Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00"

Transkript

1 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt: Varje uppgift ka ge ma 10p. Lösigar skall utasvårighet kua följas. Iförda beteckigar skall förklaras. För betyget Godkäd krävs mist 30 p och för Väl godkäd krävs 45 p. Uppgift 1 a) Vad är e så kallad 0/1 slumpvariabel? Beskriv med hjälp av ett eempel. ( poäg) b) Vad blir vätevärdet av e s.k. 0/1 slumpvariabel? Gör ett bevis, dvs. E( X ) =... (3 poäg) c) Ett slumpmässigt urval av 1100 studet (på uiversitetsivå) frågades om deras alkoholvaor; 775 svarade att de 'dricker för att bli berusad' mist e gåg om måade. Om vi låt p = = πˆ beskriver adele som har svarat de 'dricker för att bli berusad' mist e gåg om måade i stickprovet, vilke fördelig beskriver sampligfördelige av p? Vad har sampligfördelige för p för medelvärdet och stadardavvikelse? Gör ett bevis, dvs. E ( p) = E( ) =.... och Var ( p) = Var( ) =... Tips: Vad har för fördelig? (5 poäg) Uppgift Vid e viss kurs satt Camilla på föreläsigar och blev lite uttråkat, ho bestämde sig att kasta ett (och samma) myt gåger; ho fick 'kroor'. Om mytet var balaserad, saolikhete att få 'kroa' är lika med 0,5. Fis det tillräckligt med bevis för att Camilla ka misstäka mytet ger för måga 'kroor' för att vara balaserad? För att svara på fråga, ta fram saolikhete att ett balaserat myt ger eller fler 'kroor' vid kast. Vad är di slutsats? (10 poäg) 1

2 Uppgift 3 Kaffe gör upp e stor del av eport frå måga uläder. När kaffe priser är höga, vill kaffe odlare ofta hugga ed mer skog för att odla mer kaffe. Följade tabell visar världsmarkadspris på kaffe och adele skog som har gått över till kaffeodligslad i Idoisia över ett 5års period. Pris (cets per pud) Förlorad skog (procet) 0,49 1,59 1,69 1,8 3,10 a) Udersök data. Rita i observatioera i ett spridigsdiagram och kommetera. ( poäg) b) Beräka korrelatioskoefficiete. ( poäg) c) Apassa med mista kvadratmetode Y= a + b och tolka resultatet i ord. Vad säjer kostater a och b? Rita äve i lije i ditt spridigsdiagram. (3 poäg) d) Är kaffepris e bra sätt att estimera adele förlorade skog? (3 poäg) Uppgift 4 Ett slumpmässigt urval (OSU metod) av studeter som har pluggat e viss kurs det seaste året vid ett visst Sveskt uiversitet (ett stort atal studeter!) fick svara på e ekät agåede studievaor. Resultatet av urvalet av 5 studeter visade att e studet har övat i geomsitt 80 miuter per vecka på, med e stadardavvikelse på 35 miuter. a) Ta fram ett 95%-igt kofidesitervall för geomsittstide e studet har övar på per vecka. (6 poäg) b) Är det sat att 95% av studetera har e övigstid i som ligger iom itervallet som du tog fram i del (a). Förklara dit svar. (4 poäg) Uppgift 5 Ett markadsudersökigsföretag ska skatta de saa adele täkbara köpare av e viss produkt. Ma tror att dea adel ka ligga rut 10%, me ma vill mäta med e felmargial på högst 5%. Hur stort stickprov måste ma ha? Ata att kofidesivå är 90%. (10 poäg)

3 Uppgift 6 Ett viktmiskigsmedel hävdar att de lyckas får de som är överviktiga att gå ed i vikt om de aväder medle i mist 7 dagar. Vid ett urval blad överviktiga idivider har behadlige lyckades för 70% av dem som deltog. Atag att hypotese som testats är: H 0 : π = 0, 5 mot H 1 : π > 0, 5, där π beskriver adele överviktiga idivider (i populatioe) som går ed i vikt. Sigifikasivå är 5%. Det visade sig att p-värdet blev 0,04. Formulera följade begrepp, dels med hjälp av ova eempel och dels geom de formella defiitioe: a) Sigifikasivå b) Styrka c) p-värdet d) Ka vi förkasta hypotese? (4 poäg) ( poäg vardera) 3

