Kompletterande kurslitteratur om serier

Storlek: px
Starta visningen från sidan:

Download "Kompletterande kurslitteratur om serier"

Transkript

1 KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du ha läst dessa avsitt och räkat tillhörade rekommederade övigar. Här eda aväds beteckigar och defiitioer frå Persso & Böiers uta vidare förklarig.. Allmäa terme går mot oll är ödvädigt me ite tillräckligt för koverges Vi börjar med att formulera ett ödvädigt villkor för att e serie skall vara koverget. E serie är koverget om följde av delsummor ärmar sig ett bestämt värde, d v s är ma adderar fler och fler termer så bromsar summa i och ärmar sig ett gräsvärde. Om detta ska ha e chas att iträffa måste termera bli midre och midre och ärma sig 0. Mer precist formulerat får vi följade Sats. Om serie a k kovergerar så gäller att lim k a k = 0. Bevis. Beviset består av e formaliserig av resomeaget som föregår Sats. Atag att a k kovergerar mot värdet L, a k = L. Detta är defitiosmässigt detsamma som att följde av delsummor kovergerar mot L, dvs s = a k = a 0 + a + + a och lim s = L. Vi observerar också att a = s s. Detta ger att lim a (s s ) s lim s = L L = 0. Sats är därmed bevisad. Sats är kaske mest avädbar i följade (logiskt ekvivaleta) omformulerig: Sats, alterativ formulerig. Om lim k a k 0 är serie a k diverget. Dea formulerig ger ett verktyg för att visa att serier ite är kovergeta.

2 Exempel. Serie Serie k= ( )k är diverget eftersom lim k ( ) k ite existerar. ( ) ( ) + k är diverget eftersom limk + k = 0. Täk själv igeom hur delsummora skulle se ut i dessa två exempel, och övertyga dig själv om att seriera måste vara divergeta, och att skälet till detta är precis det allmäa faktum som har formulerats i Sats. Viktigt! Observera att Sats edast ger ett ödvädigt villkor för koverges. Med adra ord fis det gott om serier där lim k a k = 0 me a k är diverget. Se t ex Exempel 6 (sida 7) i Persso & Böiers där ma visar att k är diverget. Exempel på sida 344 visar mer geerellt att k= om α, och koverget för α >. k= k α är diverget Det räcker alltså ite att allmäa terme går mot oll för att e serie ska kovergera, det krävs ågot mer. För icke-egativa serier, a 0 för alla, skulle ma kua säga att det som krävs är att termera går mot oll tillräckligt sabbt. Situatioe är sarlik de för geeraliserade itegraler, jfr. Exempel 5 (sid 305) och Sats (sid 306) i Persso & Böiers.. Positiva serier E serie kallas positiv (icke-egativ) om alla dess termer är > 0 ( 0). På motsvarade sätt kallas e serie egativ (icke-positiv) om alla dess termer är < 0 ( 0). Exempel. Serie k= ( )k varke positiv, icke-egativ, egativ eller icke-positiv. k Serie ( ) + k är positiv (och därmed också icke-egativ) Serie ( ) k är icke-positiv, me ite egativ. + k För positiva serier fis ett atal tester med vars hjälp ma ka avgöra koverges; vi ska här titta på ågra utav dessa. (Ett test för positiva serier ka direkt omformulers till ett test för egativa serier. Hur då?) Att det är lättare att studera koverges för serier där alla termer har samma tecke ä för serier med såväl positiva som egativa termer kommer sig av att för positiva serier fis det bara två möjligheter: (i) atige divergerar serie mot +, eller så (ii) kovergerar de mot ett ädligt tal. Jämför med situatioe för geeraliserade itegraler av positiva fuktioer.

3 För serier med oädligt måga såväl positiva som egativa termer kompliceras det hela av att följde av partialsummor ka oscillera och av att termera ka ta ut varadra på olika sätt. 3. Domierad koverges för positiva serier Sats Atag att 0 a k b k för alla k = 0,,.... Då gäller att (i) (ii) b k kovergerar = a k divergerar = a k b k kovergerar; divergerar. Bevisidé. Atag att b k kovergerar och är = L. Det betyder att delsummora t = b k alla är L. Me eftersom a k b k för alla k, måste äve delsummora s = a k alla vara L. Eftersom a k är e icke-egativ serie eligt förutsättigara måste de atige divergerar mot +, me det är uteslutet då delsummora aldirg blir större ä L, eller kovergera mot ett ädligt tal, vilket alltså är de eda kvarvarade möjlighete. Vi har bevisat (i). Påståede (ii) följer direkt frå (i). Sats sida 306 i Persso & Böiers är ett helt aalogt påståede om geeraliserade itegraler. Exempel 3. Avgör om serie k= är koverget eller diverget. k ( + k) Vi vet att serie k= är koverget eftersom det är e geometrisk serie med k kvot /. Vi ser också att termera i de giva serie är positiva och domieras av dea geometriska serie, d v s 0 ( + k), för alla k. k k Av Sats följer att k= Exempel 4. Avgör om serie = För stora värde på borde Då vi vet att = är koverget. k ( + k) + är koverget eller diverget. 3/ vara av samma storleksordig som. + 3/ är diverget (Se Persso & Böiers Exempel sida 344) 3

4 ger Sats oss e möjlighet att visa att de giva serie är diverget om vi lyckas + visa att 3/ för alla heltal. Vi har att + 3/ > Alltså är + = 3/ diverget. 3/ > =. 3/ Exempel 5. Avgör om serie = är koverget eller diverget.! Vi har att! = 3... >... =, och följaktlige är Eftersom de geometriska serie = att =! också är koverget. I Exempel 3 visade vi + = 3/! <. är koverget följer det eligt Sats är diverget, geom att visa att termera var större ä motsvarade termer i de divergeta serie = 4. Betrakta u istället serie =. Å ea sida käs det som om dea serie borde bete 3/ + sig precis likadat, dvs divergera, eftersom de två teckeädrigara borde vara helt betydleselösa för stora värde på. Me vi ka ite aväda Sats direkt, eftersom e ekel uppsakttig av termeras storlek går at fel håll, 3/ + <. Ett sätt att komma rut dea svårighet är t ex att försöka visa att 3/ + ; serie med termer är diverget (Varför då?) och u går olikhete åt rätt håll. Ett eklare sätt är att aväda Jämförelsetestet för positiva serier.

5 4. Ett jämförelsetest för positiva serier Sats 3. Atag att a k > 0 och b k > 0 för alla k = 0,,, 3,..., och atag också att a lim k k b k existerar som ett egetligt ollskilt gräsvärde, d v s a k lim = L, L 0, ±. k b k Då gäller att atige är båda seriera a k och b k kovergeta eller också är båda divergeta. Bevisidé. För stora k kommer a k och b k att vara approximativt proportioerliga mot varadra, a k b k L a k Lb k. Atag u att b k är koverget. Först kostaterar vi att då är också k=n b k också koverget för varje positivt heltal N, vi har ju bara kapat bort ett atal termer i börja. Vi vill visa att kovergese av b k implicerar att a k också är koverget, geom att utyttja att a k Lb k för stora värde på k. För tillräckligt stora heltal N gället u att a k = N a k + a k k=n N a k + L b k. Vi har skrivit a k som e summa av e ädlig summa N a k, som förstås alltid är koverget, och e svas L k=n b k som också är ädlig, de är talet L multiplicerat med e koverget svas frå b k. Alltså är a k koverget. De adra falle följer av likartade resoemag. (Om ma vill omvadla detta till ett fullstädigt bevis ka ma jobba med olikheter istället, t ex gäller uder giva förutsättigar att a k < Lb k för alla tillräckligt stora värde på k. Detaljera lämas som övig åt de itresserade.) Exempel 6. I slutet av förra avsittet atydde vi att = = k=n 3/ + 5 borde bete sig och därmed vara diverget. Vi ka u aväda Sats 3 (Jämförelsetestet) för att visa detta. lim 3/ + 3/ + 3/ 3/ + =. + 3/ Exempel 7. Udersök kovergese hos serie = l.

6 Vi vet att för stora är mycket större ä l och serie borde därför kovergera precis som serie =. Vi har att lim l Eftersom = l är koverget är också = l l =. l koverget. Exempel 8. Udersök kovergese hos serie = e. Vid första påseedet tycks dea serie påmia om e geometrisk serie = och det skulle därför kua vara aturligt att pröva att jämföra med dea. Detta ger dock e e e e e + = 0. Eftersom gräsvärdet = 0 ger ite jämförelsetestet ågot besked. Ite blir det bättre om vi kastar om täljare och ämare, då blir gräsvärdet + och ite heller i det fall ger jämförelsetestet ågot besked. Faktum är att = e är koverget, me detta måste visas på ågot aat sätt. Vi lämar detta som e övig. 5. Några avslutade ord Det ka vara bra att veta att det fis ett atal adra kovergestester. För positiva serier fis också bl a kvotkriteriet och rotkriteriet. Vissa altererade serier (serier där varaa term är positiv och varaa egativ) ka udersökas med Leibiz kriterium. Dessa ka ma vid behov läsa om i de flesta läroböcker i grudläggade aalys för högskola (dock ite i Persso & Böiers). Avslutigsvis kostaterar vi att för serier med såväl oädligt måga positiva som egativa termer är bilde som regel mer komplicerad. Serie ( ) k k = k= ka visas vara koverget med hjälp av ovaämda Leibiz kriterium, me geom att orda om series termer (dvs summera samma termer me i e aa ordig) ka ma få väsetlige vilket beteede som helst: diverges mot +, diverges mot, diverges geom oscillatio eller koverges mot ett godtyckligt valt reellt tal! 6 e,

7 7 6. Övigar Avgör om följade serier kovergerar eller divergerar. Övig = 3 = 3 (c) j= j /3 Övig 4 = k= 3 k 000k + 3 k Övig 3 = l = l Övig 4 j 5 j 7 j= j= j 5 j 7 + (c) j= j 6 j 7 (d) j= j 6 j 7 + Övig 5 =! = +! (c) =! Övig 6 k= k l k k= e k

8 8 7. Svar och tips till övigara. Koverget Koverget(c) Diverget. Aväd Cauchys itegralkriterium eller Exempel på sida 344 i Persso & Böiers.. Koverget, geometrisk serie. Diverget, termera går ite mot oll. 3. Diverget Koverget, termera domieras av termera i e koverget serie. 4. Koverget Koverget. (c) Diverget (d) Diverget. Pröva med att domiera med käd serie eller försök med jämförelsetestet. 5. Koverget Koverget, gör jämförelse med. (c) Koverget, låt dig ispireras av Exempel 5 6. Diverget Koverget. Studera först motsvarade geeraliserade itegral, lämpliga substitutioer behövs för att fia primitiver.

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering.

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering. Kap 9. 9.5, 9.8 9.9, 6.5. Talföljd, mootoa talföljder, koverges, serier, koverges, geometriska serier, itegralkriterium, p serier, jämförelsekriterier, absolut koverges, altererade serier, potesserie,

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

TATA42: Föreläsning 10 Serier ( generaliserade summor )

TATA42: Föreläsning 10 Serier ( generaliserade summor ) TATA42: Föreläsning 0 Serier ( generaliserade summor ) Johan Thim 5 maj 205 En funktion s: N R brukar kallas talföljd, och vi skriver ofta s n i stället för s(n). Detta innebär alltså att för varje heltal

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Inklusion och exklusion Dennie G 2003

Inklusion och exklusion Dennie G 2003 Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Applikationen kan endast användas av enskilda användare med förtroenderapportering.

Applikationen kan endast användas av enskilda användare med förtroenderapportering. Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com ESBILAC mjölkersättig för hudvalpar BRUKSANVISNING De bästa starte för e yfödd valp är självklart att dia tike och få i sig mammas mjölk. Modersmjölke iehåller allt som de små behöver i form av ärigsäme,

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

= (1 1) + (1 1) + (1 1) +... = = 0

= (1 1) + (1 1) + (1 1) +... = = 0 TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd

Läs mer

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder;

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder; MKB till detaljpla Förbifart Stockholm Hälsoeffekter av tuelluft Studier idikerar att oöskade korttidseffekter, blad aat ökat atal iflammatiosmarkörer, börjar uppstå vid e expoerig som motsvaras av tuelluft

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

Bertrands postulat. Kjell Elfström

Bertrands postulat. Kjell Elfström F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.

Läs mer

Innehållsförteckning Tabeller och polynom

Innehållsförteckning Tabeller och polynom Iehållsförteckig Tabeller och polyom -Utsigal och seebeckkoefficieter för termoelemet B, E, J, K, N, R, S, T eligt IEC 60584 (1995). 10:2 -Utsigal för termoelemet W3Re/W25Re och W5Re/W26Re eligt ASTM 988

Läs mer

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T Ka. 5.5-7. Kolligativa egeskaer + fasjämvikter för 2-komoetsystem 5.2/5.5 Kolligativa egeskaer Kolligativa egeskaer: Egeskaer som edast beror å atalet artiklar som lösts Förutsättig: utsädda lösigar, lösta

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION Explorativ övning 3 INDUKTION OCH DEDUKTION Syftet med övningen är att öka Din problemlösningsförmåga och bekanta Dig med olika bevismetoder. Vårt syfte är också att öva skriftlig framställning av matematisk

Läs mer

Kombinatorik. Torbjörn Tambour 21 mars 2015

Kombinatorik. Torbjörn Tambour 21 mars 2015 Kombiatori Torbjör Tambour mars 05 Kombiatori är de del av matematie som sysslar med frågor av type På hur måga sätt a ma? Några gasa typisa exempel är följade: På hur måga olia sätt a åtta persoer bilda

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

Familje- juridik Här är dina rättigheter. Bostad& fastighet. Sambo eller gift? Sambo eller gift? Privata Affärers serie om. Del 3

Familje- juridik Här är dina rättigheter. Bostad& fastighet. Sambo eller gift? Sambo eller gift? Privata Affärers serie om. Del 3 Äkteskap& samboförhållade Huvudregel eligt sambolage är att bostad och bohag, som skaffats för Är i ekoomiskt jämställda, det vill säga har ugefär lika stora skulder eller tillgågar, har det kaske ite

Läs mer

Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition

Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition Iheritace Återavädig Två mekaismer Nedärvig av egeskaper (iheritace) Objekt kompositio A A +a +b B B Iheritace Återavädig geom att skapa subklasser kallas ofta white box reuse Ekelt att aväda Relatioe

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com KMR mjölkersättig för kattugar BRUKSANVISNING De bästa starte för e yfödd kattuge är självklart att dia mammas mjölk. För e yfödd kattuge är det framför allt viktigt att få i sig mammas mjölk de två första

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning ÖVRGÅNG De eklaste halvledarkomoete är diode. Diode består av e doad och e doad del. Vid kotaktyta mella och doat område ustår ett ire elektriskt fält.g.a. att elektroer i ledigsbadet å sida diffuderar

Läs mer

Den matematiska analysens grunder

Den matematiska analysens grunder KTH:s Matematiska Cirkel Den matematiska analysens grunder Katharina Heinrich Dan Petersen Institutionen för matematik, 2012 2013 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Grundläggande

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

2009-11-20. Prognoser

2009-11-20. Prognoser 29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6 Ledning för att lösa problemen i Övningar för kapitel 5, sid 138-144 Avsikten med de ledtrådar som ges nedan är att peka på

Läs mer

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25 TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P( Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

SKÄRDATAREKOMMENDATIONER UDDEHOLM NIMAX

SKÄRDATAREKOMMENDATIONER UDDEHOLM NIMAX SKÄRATAREKOMMENATIONER UEHOLM NIMAX Lämpliga bearbetigsdata beror alltid på de aktuella operatioe, verktygsmaskie och vilket verktyg som aväds. e data som ages i det här bladet är geerella riktlijer som

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1 Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Artificiell intelligens Probabilistisk logik

Artificiell intelligens Probabilistisk logik Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet

Läs mer

tullinge FLEMINGSBERG TULLINGE Kommunens avsikter för Tullinge som helhet

tullinge FLEMINGSBERG TULLINGE Kommunens avsikter för Tullinge som helhet tullige VILLASTAD r be e tri Tulligesjö e äg v gs FLEMINGSBERG Ka TRÄDGÅRDSSTAD Nib ble väg e PARKHEM 10 BERG Tullige är e attraktiv plats i Stockholmsregioe att bo och bygga på. Tullige är också de del

Läs mer

SKÄRDATAREKOMMENDATIONER RAMAX HH

SKÄRDATAREKOMMENDATIONER RAMAX HH SKÄRATAREKOMMENATIONER Lämpliga bearbetigsdata beror alltid på de aktuella operatioe, verktygsmaskie och vilket verktyg som aväds. e data som ages i det här bladet är geerella riktlijer som måste apassas

Läs mer

Tentamen i Kunskapsbaserade system, 5p, Data 3

Tentamen i Kunskapsbaserade system, 5p, Data 3 Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Explorativ övning 11 GEOMETRI

Explorativ övning 11 GEOMETRI Explorativ övning 11 GEOMETRI Syftet med denna övning är att ge kunskaper om grundläggande geometriska begrepp och resultat om geometriska figurer. Vi vill också ge en uppfattning om geometri som en matematisk

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

Östersjön är ett unikt men hotat hav. Efter den här lektionen kommer du att veta:

Östersjön är ett unikt men hotat hav. Efter den här lektionen kommer du att veta: Östersjöambassadör Östersjö är ett uikt me hotat hav. Efter de här lektioe kommer du att veta: vilke betydelse Östersjö har som ekosystem varför Östersjö är ett hotat hav vad du ka göra för att rädda Östersjö

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

FUNKTIONSLÄRA. Christian Gottlieb

FUNKTIONSLÄRA. Christian Gottlieb FUNKTIONSLÄRA Christia Gottlieb Matematiska istitutioe Stockholms uiversitet 2002 Iehåll 1. Komplexa tal och vektorer i plaet 1 Tillämpigar på trigoometriska formler 7 2. Geometriska serier 8 3. Biomialsatse

Läs mer

Matematikdelen av introduktionskursen för Samhällsbyggnadsprogrammet 2009

Matematikdelen av introduktionskursen för Samhällsbyggnadsprogrammet 2009 29-8-17 Matematikdele av itroduktioskurse för Samhällsbyggadsprogrammet 29 Syftet med matematikrepetitioe uder mottagigsveckora är att repetera vissa delar av gymasiematematike som är väsetliga för de

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts.

http://www.leidenhed.se Senaste revideringen av kapitlet gjordes 2014-05-08, efter att ett fel upptäckts. Dokumentet är från sajtsidan Matematik: som ingår i min sajt: http://www.leidenhed.se/matte.html http://www.leidenhed.se Minst och störst Senaste revideringen av kapitlet gjordes 2014-05-08, efter att

Läs mer

Bilaga 1 Schematisk skiss

Bilaga 1 Schematisk skiss Bilaga 1 Schematisk skiss Kalkylbilaga till PM fördjupig JU140 2010-02-01 Baverket Norrbotiabaa Järvägsutredig 140 Dele läsgräse AC/BD - Piteå Bilaga 12 till PM Fördjupigg JU140 Iehållsförteckig Sida 1

Läs mer

ICKE KONVENTIONELLT AVFALL

ICKE KONVENTIONELLT AVFALL ICKE KONVENTIONELLT AVFALL Avfall Biologiskt avfall Cytostatikaavfall Geetiskt modifierade mikroorgaismer Läkemedelsavfall Kemiskt avfall Radioaktivt avfall Skärade/stickade avfall Smittförade avfall Sida

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss.

Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss. 8-2 Förenkling av uttryck. Namn: eller Konsten att räkna algebra och göra livet lite enklare för sig. Inledning I föregående kapitel lärde du dig vad ett matematiskt uttryck är för någonting och hur man

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården Järvägsutredig med miljökosekvesbeskrivig Hambaa Göteborg Dubbelspår Eriksbergsmotet - Pölsebobagårde Utställigshadlig 2011-03-04 Yta för bild eller möster Titel: Järvägsutredig Hambaa Göteborg dele Eriksbergsmotet

Läs mer

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning...

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning... Iehåll Grafräkare och diskret matematik...1 Vad hadlar diskret matematik om?...1 Permutatioer och kombiatioer...3 Något om heltalsräkig...4 Modulusoperator...4 Faktoriserig i primfaktorer...5 Talföljder...7

Läs mer

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R

Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen. x y (x > 0) (y > 0) xy > 0 Domän D = R Föreläsning Flera kvantifierare Bevis Direkt bevis Motsägelse bevis Kontrapositivt bevis Fall bevis Induktionsprincipen För att göra ett påstående av en öppen utsaga med flera variabler behövs flera kvantifierare.

Läs mer

Leif Abrahamsson. Uppsala Universitet

Leif Abrahamsson. Uppsala Universitet Två formler för talet π Leif Abrahamsso Uppsala Uiversitet Dea uppgift syftar till att härleda två formler för talet π. De två formleras härledig är oberoede av varadra och ka således var för sig utgöra

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer