Borel-Cantellis sats och stora talens lag

Storlek: px
Starta visningen från sidan:

Download "Borel-Cantellis sats och stora talens lag"

Transkript

1 Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi betraktar e följd hädelser A, A 2, A 3,... och är itresserade av fråga om oädligt måga av dessa iträffar eller om möjlige bara ett ädligt atal av dem iträffar. Vi bildar F = A k och G = A k. Att G iträffar iebär att alla A k för k iträffar. Om det fis ågot sådat iebär det alltså att frå och med detta iträffar alla A k för k. Med H = G = iebär detta att om H iträffar fis ett så att alla A k med k iträffar. Iblad beteckas H med lim if A k. Att F iträffar iebär att det fis ågot A k för k som iträffar. Om F iträffar för alla iebär detta att oädligt måga av A k :a iträffar. Vi bildar därför E = F = A k. Om E iträffar, så iträffar alltså oädligt måga av A k :a. Iblad skrives detta lite behädigt som E = {A i.o.} där i.o. står för ifiitely ofte, dvs oädligt måga gåger. E beteckas iblad med lim sup A k. Ma oterar att F avtar i och att alltså P (E) = P ( A k F ) = lim P (F ) = lim P ( A k ).

2 Vi har dock eligt Booles sats att P ( A k ) P (A k ) och dea serie 0 då om serie P (A k) kovergerar. Detta iebär att vi visat följade sats som kallas Borel-Catellis sats. Sats Borel-Catellis sats Om P (A ) < så gäller att P (E) = P (A i.o) = 0, dvs att med saolikhet iträffar bara ädligt måga A. Ma ka otera att det i satse ite krävs ågo form av oberoede uta satse gäller helt geerellt. Det fis e omvädig av Borel-Catellis sats om ma atar att hädelsera A, A 2,... är oberoede. Sats 2 Omvädig till Borel-Catellis sats Om A, A 2,... är oberoede och P (A ) = så gäller att P (E) = P (A i.o) =, dvs att det med saolikhet iträffar oädligt måga A. Bevis: Vi har P ( A k) = P (A k) = ( P (A k )). Eftersom x e x erhålls P (A k ) e P (A k) och vi får P ( A k) exp( P (A k )). Om u P (A ) = så gäller att serie i expoete divergerar och ma får P ( A k) = 0. Alltså gäller äve som iebär att P ( P ( A k ) = P ( A k) = 0. A k) = 0 = dvs att oädligt måga A k : iträffar med saolikhet. 2

3 2 Några exempel på tillämpigar Exempel 2. Låt X, X 2, X 3... vara oberoede likafördelade med kotiuerlig fördelig. Vi låter { om X > X j för j =, 2,... U = 0 aars. Detta betyder att U = om X utgör ett rekord, dvs är det hitills största värdet. Vi låter A = {U = }. Ma iser att P (U = ) = / eftersom saolikhete att det största av värde skall komma i omgåg är / av symmetriskäl. Vidare är A, A 2,... oberoede. Vi har ju P (A m A m+... A m+k ) = P (A m A m+... A m+k )P (A m+... A m+k ) och A m och A m+... A m+k är aturligtvis oberoede eftersom A m bara berör storleksförhålladea blad de första m av X-variablera. Vi får då eftersom P (A ) = = att P (A i.o.) = dvs oädligt måga A iträffar. Vi får oädligt måga rekord ett resultat som kaske (?) är självklart. Vidare får vi E( U U + ) = E(U U + ) = P (A )P (A + ) = ( + ) < och alltså är U U + ädlig med saolikhet. Slutsatse är att det bara iträffar ett ädligt atal dubbelrekord, dvs rekord två gåger i rad ett resultat som på itet sätt är trivialt. Exempel 2.2 Låt X, X 2,... vara oberoede och likafördelade. Då gäller att E( X ) = me också E( X ) = 0 P ( X > x)dx = + P ( X > x)dx + P ( X > x)dx P ( X > ) + P ( X > ), P ( X > + ) = P ( X > ). Om u E( X ) < ser vi att P ( X > ) < som eligt Borel- Catellis sats medför P ( X > i.o.) = 0. Å adra sida, om E( X ) = och alltså P ( X > ) =, så ger omvädige till Borel-Catellis sats att P ( X > i.o.) =. Om E( X k ) är ädligt (respektive oädligt) kommer X att bli större ä oädligt måga gåger med saolikhet 0 (respektive ). 3

4 3 Bevis av stora tales lag i stark form Vi låter X, X 2,... vara oberoede likafördelade med E(X i ) = m och V (X i ) = σ 2 < och defiierar S = X + X X. Vi är itresserade att visa att med saolikhet gäller att S / m då. Detta betyder alltså att vi vill visa att S P ( lim = m) =, dvs att det fis e mägd Ω 0 med P (Ω 0 ) = där för varje ω Ω 0 gäller att lim S m = 0. Vi behöver alltså visa att för varje ω Ω 0 och för varje ε > 0 fis ett N(ω, ε) så att om N(ω, ε) gäller att S / m ε. Det räcker att visa att lim P ( S m > ε ågot N) = 0. N Notera skillade mot stora tales lag i svag form, som säger att för alla ε > 0 P ( S m > ε) 0 då. I stora tales lag i stark form måste S / m vara litet för alla tillräckligt stora för alla ω Ω 0 där P (Ω 0 ) =. Vid slatsiglig ka vi koda kroa och klave som 0 respektive, och ka idetifiera ett ω med ett på måfå valt tal på itervallet [0, ] där biärbråksutvecklige ger sekvese. Vad stora tales lag då säger är att vi med saolikhet får ett tal sådat att adele :or i sekvese kovergerar mot /2. Det ka fias udatags -ω - t ex är vid slatsiglig sekvese möjlig, me sådaa udatagssekveser har sammalagt saolikhet 0. Uta iskräkig ka vi ata att E(X i ) = m = 0 eftersom vi aars ka betrakta X i m. Vi har V (S ) = σ 2. Eligt Tjebyshovs olikhet gäller P ( S > ε) V (S ) (ε) 2 = σ2 (ε) 2 = σ2 ε 2. Tyvärr divergerar de harmoiska serie / så vi ka ite aväda Borel- Catellis sats direkt. Dock gäller /2 < och detta betyder att vi ka aväda satse för 2, =, 2,.... Vi har P ( S 2 > 2 ε) σ2 2 ε 2. Alltså gäller eligt Borel-Catellis sats att P ( S 2 > ε i.o.) = 0 som visar att 2 (med saolikhet ) S/ Vi har alltså lyckats visa att för delsekvese 2, =, 2,... så har vi koverges med saolikhet. Återstår att reda ut vad som ka häda mella dessa 2. Vi defiierar därför D = max S k S 2, 2 k<(+) 2 4

5 dvs de största avvikelse frå S 2 som ka iträffa mella 2 och ( + ) 2. Vi får (+) 2 D 2 = max 2 k<(+) 2(S k S 2) 2 (S k S 2) 2, 2 där vi gjort de grova uppskattige att max( x, y ) ( x + y ). Detta ger E(D 2 ) (+) 2 2 E((S k S 2) 2 ). Me E((S k S 2) 2 ) = (k 2 )σ 2 2σ 2 då 2 k < ( + ) 2 och det är 2 termer i summa och det ger Med Tjebyshovs olikhet ger detta E(D 2 ) (2)(2)σ 2 = 4 2 σ 2. P (D > 2 ε) 42 σ 2 ( 2 ε) 2 = 4σ2 2 ε 2. Alltså gäller D / 2 0 med saolikhet. Till slut ger detta för k mella 2 och ( + ) 2 S k k S 2 + D S 2 + D 0. k 2 Detta iebär att vi lyckats visa att S / 0 med saolikhet. Vi har gjort detta uder tilläggsvillkoret att V (X i ) = σ 2, me med stor möda ka ma visa att detta tilläggsvillkor ej är ödvädigt. 5

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

= (1 1) + (1 1) + (1 1) +... = = 0

= (1 1) + (1 1) + (1 1) +... = = 0 TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK Versio 9 december 4 Fel i lösigara mottages tacksamt till mattsso@math.kth.se. Notera att lösigara på vissa ställe utyttjar adra,

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

god stiftelsepraxis www.saatiopalvelu.fi

god stiftelsepraxis www.saatiopalvelu.fi god stiftelsepraxis SÄÄTIÖIDEN JA RAHASTOJEN NEUVOTTELUKUNTA RY DELEGATIONEN FÖR STIFTELSER OCH FONDER RF www.saatiopalvelu.fi 1 Cotets God stiftelsepraxis 1 Iledig 3 2 God stiftelsepraxis 3 Stipedier

Läs mer

Formelblad Sannolikhetsteori 1

Formelblad Sannolikhetsteori 1 Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder;

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder; MKB till detaljpla Förbifart Stockholm Hälsoeffekter av tuelluft Studier idikerar att oöskade korttidseffekter, blad aat ökat atal iflammatiosmarkörer, börjar uppstå vid e expoerig som motsvaras av tuelluft

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Kontextfri grammatik (CFG)

Kontextfri grammatik (CFG) Kotextfri grammatik (CFG) Mats Dahllöf Ist. f ligvistik och filologi December 2015 1 / 23 Frasstrukturträd hud studt Aalys av de ord som häger lägst ed, hud studt. E graf med fler oder ä depdsaalys (fem

Läs mer

CONSTANT FINESS SUNFLEX

CONSTANT FINESS SUNFLEX Luex terrassarkiser. Moterigs- och bruksavisig CONSTNT FINESS SUNFLEX 5 6 Markises huvudkopoeter och ått Placerig av kobikosol rklockor och justerig Parallelljusterig vädig och skötsel Huvudkopoeter och

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

MARKNADSPLAN Kungälvs kommun 2010-2014

MARKNADSPLAN Kungälvs kommun 2010-2014 MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Många tror att det räcker

Många tror att det räcker Bästa skyddet Måga vet ite hur familje drabbas ekoomiskt om ågo dör eller blir allvarligt sjuk. Här berättar Privata Affärer vilket skydd du har och hur du ka förbättra det. Av Aika Rosell och Igrid Kidahl

Läs mer

Matematisk statistik

Matematisk statistik Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som

Läs mer

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9 Fe l i t ill verki ge ept Okt Nov Dec ept Okt Nov Dec Högskola Dalara Översikt tatistisk processtyrig Itroduktio till tatistisk Processtyrig (P) aolikhet Normalfördelig Några adra fördeligar Variatio Olika

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Fouriertransformen. Faltning, filtrering och sampling

Fouriertransformen. Faltning, filtrering och sampling Faltig Fouriertrasforme Faltig, filtrerig och samplig Givet två sigaler f och g och deras respektive spektra f`, g`, hur bildar ma e tredje sigal såda att dess spektrum är lika med summa f` + g`. Lätt!

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Artificiell intelligens Probabilistisk logik

Artificiell intelligens Probabilistisk logik Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet

Läs mer

Så här kommer byggherren och entreprenören överens om energianvändningen

Så här kommer byggherren och entreprenören överens om energianvändningen Så här kommer byggherre och etrepreöre överes om eergiavädige Så här kommer byggherre och etrepreöre överes om eergiavädige Sveby står för Stadardisera och verifiera eergiprestada i byggader och är ett

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

Försöket med trängselskatt

Försöket med trängselskatt STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då

Läs mer

Smärtlindring vid medicinsk abort

Smärtlindring vid medicinsk abort Smärtlidrig vid medicisk abort EN JÄMFÖRANDE STUDIE VETENSKAPLIGT ARBETE UNDER ST ELIN SJÖLANDER HANDLEDARE MARIE BOLIN Itroduktio Smärta vid medicisk abort valig, smärtlidrig vid medicisk abort dåligt

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

Inledande kombinatorik LCB 2001

Inledande kombinatorik LCB 2001 Iledade kombiatorik LCB 2001 Ersätter Grimaldi 1.1 1.4, 3.1 (delvis) 1 Additios- och multiplikatiospricipera Kombiatorik hadlar om koste att räka atalet av saker och tig. Hur måga gåger geomlöpes e viss

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad 1/5 Sektor samhällsbyggad Datum Beteckig 2015-02-10 PLAN.2014.19 Plaehete Hadläggare Jey Olausso Detaljpla Ekedal södra Behovsbedömig Förslag Geomföradet av plaförslaget bedöms ite medföra ågo betydade

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad. Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig

Läs mer

Kontrakt baserad design. Design by contract

Kontrakt baserad design. Design by contract Kotrakt baserad desig Desig by cotract Motiverig Objekt ka valige ite avädas på ett godtyckligt sätt Metoder ska aropas med vissa parametervärde I rätt ordig Svårt att veta hur ett objekt ka avädas uta

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

TRIBECA Finansutveckling

TRIBECA Finansutveckling TRIBECA Rådgivare iom fiasiella helhetslösigar TRIBECA a s k r e i v g S f a s k r i e v g S f g g r r e e a r a r e e i i f f TRIBECA s målsättig är att bidra med råd & produkter som hela tide gör att

Läs mer

Slutrapport Bättre vård i livets slutskede

Slutrapport Bättre vård i livets slutskede Team : Stadsvikes VC Syfte med deltagadet i Geombrott Att öka tillite och trygghete till de vård som bedrivs i det ega hemmet för de palliativa patiete. Teammedlemmar Eva Lidström eva.lidstrom@ll.se Viktoria

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

YTTRE CENTRUM, SÖDRA

YTTRE CENTRUM, SÖDRA TECKENFÖRKLARING Barrskog ge vä Lövskog Gräsmarker Impedimet SETHS HAGE Parker Nygata ge ä av Grö Gårdspark Sofia gata Gröig Allé sv ä ge Trädgårdar dra Sto rga Bostadsträdgårdar Ha ta lla ryd Villaträdgårdar

Läs mer

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning...

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning... Iehåll Grafräkare och diskret matematik...1 Vad hadlar diskret matematik om?...1 Permutatioer och kombiatioer...3 Något om heltalsräkig...4 Modulusoperator...4 Faktoriserig i primfaktorer...5 Talföljder...7

Läs mer

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com ESBILAC mjölkersättig för hudvalpar BRUKSANVISNING De bästa starte för e yfödd valp är självklart att dia tike och få i sig mammas mjölk. Modersmjölke iehåller allt som de små behöver i form av ärigsäme,

Läs mer

För rörformiga instrument, slangar och liknande krävs speciella insatser för genomspolning för att få ett fullgott resultat.

För rörformiga instrument, slangar och liknande krävs speciella insatser för genomspolning för att få ett fullgott resultat. Sida 1 av 6 Avisig för kvalitetssäkrig av spol- och diskdesifektorer 141203 Avisig primärvård Föremål och istrumet avsedda för flergågsbruk ska regöras och desifekteras efter avädig i e värmedesifektor.

Läs mer

Stadsbyggande och farligt gods

Stadsbyggande och farligt gods Stadsbyggade och farligt gods Dialog-pm 2004:2 Aktualiserig av Översiktspla 2000 Malmö Stadsbyggadskotor mars 2004 Dialog-pm 2004:2 Stadsbyggade och farligt gods Sammafattig Dialog-pm 2004:2 Stadsbyggade

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25 Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om

Läs mer

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22 Tetame i EG2050/2C1118 Systemplaerig, 14 mars 2009, 8:00 13:00, Q21, Q22 Tillåta hjälpmedel Vid dea tetame får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

Ny lagstiftning från 1 januari 2011

Ny lagstiftning från 1 januari 2011 Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q

Läs mer

Solgläntans föräldrakooperativ Kvalitet och måluppfyllelse läsåret 2012/13

Solgläntans föräldrakooperativ Kvalitet och måluppfyllelse läsåret 2012/13 1 s föräldrakooperativ Kvalitet och måluppfyllelse läset 2012/13 Iehåll: Iledig 2 Förutsättigar...2 Bedömig av kvalitet och måluppfyllelse 3 Beslutade mål och åtgärder 6 Slutord 7 Bilaga: Resultat - seaste

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

Marknaden för PPM-förvaltning

Marknaden för PPM-förvaltning Nu är goda PPM- I dag fis det måga företag som vill placera dia PPM-pegar. Me du ska vara försiktig ofta kostar det mer ä det smakar. Markade för PPM-förvaltig har vuxit kraftigt det seaste året. Nu fis

Läs mer

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com KMR mjölkersättig för kattugar BRUKSANVISNING De bästa starte för e yfödd kattuge är självklart att dia mammas mjölk. För e yfödd kattuge är det framför allt viktigt att få i sig mammas mjölk de två första

Läs mer

Utlandskyrkans krisberedskap

Utlandskyrkans krisberedskap Utladskyrkas krisberedskap hadbok för beredskapsplaerig Kyrkokasliet Uppsala Sveska kyrkas kriscetrum 2 Kotaktiformatio veska kyrka i utladet S Kyrkokasliet 751 70 Uppsala Tel. 018-16 95 00 www.sveskakyrka.se

Läs mer

Grammatik för språkteknologer

Grammatik för språkteknologer Grammatik för språktekologer Språktekologi och grammatiska begrepp http://stp.ligfil.uu.se/~matsd/uv/uv11/gfst/ Mats Dahllöf Istitutioe för ligvistik och filologi November 2011 Dea serie Frasstrukturaalys

Läs mer

Bibelordet. januari februari. Årstema 2011. Program tyrels onse Kontakt-sida mm. Högs Personligt

Bibelordet. januari februari. Årstema 2011. Program tyrels onse Kontakt-sida mm. Högs Personligt g li m T a s T r Y ö SN f s G M a A d S a lt FÖR Ve a i N l I l A L Årstema 2011 jauari februari 2012 fo a i e pe Program tyrels s r A o S ose Kotakt-sida mm. Past r Högs Persoligt Nr: 23 Bibelordet Vad

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer