med dameter 75 m är laerad med stt etrum 5 m uder vatteyta. Atmosfärstryk råder å de torra sda. Beräka å krafte å luka. 5 oä ös Förutsättar uka ameter 75 m 0,75 m ukas medelukt uder vätskeyta h 5 m. Atmosfärstryk å lukas torra sda a 0 barö uka skall kua öas mometfrtt med avseede å vattetryket. Fråa Krafte å lyka Ataade attet kr luka är stllaståede attets destet är 000 k/m Aalys h 5 m 0,75 m Krafte å luka F A h π 0, ,8 π,7 kn Svar: Krafte å luka är,7 kn

4 Isttutoe för Sjöfart oh Mar Tekk. Ett flöde mäts med e horsotellt moterad veturmeter som har största dameter mm oh msta dameter mm. Trykskllade mella dessa sektoer mäts med u-rör tll 780 mm vätskeelare. Beräka hasthetera sektoera oh volymflödet. 0 oä ös Förutsättar eturmeter ameter största sekto mm 0,0 m ameter msta sekto mm 0,0 m Trykskllad mella största oh msta sekto h 780 mm 0,780 m Fråor asthetera sektoera oh volymflödet Ataade Statoär ström Förlustfrtt Aalys Med förutsätte att destete är kostat så är volymflödet kostat. Kotutetsekvatoe er: A A Sekto Sekto A ekvato A Om hasthete ökar kommer statska tryket att mska elt Beroulls ekvato. z z om höjde z sekto lka med höjde z sekto lka, z z, fås:

5 Isttutoe för Sjöfart oh Mar Tekk ( ) ekvato Isätt av ekvato er: asthete löses ut: h h ekvato där h höjdskllade mät med U-röret. Ekvatoe ova vsar att hasthete e rörled ka bestämmas med e veturmeter eom att mäta trykskllade mella största oh msta sekto. Uder förutsätt att veturmeters eometr är käd ka volymflödet beräkas. Alltså blr volymflödet: h A. π ekvato asthete största sektoe er av ekvato, m/s 0,0 0,0 9,8 0,780 h asthete msta sektoe es av ekvato,6 m/s 0,0 0,0, olymflödet erhålls eom att multlera hasthete med area alteratvt eom att aväda ekvato : 8, l/m s / m 0 6,0 0,0, A. π π Svar: asthete största sekto, m/s asthete msta sekto,6 m/s olymflödet 0,0006 m /s 8, l/m

6 Isttutoe för Sjöfart oh Mar Tekk. I e öe tak står vätskevå 0 m över ett hål med dameter 5 mm. asthetskoeffete är 0,95 oh kotraktoskoeffete är 0,85. Beräka a) Utströmmade volymflöde om vätska har destete 000 k/m b) Utströmmade volymflöde om vätska har destete 850 k/m ) Förklara resultatet. 0 oä ös Förutsättar Tak ätskevå h 0 m ål dameter d 5 mm 0,05 m asthetskoeffete φ 0,95 Kotraktoskoeffete ψ 0,85 ätskas destet fall 000 k/m ätskas destet fall 850 k/m Fråor a) Utströmmade volymflöde om vätska har destete 000 k/m b) Utströmmade volymflöde om vätska har destete 850 k/m ) Förklara resultatet. Ataade Statoär utström Take stor förhållade tll utflödet vlket ör att vås hasthet ka försummas Atmosfärstryk råder både å yta oh utströmshålet. Aalys Idex h 0 m Idex Teka Beroulls ekvato höjdform mella yta - dex oh utströmshålet - dex. h h är 0. å take är stor förhållade tll utströmsflödet.

7 Isttutoe för Sjöfart oh Mar Tekk h h 0 m atmosfärstryket teoretsk hasthet utströmshålet h 0 referesvå Isätt er: h h h h h h h 9,80,0 m/s et ka kostateras att hasthete är oberoede av destete. etta beror å att vätska vd yta har e vss läeseer m h. ea rörelseeer omvadlas tll ketsk W eer Wk m utströmshålet. Sätts dessa ekvatoer lka ka massa m förkortas bort. ätska med e höre destet har e höre otetal eer me okså e höre ketsk eer vd e ve hasthet. erklt volymflöde d π 0,05 π ϕψ A ϕψ 0,95 0,85,0,000 m / s l/s Svar: olymflödet är oberoede av vätska destet 0,0000 m /s l/s Förklar, se ova.

8 Isttutoe för Sjöfart oh Mar Tekk 5. E um med verksrade 80 % umar vatte eom e rörled frå e sjö tll e reservoar som ler 0 meter över sjös yta. Rörledes första del år horsotellt 5 m över sjös yta oh har dameter 500 mm oh läde 00 m. I dea del fs styke klsldvetler oh styke 90 -böjar. Rörlede koas er tll dameter 00 mm oh ster därefter tll sluthöjde. ea del av rörlede är 00 m lå. I dea del fs kulvetl, e bakvetl oh två styke 90 böjar. Flödet rörledara är 00 m /h. ata övrt Trykförlustkoeffeter Klsldvetler 0,8 Kulvetler,0 Bakvetl,5 90 -böj 0, Nerko 0,05 räkat å utåshasthete Rörfrktoskoeffete 0,00 Beräka a) Tryket omedelbart före erkoe b) umes effektbehov ös Förutsättar um erksrad η 0,80 olymflöde 00 m / h Rörled ameter 500 mm 0,500 m äd 00 m Klsldvetler ks st trykförlustkoeffet b 0,8 Rörböjar atal b st trykförlustkoeffet b 0, Slutuktes höjd över sjö h 5 m Rörled ameter 00 mm 0,00 m äd 00 m Kulvetler kul st trykförlustkoeffet b,0 Bakvetl bak st trykförlustkoeffet b,5 Rörböjar atal b st trykförlustkoeffet b 0, Nerko atal k st trykförlustkoeffet b 0,05 Utloets höjd över sjö h 0 m Rörfrktoskoeffete λ 0,00 Fråor: a) Tryket omedelbart före erkoe b) umes effektbehov 0 oä

9 Isttutoe för Sjöfart oh Mar Tekk Ataade Statoärt Rörfrktoskoeffete kostat Sjö oh reservoare är stora förhållade tll flödet. Yta ädras ej. Atmosfärstryket a 0 barö råder reservoare oh vd sjö 9,8 m/s Aalys -edko 0 m 5 m Idexer atteyta sjö a res före erkoe b res efter edkoe Utströme reservoare Rörled Strömshasthete π A π a b π π ,5 π , π,8 m/s,87 m/s

10 Teka Beroulls ekvato mella a oh a a h a h h är a,8 m/s elt ova h 5 m,87 m/s h 0 m a 0 barö Isttutoe för Sjöfart oh Mar Tekk f Trykfallet h f- λ b h f Summer av eåsmotståde mella - Kulvetler st b,0,0 Bakvetl bak st b,5,5 Rörböjar atal b st b 0, 0, Nerko atal k st b 0,05 0,05 Σ,95 Isätt Beroulls ekvato b,87 m/s elt ova a a h a h a a h a,87, ,8 9,8 a h a 9,0000 9,8 87 ka λ λ 0 9,8 Rörled Teka Beroulls ekvato mella oh a a a h um h a h är 0 m/s elt ova a,8 m/s elt ova h 0 m h a 5 m a 0 barö a 87 ka el ova um umes trykusätt mv b b 0,0000,87,95 9,0 mv 0, 9,8 fa

11 Isttutoe för Sjöfart oh Mar Tekk Trykfallet h f-a λ a h f a Summer av eåsmotståde mella - Klsldvetler ks st b 0,8,6 Rörböjar atal b st b 0, 0,6 Σ, Isätt Beroulls ekvato a h um h h um um um um um a h a 0 h a h h a a um a h a a h a λ a λ a λ a 0 a a a h a λ λ 80 0,00 00,8 5, 5,9 mv 0009,8 0,5 9,8 0 a a umes effektbehov 00 5,90009, kw η 0,8 Svar: Tryket res före erkoe 9,0 mv 87 ka umes effektbehov 5 kw fa a a a

12 Isttutoe för Sjöfart oh Mar Tekk 6. E fläkt arbetar vd varvtalet 800 rm. olymflödet är m /s oh trykusätte är 600 a. Gase har e destet å, k/m. Elt fläktdarammet är effektbehovet 8 kw vd 800 rm oh m /s. olymflödet säks tll,5 m /s med varvtalsreler. Beräka: a) Beräka effektbehovet vd fullt flödet b) Beräka följade efter edrelere. arvtal Trykusätt Effektbehov ös Förutsättar rftfall fullt flöde arvtal 800 rm olymflöde m /s Trykusätt 600 a rftfall edrelerat olymflöde,5 m /s ärde frå darammet arvtal rm olymflöde 0 m /s Effekt 0 8 kw Fråor a) Beräka effektbehovet vd fullt flödet b) Beräka följade efter edrelere arvtal Trykusätt Effektbehov Ataade Fläktdarammet baseras å destete 0, k/m erksrade är oförädrad Statoär drft. Fläkte har et statskt mottryk 5 oä Aalys a) Beräka effektbehovet vd fullt flöde. et ka kostateras att aktuell as har e aa destet ä fläktdarammets effekt. Omräk måste ske ,, 6,5 kw

13 Isttutoe för Sjöfart oh Mar Tekk b) Efter edrelere Afftetslaara er:,kw ,5 kostat 900 a kostat 00 rm 800,0,5 kostat Svar: a) Fläktes effektbehov är 6,5 kw b) Efter edreler arvtal 00 rm Trykusätt 900 a Effekt, kw

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal.

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal. Komressorer F1 F Skillad mot fläktar: Betydade desitetsförädrig, ryk mäts ormalt som absolut totaltryk. vå huvudgruer av komressorer: Förträgigskomressorer urbokomressorer Egeskaer Lågt massflöde Höga

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Något om beskrivande statistik

Något om beskrivande statistik Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s. Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,

Läs mer

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2 Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +

Läs mer

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

50p. Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ladokkod: Tentamen ges för: Tentamen 4ET07 Bt TentamensKod: Tentamensdatum: Måndag 30 maj 06 Tid: 9.00-3.00 Hjälmedel: Valfri miniräknare Formelsamling: Energiteknik-Formler

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

Sensorer och elektronik. Analys av mätdata

Sensorer och elektronik. Analys av mätdata Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet

Läs mer

Centrala gränsvärdessatsen

Centrala gränsvärdessatsen Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska

Läs mer

Sensorer, effektorer och fysik. Analys av mätdata

Sensorer, effektorer och fysik. Analys av mätdata Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Variansberäkningar KPI

Variansberäkningar KPI STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04 Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar. Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter

MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter TERMODYNAMIK MMVA01 Termodynamik med strömningslära Exempel på tentamensuppgifter T1 En behållare med 45 kg vatten vid 95 C placeras i ett tätslutande, välisolerat rum med volymen 90 m 3 (stela väggar)

Läs mer

Betong Cement Gruvor Papper & Cellulosa Asfalt Grus Kemi Plast Läkemedel Livsmedel Avlopp & Vatten Vätskor Pulver Slurry Flingor Granulater

Betong Cement Gruvor Papper & Cellulosa Asfalt Grus Kemi Plast Läkemedel Livsmedel Avlopp & Vatten Vätskor Pulver Slurry Flingor Granulater Nvåmätg Betg Cemet Guv Pappe & Cellula Afalt Gu Kem Plat Läkemedel Lvmedel Avlpp & Vatte Vätk Pulve Sluy Flg Gaulate Nvåmätg fö pcedut Nvåktll fö: Övefylladkydd Batchktll Pduktmätg Lagektll Säkehetlam

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14) AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 17/ till och med 18/ Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 17/ till och med 18/ Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, fri övergåg iom 1 tim till stadsbussara (valfritt atal resor

Läs mer

Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända

Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända we Mezel, 7 we.mezel@sl.se; we.mezel@matstat.de www.matstat.de Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak.

Partikeldynamik. Fjädervåg. Balansvåg. Dynamik är läran om rörelsers orsak. Dynamk är läran om rörelsers orsak. Partkeldynamk En partkel är en kropp där utsträcknngen saknar betydelse för dess rörelse. Den kan betraktas som en punktmassa utan rotaton. Massa kan defneras på två

Läs mer

ENERGIPROCESSER, 15 Hp

ENERGIPROCESSER, 15 Hp UMEÅ UNIVERSITET Tillämpad fysik och elektronik Mohsen Soleimani-Mohseni Robert Eklund Umeå 10/3 2012 ENERGIPROCESSER, 15 Hp Tid: 09.00-15.00 den 10/3-2012 Hjälpmedel: Alvarez Energiteknik del 1 och 2,

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå

Läs mer

HYPOTESPRÖVNING. De statistiska metoderna som används för att fatta denna typ av beslut baseras på två komplementära antaganden om populationen.

HYPOTESPRÖVNING. De statistiska metoderna som används för att fatta denna typ av beslut baseras på två komplementära antaganden om populationen. HPOTESPRÖVNING De tatitika metodera om aväd för att fatta dea typ av belut baera på två komplemetära atagade om populatioe. Partiet produkter har atige de utlovade kvalitete eller å har de de ite. Atige

Läs mer

Lycka till och trevlig sommar!

Lycka till och trevlig sommar! UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 07-05-3 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 09.00-5.00 Tllåta hjälpmedel: Tabellsamlg,

Läs mer

Programmering Emme-makro rvinst_ic.mac version 2

Programmering Emme-makro rvinst_ic.mac version 2 Uppdragsr: 10109320 2008-08-27 Seh Svalgård PM Programmerig Emme-makro rvis_ic.mac versio 2 Iehållsföreckig Förusäigar...2 Beräkigsuryck...2 Daabaser...4 Marisplaser...4 Aropsparamerar...6 Udaa...6 L:\705x\_SAMSAM\3_Dokume\36_PM\PM

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

Välkommen in i konfirmandens egen bibel!

Välkommen in i konfirmandens egen bibel! L Välkoe kofrades ege bbel! Upptäck Bbel tllsaas ed kofrade! Lbrs ya kofradutgåva av Bbel har två huvudpersoer: Jesus so är Bbels kära och stjära och de uga äska so ärar sg Bbel och tro. Ordet kofrad äs

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system

Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar

Läs mer

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]

Läs mer

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25 TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Kompletteringsskrivning i EG2050 Systemplanering, 17 september 2009, 9:00-11:00, stora konferensrummet

Kompletteringsskrivning i EG2050 Systemplanering, 17 september 2009, 9:00-11:00, stora konferensrummet Kompletterigsskrivig i EG2050 Systemplaerig, 17 september 2009, 9:00-11:00, stora koferesrummet Istruktioer Edast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga uppgiftera

Läs mer

Beteckningar för områdesreserveringar: T/kem Landskapsplanering

Beteckningar för områdesreserveringar: T/kem Landskapsplanering kk mk mv se jl ma ge pv nat luo un kp me va sv rr rr A AA C P TP T TT T/kem V R RA RM L LM LL LS E ET EN EJ EO EK EP S SL SM SR M MT MU MY W c ca km at p t t/ kem mo vt/kt/st vt/kt st yt tv /k /v ab/12

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv

Läs mer

Specialfall inom produktionsplanering: Avslutning Planerings- Le 8-9: Specialfall (produktval, kopplade lager, cyklisk planering, mm) system

Specialfall inom produktionsplanering: Avslutning Planerings- Le 8-9: Specialfall (produktval, kopplade lager, cyklisk planering, mm) system Föreläsg Specalfall om produktosplaerg: Produktvalsplaerg, cyklsk plaerg, alteratva partformgsmetoder Avslutg Plaergssystem Fast posto Fö 6a: Projektplaerg (CPM, PERT, mm) Le 3: Projektplaerg (CPM/ PERT,

Läs mer

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna.

Ö D W & Ö Sida 1 (5) OBS! Figuren är bara principiell och beskriver inte alla rördetaljerna. Ö4.19 Ö4.19 - Sida 1 (5) L h 1 efinitioner och gina ärden: Fluid Ättiksyra T 18 ºC h 4m OBS! Figuren är bara principiell och beskrier inte alla rördetaljerna. p 1 p p atm L 30 m 50 mm 0,050 m ε 0,001 mm

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i

F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i L L L L V Hm l är blek VSpel man n är HårgaLåt L L L mar nat t, n g matt, L Text: Carl Peter Wckström Sats: Robert Sund (.2) L L # Ljus L nans vat t sg be satt L # Hm l är blek Spel man L n L är V mar

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa

Chalmers, Data- och informationsteknik 2011-10-19. DAI2 samt EI3. Peter Lundin. Godkänd räknedosa LET 624 (6 hp) Sd nr 1 TENTAMEN KURSNAMN PROGRAM: namn REALTIDSSYSTEM åk / läsperod DAI2 samt EI3 KURSBETECKNING LET 624 0209 ( 6p ) EXAMINATOR TID FÖR TENTAMEN Onsdagen den 19/10 2011 kl 14.00 18.00 HJÄLPMEDEL

Läs mer

Bröderna fara väl vilse ibland (epistel nr 35)

Bröderna fara väl vilse ibland (epistel nr 35) Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me

Läs mer

Har du sett till att du:

Har du sett till att du: jua b r t t u a lr r l a r r a å l g P rä t r g u s p u m h a c tt val? t bo s F Rock w S Du har tt stort asvar! Som fastghtsägar m hyra gästr llr campg trägår är u otrolgt vktg aktör! Självklart för att

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket? Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de

Läs mer

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt

a) Vi kan betrakta luften som ideal gas, så vi kan använda allmänna gaslagen: PV = mrt Lösningsförslag till tentamen Energiteknik 060213 Uppg 1. BA Trycket i en luftfylld pistong-cylinder är från början 100 kpa och temperaturen är 27C. Volymen är 125 l. Pistongen, som har diametern 3 dm,

Läs mer

TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR120 8 JANUARI 2005, 08:00-13:00

TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR120 8 JANUARI 2005, 08:00-13:00 Joakim Malm Teknisk Vattenresurslära LTH TENTAMEN STRÖMNINGSLÄRA FÖR W, VVR0 8 JANUARI 00, 08:00-:00 Tillåtna hjälpmedel: Kom ihåg: För samtliga uppgifter: Rättning: Betyg: Lärobok, föreläsningsanteckningar

Läs mer

Drivsystemelektronik \ Drivsystemautomation \ Systemintegration \ Service. Handbok. Tillverkning av kablar Kablar för synkrona servomotorer

Drivsystemelektronik \ Drivsystemautomation \ Systemintegration \ Service. Handbok. Tillverkning av kablar Kablar för synkrona servomotorer Drvsystemelektrok \ Drvsystemautomato \ Systemtegrato \ Servce Hadbok Tllverkg av kablar Kablar ör sykroa servomotorer Utgåva 12/2011 19301677 / SV SEW-EURODRIVE Drvg the world Iehållsörteckg 1 Krmpverktyg...

Läs mer

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen?

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen? UMEÅ UNIVERSITET Isttutoe för matematk och matematsk statstk MSTA, Statstk för tekska fysker A Peter Ato TENTAMEN 005-0-03 ÖSNINGSFÖRSAGTENTAMEN I MATEMATISK STATISTIK Statstk för tekska fysker, 4 oäg.

Läs mer

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad. Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11 rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

TENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13.

TENTAMEN TE 12. HÖGSKOLAN I BORÅS Textilhögskolan Olle Holmudd. VÄVERITEKNIK, 4,5 högskolepoäng, Ladokkod TVT10A. Datum: 2012.11.09. Tid: 09.00 13. HÖGSKOLAN I BORÅS Texthögoa Oe Homudd TENTAMEN TE 12 VÄVERITEKNIK, 4,5 högoepoäg, Ladood TVT10A Datum: 2012.11.09. Td: 09.00 13.00 Hjäpmede: Räare, färgpeor, upp, ja, petå, tejp Aayad och formead Ata dor:

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25 Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om

Läs mer

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6 ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Statistik för ingenjörer 1MS008

Statistik för ingenjörer 1MS008 Statistik för igejörer MS8 Föreläsig Kursmål: För godkät betyg på kurse skall studete käa till ett flertal metoder och tekiker för visualiserig av datamaterial; kua geomföra ekla beräkigar av saolikheter;

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer