Datorövning 2 Fördelningar inom säkerhetsanalys

Storlek: px
Starta visningen från sidan:

Download "Datorövning 2 Fördelningar inom säkerhetsanalys"

Transkript

1 Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade begrepp frå saolikhetsteori: täthetsfuktio, vätevärde och varias; och frå iferesteori: histogram, empirisk fördelig och parameterskattig. Vi aväder Gumbel-fördelige som exempel eftersom de ofta aväds iom säkerhetsaalys. Vi börjar med simulerigar me ska också studera riktiga data av mätigar av våghöjder i Atlate. 1 Förberedelseuppgifter 1. Läs igeom hadledige samt kapitel och i boke. 2. Skriv er defiitioe av vätevärde och varias för e kotiuerlig slumpvariabel X, d.v.s. E(X ) och V (X ). Beräka vätevärde och varias för X om X är expoetialfördelad. 3. Skriv upp likelihoodfuktioe L(a; x) om x = {x 1... x } är ett stickprov frå e expoetialfördelig. 4. Hur tolkar ma e ormalfördeligsplot? 2 Täthetsfuktioe som ett gräsvärde för histogram Histogram aväds ofta för att beskriva fördelige av data. Vi jämför histogram med täthetsfuktioe, ofta beteckad f X (x) om variabel heter X, och börjar med e Gumbelfördelig med fördeligsfuktio F X (x) = exp( e (x b)/a ) med parametrara a = 2.1 och b = 1.7. Matlab har ibyggda fuktioer, evrd, etc. där ev står för Extreme Value (distributio), för Gumbelfördelige me de är defiierade åt fel håll, jämfört med boke, så vi ka ite utyttja dem direkt. Därför har vi skrivit e ege versio gumbrd som ka laddas er frå kurses hemsida. Där fis fler Gumbel-fuktioer som vi kommer att behöva så ladda er dem också. Simulera 1000 slumptal och rita ett histogram: >> a = 2.1; b = 1.7; >> x = gumbrd(a,b,1,1000) % e radvektor med 1000 kolumer >> hist(x) Likar detta täthetsfuktioe? Eftersom vi har atal observatioer i varje klass på y-axel ka vi ite rita täthetsfuktioe i samma skala. De itegrerar ju till ett. Vi behöver skala om histogrammet så det också itegrerar till ett. Vi har gjort e ege fuktio histpdf (se hemsida) för detta: >> help histpdf >> histpdf(x)

2 DATORÖVNING 2, FMS065 2 Nu ka vi lägga till täthetsfuktioe till histogrammet: >> xv = lispace(mi(x),max(x),1000); % 1000 värde jämt utspridda mella mista % och största x-värdet. >> f = gumbpdf(xv,a,b); % gumbpdf fis på hemsida. >> hold o % Fortsätt rita i histogrammet. >> plot(xv,f, r ) >> hold off Uppgift: Vad häder är atalet slumptal ökar? Testa geom att öka atalet simulerigar frå 1000 till 2000, 5000 och Öka gära också atalet klasser i histogrammet till 50. Uppgift: Vad häder är atalet slumptal miskar? Testa geom att miska atalet simulerigar frå 1000 till 500, 100 och 25. Glöm ite att miska atalet klasser i histogrammet också. 3 Vätevärde och varias för e slumpvariabel För e slumpvariabel X, ager vätevärdet E(X ) var värdea ligger i medeltal (tygdpukte i fördelige). Variase V(X ) (eller stadardavvikelse D(X ) = V(X )) av X ka ses som ett mått på spridige. Vätevärde och varias fis beräkat för att atal fördeligar, se ågo lämplig tabell. För ett givet datamaterial x 1,..., x (stickprov), vet vi oftast ite vilke fördelig det gäller, och därmed heller ite vätevärde och varias för de fördelige. Stickprovsmedelvärdet, beteckat x = 1 i=1 x i, och stickprovsvariase, beteckad s 2 = 1 1 i=1 (x i x) 2, är motsvarade empiriska mått på läge och spridig. Om atalet observatioer,, ökar förvätar vi oss att dessa storheter ärmar sig E(X ) respektive V(X ). Låt oss udersöka detta med hjälp av simulerade data där vi vet svaret. I e Gumbelfördelig ges vätevärde och varias av 1 E(X ) = b + a g, där g är Eulers kostat, V(X ) = a2 p 2 6. Välj ige a = 2.1 och b = 1.7. Då får vi >> a = 2.1; b = 1.7; >> EX = b-a*psi(1) % -psi(1) ger Eulers kostat i Matlab. >> VX = a^2*pi^2/6 >> DX = sqrt(vx) Simulera u 50 observatioer frå Gumbel-fördelige (gumbrd) och beräka stickprovsmedelvärdet (mea), -variase (var) och -stadardavvikelse (std): 1 g def = lim k ( k i=1 (1/i) l i ) =

3 DATORÖVNING 2, FMS065 3 >> x = gumbrd(a,b,1,50); >> mea(x) >> var(x) >> std(x) Uppgift: Jämför med de teoretiska värdea som du fick fram ia. Stämmer de överes? Uppgift: Simulera ågra större stickprov med, t.ex., 200, 1000 och 5000 obervatioer. Vad häder är atalet observatioer ökar? 4 Skattig av parametrar Atag att vi har ett stickprov x 1,..., x frå e Gumbelfördelig me där parametrara a och b är okäda. Maximum-likelihood-skattigar fis implemeterat i Matlab för flera olika fördeligar (xxxfit). Eftersom Gumbelfördelige i Matlab är bakväd har vi gjort e ege versio gumbfit. Vi börjar med att simulera 50 observatioer frå samma Gumbel-fördelig som tidigare och aväder seda gumbfit för att skatta parametrara: >> a = 2.1; b = 1.7; >> x = gumbrd(a,b,1,50); >> phat = gumbfit(x); % phat iehåller både a- och b-skattigara. >> ahat = phat(1) % a-skattige >> bhat = phat(2) % b-skattige Uppgift: Hur stämmer skattigara med de saa parametervärdea? Uppgift: Simulera 50 ya slumptal frå samma fördelig och skatta parametrara ige. Blev det samma som förra gåge? Varför ite? Egeskaper hos skattigar Uppebarlige varierar skattigara är vi gör ya observatioer. Dessutom är det ofta så att skattigara av två parametrar i samma fördelig (här a och b) ite är oberoede. Vi vill alltså udersöka både variase för de olika skattigara och kovariase mella dem.

4 DATORÖVNING 2, FMS065 4 För skattigara a och b i e Gumbelfördelig gäller (är atalet observatioer ökar) att 2 V(a ) 6 p 2 a2 a ) V(b 6(1 g)2 ) (1 + p 2 a2 a C(a, b ) 6(1 g) p 2 a a2 (1) (2) Notera att variatioe i b-skattige ite beror på b uta bara på a. Dessutom är kovariase positiv vilket iebär att båda skattigara riskerar att bli för stora (eller för små) samtidigt. För att illustrera detta har vi skrivit e fuktio som simulerar ya stickprov frå e Gumbel-fördelig, skattar a och b och ritar upp dem. >> a = 2.1; b = 1.7; = 50; >> type gumbsim % Se vad fuktioe gör. >> phat = gumbsim(a,b,,1000); % 1000 stickprov med obs i varje. Uppgift: Eligt teori om ML-skattigar ska a och b vara ugefär ormalfördelade. Verkar det stämma? Uppgift: I de udre figure är de 1000 pare (a, b ) iritade. Hur ser ma att kovariase är större ä oll? Uppgift: Ädra stickprovsstorleke frå 50 till 5. Vad häder med ormalapproximatioe? Blir de bättre eller sämre? 5 Fördeligspapper I verkliga situatioer vet vi ite vilke fördelig observatioera kommer frå. Det fis flera sätt att udersöka detta me vi kocetrerar oss här på fördeligspapper som är e ekel grafisk metod. Atag att vi har ett stickprov x 1, x 2,..., x. Ia vi ka skatta ågra parametrar måste vi övertyga oss om att data kommer frå e viss familj av fördeligar, t.ex. ormal, Gumbel eller Weibull. Det är ofta svårt att se detta i ett histogram me det ka vara eklare att aväda fördeligsfuktioe och rita i de i ett fördeligspapper 3. Det fis olika papper för olika fördeligar. Papprets x- och y-axlar är kostruerade så att om data kommer frå e give typ av fördelig så hamar observatioera på e rät lije. Statistics Toolbox i Matlab har ormplot (för ormalfördelig) och wblplot (för Weibull-fördelig). Vi har skrivit e ege gumbplot (för Gumbel-fördelig). Vi provar att geerara data frå ågra olika fördeligar och ser hur det ser ut i olika papper. Vi börjar med ormalfördelig: 2 Det är ite ekelt att visa detta. 3 Ia datorera ritade ma på papper. Namet häger kvar.

5 DATORÖVNING 2, FMS065 5 >> data = rad(2000,1); % 2000st N(0,1) >> figure(1) >> clf % Tömmer iehållet i figure 1 >> hist(data) >> figure(2) >> ormplot(data) >> figure(3) >> wblplot(data) % Några felmeddelade? Varför? >> figure(4) >> gumbplot(data) Uppgift: Hur ser det ut är vi ritar i rätt papper? I fel papper? Uppgift: Gör om det hela med rektagelfördelade slumptal istället (data=rad(2000,1);). Passar ågo av de tre fördeligara? Uppgift: Gör om det med Weibullfördelade slumptal istället (data=wblrd(2, 2.3, 2000, 1); ger Weibull med a = 2, b = 0 och c = 2.3). Passar ågo av de tre fördeligara? Uppgift: Och ige med e Gumbelfördelig (data=gumbrd(2.1, 1.7, 2000, 1);). Passar ågo av de tre fördeligara? Uppgift: Experimetera med att ädra parametrara i fördelige och också atalet slumptal. Vad häder är ma ädrar parametrara? Vad häder om ma miskar atalet observatioer frå 2000 till, t.ex., 100 eller 25? 6 Mätigar av sigifikat våghöjd i Atlate Vi ska u aväda våra kuskaper för att hitta e lämplig fördelig och skatta parametrar i ett riktigt datamaterial. Iom oceaografi och mari tekologi aväds extremvärdesteori flitigt. När ma desigar havsplattformar behöver ma dimesioera dem efter extrema förhållade. Vi ska studera mätigar frå Atlate. Materialet består av s.k. sigifikata våghöjder 4, d.v.s. medelvärdet av de högsta tredjedele av vågora. Ladda ed datafile och m-file frå hemsida och läs i de i Matlab, läs beskrivige, ta reda på storleke och rita upp de: 4 Ehete är förmodlige 1 meter.

6 DATORÖVNING 2, FMS065 6 >> close all % Stäger alla plot-föster. >> atl = load( atlatic.dat ); >> help atlatic >> size(atl) >> plot(atl,. ) Vi är itresserade av flera olika saker i materialet me vi ska kocetrera oss på att skatta parametrara i de fördelig som vi tycker passar till data. I de här datorövige ska vi göra följade steg: Hitta e familj av fördeligar, F(x), som verkar passa till data. När vi valt lämplig fördelig, skatta de okäda parametrara. Uppskatta variase för parameterskattigara. Lämplig fördelig Ma vet att de sigifikata våghöjde beter sig ugefär som om de vore maximal våghöjd. Därför ka ma misstäka att de ka vara, t.ex., Gumbel-fördelad. Udersök det geom att rita olika fördeligspapper: >> ormplot(atl) >> wblplot(atl) >> gumbplot(atl) Uppgift: Vilke fördelig verkar bra? Varför är de adra ite bra? Parameterskattigar Nu vill vi skatta parametrara i de valda fördelige och aväda dem för att skatta vätevärde och varias. Jämför seda med stickprovets medelvärde och varias: >> phat = gumbfit(atl); % ML-skattigar av a och b. >> ahat = phat(1) >> bhat = phat(2) >> EX = bhat-ahat*psi(1) % Skattade E och V baserat på... >> VX = ahat^2*pi^2/6 %...de skattade a och b. >> medel = mea(atl) % Stickprovsmedelvärde... >> varias = var(atl) %...och -varias. Uppgift: Verkar vätevärdes- och variasskattige baserat på ML-skattige av parametrara vara rimlig jämfört med stickprovsskattigara? Vi ka få e uppskattig av hur osäkra skattigara är geom att aväda formel (1) och (2) för att uppskatta stadardavvikelse (via variase) hos a och b :

7 DATORÖVNING 2, FMS065 7 >> Vahat = 6*ahat^2/pi^2/legth(atl); >> Dahat = sqrt(vahat) >> Vbhat = (1+6*(1+psi(1))^2/pi^2)*ahat^2/legth(atl); >> Dbhat = sqrt(vbhat) Uppgift: Verkar osäkerhete stor eller lite i förhållade till hur stora skattigara är? I ästa datorövig ska vi aväda skattade parametrar för att skatta kvatiler i fördelige, t.ex. 100-årsvåge. Vi ska också udersöka hur osäkerhete i parameterskattigara fortplatar sig till kvatilskattige.

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grudläggade matematisk statistik Puktskattig Uwe Mezel, 2018 uwe.mezel@slu.se; uwe.mezel@matstat.de www.matstat.de Saolikhetsteori: Saolikhetsteori och statistikteori vad vi gjorde t.o.m. u vi hade e give

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera

Minsta kvadrat-metoden, MK. Maximum likelihood-metoden, ML. Medelfel. E(X i ) = µ i (θ) MK-skattningen av θ fås genom att minimera Matematisk statistik slumpes matematik Saolikhetsteori hur beskriver ma slumpe? Statistikteori vilka slutsatser ka ma dra av ett datamaterial? Statistikteori översikt Puktskattig Hur gör ma e bra gissig

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas?

Skattning / Inferens. Sannolikhet och statistik. Skattning / Inferens. Vad är det som skattas? Skattig / Iferes Saolikhet och statistik Puktskattig Försöket att beskriva e hel populatio pga ågra få mätvärde! Oberservatio = Populatio HT 2008 UweMezel@mathuuse http://wwwmathuuse/ uwe/ Populatio har

Läs mer

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00

Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Lycka till! I(X i t) 1 om A 0 annars I(A) =

Lycka till! I(X i t) 1 om A 0 annars I(A) = Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna. 1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Föreläsning 2: Punktskattningar

Föreläsning 2: Punktskattningar Föreläsig : Puktskattigar Joha Thim joha.thim@liu.se 7 augusti 08 Repetitio Stickprov Defiitio. Låt de stokastiska variablera X, X,..., X vara oberoede och ha samma fördeligsfuktio F. Ett stickprov x,

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

θx θ 1 om 0 x 1 f(x) = 0 annars

θx θ 1 om 0 x 1 f(x) = 0 annars Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.

Läs mer

1. Test av anpassning.

1. Test av anpassning. χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler

Läs mer

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)

b) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p) Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:

Läs mer

E ( X ) = (här ska ni skriva en viss bokstav! Vilken? Varför)

E ( X ) = (här ska ni skriva en viss bokstav! Vilken? Varför) STOCKHOLMS UNIVERSITET HT 2005 Statistiska istitutioe 2005-09-9 MC Istruktioer till DATORÖVNING Fortsättigskurs i statistik, momet, Statistisk Teori, 0 poäg. Saolikhetsteori - Cetrala gräsvärdessatse.

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

S0005M V18, Föreläsning 10

S0005M V18, Föreläsning 10 S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

Laboration 5: Konfidensintervall viktiga statistiska fördelningar

Laboration 5: Konfidensintervall viktiga statistiska fördelningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboratio 5: Kofidesitervall viktiga statistiska fördeligar Syfte I dea laboratio

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys

Läs mer

================================================

================================================ rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Armi Halilovic: EXTRA ÖVNINGAR Besrivade statisti BESKRIVANDE STATISTIK. GRUNDBEGREPP Följade begrepp aväds ofta vid besrivig av ett statistist material: LÄGESMÅTT (medelvärde, media och typvärde): Låt

Läs mer

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index.

F3 Lite till om tidsserier. Statistikens grunder 2 dagtid. Sammansatta index 4. Deflatering HT Laspeyres index: Paasche index: Index. F3 Lite till om tidsserier Deflaterig, att justera för iflatioe tatistikes gruder dagtid 4 3,5 3,5,5 Mjölk ockerdricka HT,5 975 976 977 978 979 98 98 98 Löpade priser År Mjölk ockerdricka KPI 945 = 975,34,

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6 SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger

Läs mer

b 1 och har för olika värden på den reella konstanten a.

b 1 och har för olika värden på den reella konstanten a. Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1 duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

Tentamen i Sannolikhetsteori III 13 januari 2000

Tentamen i Sannolikhetsteori III 13 januari 2000 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klitberg Lösigar Tetame i Saolikhetsteori III 13 jauari 2000 Uppgift 1 a) Det mest detaljerade utfallsrummet är med uppebara beteckigar Ω = {(B1, B2),

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ

För att skatta väntevärdet för en fördelning är det lämpligt att använda Medelvärdet. E(ξ) =... = µ 1 February 1, 2018 1 Förel. VII Puktskattigar av parametrar i fördeligar 1.1 Puktskattig För att skatta vätevärdet för e fördelig är det lämpligt att aväda Medelvärdet ξ = 1 ξ j. Vi tar u vätevärdet av

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

a) Beräkna E (W ). (2 p)

a) Beräkna E (W ). (2 p) Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00. Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt

Läs mer

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11 rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

Matematisk statistik TMS063 Tentamen

Matematisk statistik TMS063 Tentamen Matematisk statistik TMS063 Tetame 208-05-30 Tid: 8:30-2:30 Tetamesplats: SB Hjälpmedel: Bifogad formelsamlig och tabell samt Chalmersgodkäd räkare. Kursasvarig: Olof Elias Telefovakt/jour: Olof Elias,

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Formelblad Sannolikhetsteori 1

Formelblad Sannolikhetsteori 1 Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK TETAME I MATEMATISK STATISTIK Te i kurse 6H, KÖTEORI OCH MATEMATISK STATISTIK, Te i kurse 6H, 6L MATEMATIK OCH MATEMATISK STATISTIK, Skrivtid: :-7: Lärare: Armi Halilovic Kurskod 6H, 6H, 6L, 6A Hjälpmedel:

Läs mer

Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)

Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions) - 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

Stokastiska variabler

Stokastiska variabler TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,

Läs mer

Andra ordningens lineära differensekvationer

Andra ordningens lineära differensekvationer Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren? Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok

Läs mer

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1 Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar

Läs mer

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

TAMS79: Föreläsning 9 Approximationer och stokastiska processer

TAMS79: Föreläsning 9 Approximationer och stokastiska processer TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga

Läs mer

Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder

Sannolikhetsteori FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00. Kap 2: Sannolikhetsteorins grunder LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, AK FÖR I, FMS 10, HT-00 Saolikhetsteori Kap : Saolikhetsteoris gruder Följade gäller för saolikheter: 0

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel, del II Estimerig 2 Kofidesitervall G. Gripeberg Aalto-uiversitetet 3 februari 205 3 Hypotesprövig 4 Korrelatio och regressio G. Gripeberg Aalto-uiversitetet

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de

Läs mer

Datorövning 1 Introduktion till Matlab Fördelningar

Datorövning 1 Introduktion till Matlab Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 11 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade

Läs mer

TAMS15: SS1 Markovprocesser

TAMS15: SS1 Markovprocesser TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet. Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje

Läs mer

Statistik för bioteknik SF1911 // KTH Matematisk statistik // Formler och tabeller. 1 Numeriska sammanfattningar (statistikor)

Statistik för bioteknik SF1911 // KTH Matematisk statistik // Formler och tabeller. 1 Numeriska sammanfattningar (statistikor) Statistik för biotekik SF9 // KTH Matematisk statistik // Formler och tabeller Ht 206 Numeriska sammafattigar (statistikor) För ett datamaterial x, x 2,..., x beräkas Stickprovsmedelvärde x = i= x i =

Läs mer