4 Tips till lösigar a. ( poäg) Om ma har e variabel som bara ka ata två värde, te. variabel iehav av körkort, kodas de valige ja =1 och ej =0. E såda variabel kallas ofta dikotom, biär eller (med dea kodig) 0/1 variabel. E 0/1-varibel är e variabel som kodas med två möjliga värde, ämlige värdea 0 och 1. S.k. 0/1 variabler beskriver atalet som har e viss egeskap, variabel får värdet 1 om de har de öskade egeskap, 0 aars. Te. Resultat av e teta: Godkäd eller uderkäd Låt variabel Z = 'resultat av teta', z får värdet '1' om resultatet är godkäd, '0' aars. Slumpvariable som beskriver resultatet av teta, Z, är e sk. 0/1 variabel. b. (3 poäg) Medelvärdet av e variabel i populatioe, dvs. vätevärdet är μ = summa av alla obs i populatioe / atalet i populatioe = N Ma ka se vätevärdet av e sk. 0/1 variabel som ett specialfall, eftersom är ma tar fram medelvärdet i populatioe, vätevärdet, blir summa av alla obs e summa av 0:or och 1:or, dvs mm..., som är lika med atalet 1:or i populatioe. Då är vätevärdet lika med: atal ettor i populatioe / atalet i populatioe dvs. X/N i populatioe, eller de skattas med / frå ett stickprov, där X=Atal ettor i populatioe och =Atal ettor i stickprovet. X/N, /, kallas för e 'proportio' eller adel, och beskrivs i populatioe med pi, π, och skattas frå stickprovet med πˆ = p. Ma ka också se π som saolikhete att välja e idivid med de öskad X egeskap: P ( X = 1) = N MAO. Medelvärdet för e 0/1 variabel beskrivs som adele (proportioe) ettor i materialet. = Atalettor X π = = N = Adele ettor i populatioe; N N Atalettor och skattas med πˆ = p = = = = Adele ettor i stickprovet. 4

5 Te. Om vid e teta 50 av 100 blir godkäda, då är z = Z = 50, där Z är atalet 'ettor'. Vätevärdet i vårt eempel blir (proportioe godkäda vid teta): Z 50 dvs. i populatioe, π = = = 0, 5. N 100 Vi söker vätevärdet av e 0/1 variabel, te. Vi söker E(X) och vi vet att det är detsamma som π. Bevis: X E ( X ) = μ = P( ) = 0 P( X = 0) + 1 P( X = 1) = P( X = 1) = = π N Alterativ: E( X ) = P( ) = 0(1 π ) + 1( π ) = π c. (5 poäg) Ett slumpmässigt urval av 1100 studet (på uiversitetsivå) frågades om deras alkoholvaor; 775 svarade att de 'dricker för att bli berusad' mist e gåg om måade. Adele som har svarat de 'dricker för att bli berusad' mist e gåg om 775 måade i stickprovet beskrivs med: ˆ π = p = = = 0, Där är Biomial fördelad (de uppfylla alla kriterier), ~ Bi( = 1100, ˆ π = p = 0,70), E ( ) = π och Var ( ) = π (1 π ) ka approimeras till ormalfördelig, eftersom tumregel är uppfylld med god margial, dvs. det blir e bra approimatio, π och ( 1 π ) > 5. Då gäller det äve att p är ormalfördelad, dvs. sampligfördelig för p är ormalfördelad, med följade medelvärde och stadardavvikelse: Vi söker vätevärdet av p: De skattas med ˆ π = 0, 70 1 π E ( p) = E( ) = E( ) = = π Vi söker stadardavvikelse av p: 1 Var p) = Var( ) = Var( ) = π (1 π ) ( π (1 π ) = p(1 p) 0,7(0,3) De skattas med Var ˆ ( p) = = = 0, = 0,

6 Uppgift (10 poäg) X = Atal kroor vid kast av mytet. Kriterier till biomialfördelig är uppfyllda. X är biomialfördelad med parametrar = och π = 0, 5. X ~ Bi( = 10000, π = 0,5) Iformatioe frå uppgifte: = vid kast. Vi söker: P( X 5067) Saolikhetsfördelig för X ka approimeras frå Biomial till Normal. Tumregel är uppfylld med god margial, dvs. det blir e bra approimatio: π och ( 1 π ) > 5 Dvs. X ~ appron( μ, σ ) med: μ = π = (0,5) = 5000 σ = π (1 π ) = 10000(0,5) = 500 = 50 Eftersom vi gör e approimatio av e diskretfördelig (Biomial) med e som är kotiuerlig (ormal), måste vi aväda oss av halv-korrektioe, då söker vi: X μ 5066, P( X 5066,5) = P( Z ) = P( Z ) = P( Z 1,33) = P( Z 1.33) σ 50 = 0,0918 Med hjälp av stadardiserig och Z~N(0,1) tabell. Uta halv-korrektioe, söker vi: X μ P( X 5067) = P( Z ) = P( Z ) = P( Z 1,34) = 0,0901 σ 50 Det fis bevis mot ett balaserat myt, me det är ite helt starkt. Det är cirka 9% chas att få ett sådat resultat eller ågotig äu mer etremt ä det som förvätades är ma kastar ett myt gåger. E saolikhet på 5% skulle ha varit starkt bevis, 1% mycket starkt bevis. 6

7 Uppgift 3 X: Pris (cets per pud) Y: Förlorad skog (procet) y y 9 0,49 14, , ,59 63,6 1600, ,69 91,6 916, ,8 100, , ,10 3, ,61 = 50 y = 8,69 y = 49,37 = y = 18,55 a) ( poäg) Spridigsdiagram. Kommetera: Ju högre pris, ju mer örkar procettalet av förlorad skog (i sitt). Starkt positivt sambad; me få observatioer (e observatio ka vara avgörade). b) ( poäg) Korrelatioskoefficiete, r: r = ( y) y ( ( ) )( y ( y ) ) r = 5(49,37) 50(8,69) = 0,955 5(13566) 50 5(18,5467) 8,69 ( )( ) De ager både riktige (positiv) och styrka i det lijära sambadet (dvs.de är stark). r är ett grovt mått, och bör tolkas försiktigt! c) (3 poäg) Apassa med mista kvadratmetode Y= a + b Här ska ma skriva ed formel som aväds och dia beräkigar. a = y b = -0,976 Iterceptet a visar hur mycket det förvätade värdet på y kommer att vara om är lika med oll. ( ( ) y) y b = = 0,0543 Riktigskoefficiete b visar hur mycket det förvätade värdet på y ökar om ökar med e ehet. Rita i lije i spridigsdiagramme Y = -0, ,0543X y 7

8 d) (3 poäg) Kommetarer på Kaffepris som ett metod att estimera adele förlorade skog: Det fis bara 5 observatioer, vi kua udersöka ett större datamaterial. b är kaske e dålig skattig på hur pris påverkar adele förlorad skog, sambadet är kaske e slump, och miskig förklaras av adra saker. Vi kua utföra e multiple regressio och ta häsy till flera faktorer som ka påverka adele förlorad skog. Korrelatioskoefficiete, r, tyder på e stark lijärt sambad. Determiatioskoefficiete, r, är ett bättre mått och ager hur stor adel av de totala variatioe för de beroede variabel, Y, som förklaras av det lijära sambadet med de oberoede variabel, X. MAO. Det är ett mått på hur bra X förklarar Y. r = 0,955 = 0,91. Me det fis adra faktorer som förklarar ädrige i förlorad skog i Idoisia, me pris, i vårt stickprov, förklarar det mesta. Uppgift 4 a) (6 poäg) X = Övigstid per vecka för e studet i Ata X är fördelad mycket lik e ormalfördelig, då, eligt CGS, är stickprovsmedelvärde också mycket lik e ormalfördelig äve för relativ små stickprov, vi har =5. MAO. Eftersom stickprovsmedelvärde är (appro) ormalfördelat ka vi beräka ett kofidesitervall: skattig ± felmargial s Vi aväder oss av formel: ± t, kostate t aväds då populatiosstadardavvikelse,σ, är okäd. t 5 1= 4;5% =,06 s 35 ± t = 80 ±,06 = 80 ± 14,4 = [65,6;94,4] 5 Tolkig: Med 95% säkerhet ligger geomsittstide e studet har övat på per vecka, μ, mella 65,6 och 94,4 miuter. b) (4 poäg) Nej. Itervallet i upp 4a är itervallet för populatiosmedelvärdet: Om vi atar att övigstid är ågorluda ormalfördelad ka vi säga att ugefär 95% av studeter har e övigstid som ligger i itervallet: μ ± σ Itervallet för populatiosmedelvärdet är mycket kortare ä itervallet för studeter. 8

9 Notera: Om det var eakt ormalfördelad (me det är ite möjligt i vårt eempel varför?) då skulle eakt 95% av studetera har e övigstid mella μ ± 1. 96σ. Uppgift 5 (10 poäg) Skattig ± felmargial Här gäller ett 90%-igt kofidesitervall för populatiosadele, där vi tror adele ligger rut 10%. P ( Z > z) = 0,1, då är z = 1,645. P ˆ = p = 0,1 p(1 p) 0,1(1 0,1) Felmargial = z = 1,645 = 0,05 Lösa ut (skrev ed dia beräkigar). Ett slumpmässigt stickprov på mist =98 studeter behövs för att uppfylla kravet i fråga. Uppgift 6 (a-c poäg vardera) a) Sigifikasivå, α = P( Typ I fel ) = P( förkasta H0 H0 sa ) Te. P(Förkasta H0 π = 0, 5 och ata att det är π > 0, 5, me i verklighet är det π = 0, 5 som gäller.) b) β = P( Typ II fel ) = P( ej förkasta H0 H0 falsk ) Testets styrka, dvs. att fatta ett bra beslut, är saolikhete att vi med testets hjälp lyckas förkasta ollhypotese då de är falsk. Det är 1 - β, som är samma som: P( förkasta H0 H0 falsk ) Te. Testet lyckades bevisa att det är faktisk π > 0, 5. c) p-värdet = P(att få det värdet vi fick, eller ågotig som talar mer för H1, dvs. äu mer etremt, givit att H0 är sa) P-värdet är 0.04, dvs. 4% chas att få det resultat dem fick i stickprovet eller ågotig äu högre, givit att det är faktisk π = 0,5. d) (4 poäg) Vi ka förkasta ollhypotese eftersom p-värdet är midre ä sigifikasivå. 0,04 < 0,05 dvs. p-värdet < sigifikasivå, H0 förkastas. 9

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1 Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Applikationen kan endast användas av enskilda användare med förtroenderapportering.

Applikationen kan endast användas av enskilda användare med förtroenderapportering. Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.

Läs mer

Formelblad Sannolikhetsteori 1

Formelblad Sannolikhetsteori 1 Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla

Läs mer

Tentamen i Kunskapsbaserade system, 5p, Data 3

Tentamen i Kunskapsbaserade system, 5p, Data 3 Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Onsdag 1 november 2006, Kl 08.15-13.15 Tentamen i Statistik, STA A och STA A13 (9 poäng) Onsdag 1 november 00, Kl 0.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen miniräknare.

Läs mer

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04 Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder;

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder; MKB till detaljpla Förbifart Stockholm Hälsoeffekter av tuelluft Studier idikerar att oöskade korttidseffekter, blad aat ökat atal iflammatiosmarkörer, börjar uppstå vid e expoerig som motsvaras av tuelluft

Läs mer

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9 Fe l i t ill verki ge ept Okt Nov Dec ept Okt Nov Dec Högskola Dalara Översikt tatistisk processtyrig Itroduktio till tatistisk Processtyrig (P) aolikhet Normalfördelig Några adra fördeligar Variatio Olika

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15

Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tentamen STA A10 och STA A13, 9 poäng 19 januari 2006, kl. 8.15-13.15 Tillåtna hjälpmedel: Ansvarig lärare: Räknedosa, bifogade formel- och tabellsamlingar, vilka skall returneras. Christian Tallberg Telnr:

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,

Läs mer

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 23 februari 2004, klockan 8.15-13.15 Karlstads universitet Institutionen för informationsteknologi Avdelningen för Statistik Tentamen i Statistik, STA A och STA A3 (9 poäng) 3 februari 4, klockan 85-35 Tillåtna hjälpmedel: Bifogad formelsamling

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:

Läs mer

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com ESBILAC mjölkersättig för hudvalpar BRUKSANVISNING De bästa starte för e yfödd valp är självklart att dia tike och få i sig mammas mjölk. Modersmjölke iehåller allt som de små behöver i form av ärigsäme,

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160928, kl. 14.00 18.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T Ka. 5.5-7. Kolligativa egeskaer + fasjämvikter för 2-komoetsystem 5.2/5.5 Kolligativa egeskaer Kolligativa egeskaer: Egeskaer som edast beror å atalet artiklar som lösts Förutsättig: utsädda lösigar, lösta

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com KMR mjölkersättig för kattugar BRUKSANVISNING De bästa starte för e yfödd kattuge är självklart att dia mammas mjölk. För e yfödd kattuge är det framför allt viktigt att få i sig mammas mjölk de två första

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker (5) PM till Nämde för KPI [205-05-8] PCA/MFO Kristia tradber Aders Norber Utvärderi av tidiarelad start av prismätiar i ya radio- och TV-butier För iformatio Prisehete har atait e stevis asats av implemeteri

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Avd. Matematisk statistik

Avd. Matematisk statistik Avd. Matematisk statistik TENTAMEN I SF1902 SANNOLIKHETSTEORI OCH STATISTIK, TORSDAGEN DEN 23:E MAJ 2013 KL 14.00 19.00. Kursledare och examinator : Björn-Olof Skytt Tillåtna hjälpmedel: miniräknare, lathund

Läs mer

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar. Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade

Läs mer

Artificiell intelligens Probabilistisk logik

Artificiell intelligens Probabilistisk logik Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet

Läs mer

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25 TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag

Läs mer

SKÄRDATAREKOMMENDATIONER UDDEHOLM NIMAX

SKÄRDATAREKOMMENDATIONER UDDEHOLM NIMAX SKÄRATAREKOMMENATIONER UEHOLM NIMAX Lämpliga bearbetigsdata beror alltid på de aktuella operatioe, verktygsmaskie och vilket verktyg som aväds. e data som ages i det här bladet är geerella riktlijer som

Läs mer

SKÄRDATAREKOMMENDATIONER RAMAX HH

SKÄRDATAREKOMMENDATIONER RAMAX HH SKÄRATAREKOMMENATIONER Lämpliga bearbetigsdata beror alltid på de aktuella operatioe, verktygsmaskie och vilket verktyg som aväds. e data som ages i det här bladet är geerella riktlijer som måste apassas

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 5

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 5 Fiasiell Statistik (GN, 7,5 hp,, HT 8) Föreläsig 5 HYPOTESPRÖVNING (LLL Kap 11) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

KONSEKVENSANALYS 1 (5) INDIVID ALT ORGANISATION (markera vad bedömningen avser)

KONSEKVENSANALYS 1 (5) INDIVID ALT ORGANISATION (markera vad bedömningen avser) KONSEKVENSANALYS 1 (5) INDIVID ALT ORGANISATION (markera vad bedömige avser) Orgaisatio Faktorer att bedöma Påverkar förädrige? Kosekves av förädrige Kosekvesbeskrivig Åtgärdsförslag Asv. sig Klart datum

Läs mer

2009-11-20. Prognoser

2009-11-20. Prognoser 29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska

Läs mer

Matematisk statistik

Matematisk statistik Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011

Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Louise af Klintberg Lösningar Tentamen i Sannolikhetslära och statistik (lärarprogrammet) 12 februari 2011 Uppgift 1 a) För att få hög validitet borde mätningarna

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

Tentamen i Matematisk statistik Kurskod S0001M

Tentamen i Matematisk statistik Kurskod S0001M Tentamen i Matematisk statistik Kurskod S0001M Poäng totalt för del 1: 25 (8 uppgifter) Tentamensdatum 2012-01-13 Poäng totalt för del 2: 30 (3 uppgifter) Skrivtid 09.00 14.00 Lärare: Adam Jonsson, Ove

Läs mer

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)

Läs mer

Inklusion och exklusion Dennie G 2003

Inklusion och exklusion Dennie G 2003 Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Statistik för ingenjörer 1MS008

Statistik för ingenjörer 1MS008 Statistik för igejörer MS8 Föreläsig Kursmål: För godkät betyg på kurse skall studete käa till ett flertal metoder och tekiker för visualiserig av datamaterial; kua geomföra ekla beräkigar av saolikheter;

Läs mer

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant?

(a) Hur stor är sannolikheten att en slumpvist vald person tror att den är laktosintolerant? LÖSNINGAR till tentamen: Statistik och sannolikhetslära (LMA12) Tid och plats: 8.3-12.3 den 24 augusti 215 Hjälpmedel: Typgodkänd miniräknare, formelblad Betygsgränser: 3: 12 poäng, 4: 18 poäng, 5: 24

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer