MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

Storlek: px
Starta visningen från sidan:

Download "MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I"

Transkript

1 MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20 G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20 Mägde Det eklaste sättet att beskiva e mägd ä att äka upp elemete i mägde, tex. A = {2, 4, 5, 8} och B = {4, 5, }. Ma skive x A om x ä ett elemet i A och x / A om x ite ä det, så att tex. 2 A, 375 B me 6 / A och 3 / B. Mägdea {2, 3, 2} och {3, 2} ä desamma eftesom de iehålle samma elemet och uppepiga och odige ite ha ågo betydelse. Ofta ages mägde som de elemet i e mägd A som ha e viss egeskap P, dvs. B = { x A : Px } dä Px fö vaje x A atige ä sat elle falskt. Tex. ä { x R : x 4 } mägde av alla eella tal som ä mide elle lika med 4. = {} ä de tomma mägde som ite ha åga elemet alls. A B = { x : x A elle x B } A B = { x : x A och x B } A \ B = { x : x A och x / B } A B om x B fö alla x A A c = Ω \ A ifall A Ω och det ä klat vad Ω ä. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20 Satslogik Om a och b ä satse elle påståede som ka vaa saa elle falska, me ite ågotig mitt emella, så gälle satse a & b ä sa då a och b ä saa, satse a b ä sa då a elle b ä sa och också då både a och b ä saa. satse!a ä sa då a ite ä sa, dvs. falsk. satse a b ä sa då!a b ä sa, dvs. då atige b ä sa elle a ä falsk. I matematisk logik aväds valige istället fö &, istället fö och istället fö! och a b ä e fökotig av a b & b a. Implikatioe Obsevea att implikatioe a b som logisk sats ite alltid motsvaa vad ma i dagligt tal mea med e implikatio, dvs. av a följe b eftesom a b ä sa då a ä falsk och de ite ödvädigtvis ha ågot med osakssambad att göa. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20

2 Pedikatlogik Pedikatlogike ä e utvidgig av satslogike så att ma föutom satse ha vaiable x, y,... och pedikat P, Q,... elle hu ma u vill betecka dem. Pedikate ha ett ädligt atal agumet, tex. Px, Qx, y, osv. och ett pedikat uta agumet ä e sats. Föutom de opeatioe!, &, och som fis i satslogike aväde pedikatlogike all- och existeskvatoea och som uttycke fö alla och det existea. Föutom pedikat ka ma också aväda fuktioe vas väde hö till det omåde som behadlas domai of discouse. E fuktio med oll agumet ä då e kostat. Fuktioe och kostate ka också uttyckas med hjälp av pedikat, me det bli lätt oödigt klumpigt. Opeatoodig Om ma ite vill aväda paetese, som atuligtvis ha högsta pioitet, ka ma utyttja att de logiska opeatoea valigtvis evalueas i följade odig: Föst!, seda och, seda & och och till sist. Peaos axiom och de atuliga tale Vi ha e kostat o det fösta talet, uspuglige 1, u ofta 0, e fuktio Sx successo, dvs. följade tal och ett pedikat Lx, y med två agumet som uttycke att x och y ä lika som hä skivs i fome x == y. De två fösta axiome ä P1 x!sx == o det fösta talet följe ite efte ågot tal P2 x ysx == Sy x == y om de följade tale ä lika ä tale lika Det tedje axiomet ä egetlige ett axiomschema elle oädligt måga axiom eftesom det skall gälla fö alla pedikat P: P3 Po & xpx PSx xpx iduktiospicipe Eftesom P3 egetlige säge vad som gälle fö alla pedikat, P ä det hä fåga om ada odiges pedikatkalkyl. Obsevea också att P3 säge att de atuliga tale ä pecis {o, So, SSo,...} och ite ågot mea. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20 G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20 Iduktiospicipe Om P ä ett påståede som fö alla 0 atige ä sat elle falskt så att P 0 ä sat Pk + 1 ä sat ifall Pk ä sat dvs. Pk Pk + 1 då k 0 så ä P sat fö alla 0. Katesisk podukt De katesiska podukte X Y av två mägde X och Y bestå av alla odade pa a, b elle [a, b] dä a X och b Y, dvs. X Y = { [a, b] : a X och b Y }. Det fis olika sätt att defiiea paet [a, b] edast med hjälp av mägdteoetiska beteckiga och ett ofta avät sätt ä att säga att [a, b] ä mägde {{a}, {a, b}}. Relatioe E elatio mella mägdea X och Y elle i X om Y = X ä e delmägd av de katesiska podukte X Y. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20 G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / 20

3 Vad ä e gaf? E gaf bestå av e mägd ode och e mägd båga mella odea, tex. såhä: 4 3 I e iktad gaf ha vaje båge e statpukt och e slutpukt, meda ma i e icke iktad gaf ite gö skillad mella stat och slutpukte. E iktad gaf ka ekelt beskivas som ett odat pa [V, E] V som vetex, E som edge dä V ä e mägd valigtvis ädlig och ite tom och E V V, dvs. E ä e elatio i V. E icke iktad gaf ka beskivas som ett odat pa [V, E] dä V ä e mägd ige valigtvis ädlig och ite tom och E { {a, b} : a V, b V }. E icke iktad gaf ka föstås? också beskivas som e iktad gaf dä elatioe E ä symmetisk, dvs. [a, b] E [b, a] E. Obsevea att med igedea av dessa defiitioe ka ma ha flea båga mella samma ode me og e båge få e od till samma od. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I 15 maj / Olika slag av elatioe i e mägd X E elatio W i mägde X ä eflexiv ifall [x, x] W fö alla x X. symmetisk ifall [x, y] W [y, x] W fö alla x och y X. tasitiv ifall [x, y] W & [y, z] W [x, z] W fö alla x, y och z X. e ekvivaleselatio om W ä eflexiv, symmetisk och tasitiv. atisymmetisk om [x, y] W & x y [y, x] / W fö alla x och y X. e patiell odig om de ä eflexiv, atisymmetisk och tasitiv. asymmetisk om [x, y] W [y, x] / W fö alla x och y X. total om [x, y] w [y, x] W fö alla x och y X. Ofta skiva ma xwy istället fö [x, y] W, tex. x < y istället fö [x, y] <. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 Fuktioe Om X och Y ä mägde så ä e fuktio f : X Y e elatio mella X och Y dvs. e delmägd i X Y så att fö vaje x X fis det ett y Y så att [x, y] f. om [x, y 1 ] f och [x, y 2 ] f så ä y 1 = y 2. Valigtvis skive ma elatioe så att [x, y] f om och edast om y = f x, äve om y = xf elle y = x.f kude vaa bätte om ma läse få väste till höge. Med ada od, e fuktio f få X till Y ä e egel som fö vaje x X ge som sva ett etydigt elemet y = f x i Y. Mägde { f : f ä e fuktio få X till Y } beteckas ofta med Y X. Ijektioe, sujektioe och bijektioe E fuktio f : X Y ä e ijektio om f x 1 = f x 2 x 1 = x 2 fö alla x 1, x 2 X. sujektio om det fö vaje y Y fis ett x X så att f x = y. bijektio om de ä e ijektio och e sujektio. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 Sammasatta och ivesa fuktioe Om f : X Y och g : Y Z ä två fuktioe så ä h = g f : X Z fuktioe hx = gf x. Om f : X Y, g : Y Z och h : Z W ä fuktioe så ä h g f = h g f så att dea fuktio ka skivas som h g f. Om f : X Y ä e fuktio så att det fis e fuktio g : Y X så att g f x = x och f gy = y fö alla x X och y Y så ä f iveteba, g ä dess ives och ma skive ofta g = f 1. E fuktio f : X Y ä iveteba om och edast om de ä e bijektio. Om f : X Y ä iveteba så ä f 1 1 = f. Obsevea att f 1 ite ä samma sak som fuktioe hx = f x 1 som föutsätte att ma i Y ka äka ivese, vilket ä fallet i R \ {0} me ite i Z. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20

4 Odo elle Stoa O: f Og Om g ä e fuktio som ä defiiead fö alla tilläckligt stoa heltal så betyde f Og att f också ä defiiead fö alla tilläckligt stoa heltal och att det fis e kostat C och ett heltal 0 så att f C g, 0, Avädige av dea beteckig betyde också att ma ite ä speciellt itessead av, elle ite exakt vet, vad C och 0 ä. Ofta skive ma f = Og istället fö f Og, me om ma då istället fö O + O 2 O 2 skive O + O 2 = O 2 så måste ma ise att ma ite ka fökota bot O 2! Det ä iget speciellt med att fuktioea hä atas vaa defiieade baa fö edel heltal och att ma se vad som häde då. Tex. gälle också x 4 x 3 x 3 +x 2 Ox då x 0. Atalet elemet i e mägd Två mägde A och B ha samma atal elemet elle kadialitete A och B om det fis e bijektio A B. Mägde A ha fäe ä elle lika måga elemet som mägde B, dvs., A B, om det fis e ijektio A B. Mägde A ha fäe elemet ä mägde B, dvs., A < B, om det fis e ijektio A B me ige bijektio A B. Ifall A = {0, 1, 2,..., 1} så ä A =. E mägd A sägs vaa ädlig om det fis e bijektio A {0, 1, 2,..., 1} fö ågot heltal 0, dvs., om A =. Obs! Fö att dessa defiitioe skall vaa föuftiga måste ma visa att det fis e bijektio {0, 1, 2,..., 1} {0, 1, 2,..., m 1} om och edast om m = och att ifall det fis ijektioe A B och B A så fis det e bijektio A B. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 Summeigsegel, ekel fom Om A och B ä två ädliga mägde så att A B = så ä A B = A + B. Av detta följe att om B A så ä A \ B = A B. Poduktegel, ekel fom Om A och B ä två ädliga mägde så ä A B = A B. Lådpicipe: Ekel me yttig! Ifall m 1 föemål placeas i 1 lådo så måste e låda iehålla mist m föemål! Vafö? Om det stösta atalet föemål som fis i ågo av lådoa ä k så ä k m så att k m och eftesom m defiieas som det mista heltal som ä m så måste vi ha k m. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 Summeigs elle iklusios-exklusiospicipe Om A och B ä två ädliga mägde så ä A B = A + B A B, och mea allmät föutsatt att alla mägde A j eda ä ädliga Ifall k j=1 A j = k 1 +1 =1 E allmä fom av poduktegel 1 j 1 <j 2 <...<j k i=1. A ji C = { x 1, x 2,..., x k : x 1 A 1, x 2 A 2,x1,..., x k A k,x1,...,x k 1 }, dä A 1 = 1, fo vaje x 1 A 1 gälle A 2,x1 = 2 och så vidae så att fö alla x 1 A 1, x 2 A 2,x1,..., x k 1 A k 1,x1,...,x k 2 gälle A j,x1,x 2,...,x j 1 = j, 1 j k, så ä C = k. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20

5 Välj föemål u e mägd med föemål elle elemet Det fis åtmistoe två sätt skilja på olika situatioe: Odat val: Det ha betydelse vid vilket val föemålet väljs Ite odat val: Det ha ite ågo betydelse vid vilket val föemålet väljs. Ige uppepig: ett föemål ka väljas baa e gåg Uppepig möjlig: samma föemål ka väljas måga gåge. Atalet olika sätt på vilket detta ka göas bli däfö: Ige uppepig Uppepig möjlig Odat Ite odat m m! Hä ä = j j! m j!. Uppepig ka både tolkas så att ma välje ett föemål, otea vilket det ä, och sätte tillbaka det, och så att elemete i mägde ä de olika slag av föemål som ma ka välja. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 Plocka bolla u e låda elle sätta bolla i e låda? Ett aat sätt att se på situatioe dä ma välje föemål u e mägd med föemål med ett odat elle ite odat val, med uppepiga elle uta ä att täka på föemåle i mägde, ite som bolla i e låda, uta som lådo i vilka ma välje att placea ett föemål, tex. e boll, som i det odade fallet ka vaa umeade elle på aat sätt idetifiebaa och i det ite odade fallet idetiska. Ett val uta uppepiga iebä då att i vaje låda ka sättas högst e boll och ett val med uppepiga att flea bolla ka sättas i samma låda. I ett odat val ä det alltså ite odige som ä det viktiga, det avgöade att vale ä olika på ågot aat sätt ä blad vilka föemål det gös, dvs. bollaa som sätts i lådo ä ite idetiska. Om ma seda på ågo sätt oda de valda föemåle elle lådoa i det ite odade fallet ha ige betydelse. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 Atalet fuktioe A B Atag A = m och B =. Atalet fuktioe: A B is ä m och däfö ä det föuftigt att betecka mägde av fuktioe A B med B A. Obsevea att e fuktio ä ett odat val med uppepiga av m elemet u e mägd med elemet. Atalet ijektioe A B ä 1... m + 1 =! m! m. Vafö? Oda elemete i A och gö seda ett odat val uta uppepiga av m elemet u mägde B som ha elemet så att de bli vädea av fuktioe. Atalet sujektioe A B ä 1 m. =0 Vafö? Atalet sujektioe ä atalet fuktioe mius atalet fuktioe till e stikt delmägd av B och detta seae atal ka ma äka med hjälp av iklusios-exklusiospicipe vilket efte divese äkiga ge fomel ova. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20 Multiomialtal = 1, 2,..., k! 1! 2!... k! = k. Om ma ha valt föemål med uppepiga få e mägd med k elemet så att ma ha tagit 1 av typ y 1, 2 av typ y 2 och så vidae, då ä 1, 2,..., k atalet sätt på vilka dessa föemål ka odas så att föemål av samma typ ite ka skiljas åt. Om A ä e mägd med elemet och B = {y 1,..., y k } ä e mägd med k elemet och 1, 2,..., k ä icke-egativa tal så att k = så då ä 1, 2,..., k atalet fuktioe f : A B så att { x A : f x = y j } = j. Om 0 och k 1 så ä x x k = k = j 0 1, 2,..., k x x k k. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i disket matematiksammafattig, del I15 maj / 20

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Finansiell ekonomi Föreläsning 3

Finansiell ekonomi Föreläsning 3 Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

Inklusion och exklusion Dennie G 2003

Inklusion och exklusion Dennie G 2003 Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T Ka. 5.5-7. Kolligativa egeskaer + fasjämvikter för 2-komoetsystem 5.2/5.5 Kolligativa egeskaer Kolligativa egeskaer: Egeskaer som edast beror å atalet artiklar som lösts Förutsättig: utsädda lösigar, lösta

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Artificiell intelligens Probabilistisk logik

Artificiell intelligens Probabilistisk logik Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer

Läs mer

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com ESBILAC mjölkersättig för hudvalpar BRUKSANVISNING De bästa starte för e yfödd valp är självklart att dia tike och få i sig mammas mjölk. Modersmjölke iehåller allt som de små behöver i form av ärigsäme,

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

INGENJÖRSMATEMATISK FORMELSAMLING

INGENJÖRSMATEMATISK FORMELSAMLING Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe

Läs mer

Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition

Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition Iheritace Återavädig Två mekaismer Nedärvig av egeskaper (iheritace) Objekt kompositio A A +a +b B B Iheritace Återavädig geom att skapa subklasser kallas ofta white box reuse Ekelt att aväda Relatioe

Läs mer

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com KMR mjölkersättig för kattugar BRUKSANVISNING De bästa starte för e yfödd kattuge är självklart att dia mammas mjölk. För e yfödd kattuge är det framför allt viktigt att få i sig mammas mjölk de två första

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h.

Genom att använda geometrin i figuren ovan kan vi även ta fram uttryck för hur storleken på bilden, h, beror på storleken på objektet, h. öeläsig 6 Avbildig i säisk gäsyta Hittills ha vi baa avbildat puktomiga objekt som ligge på de optiska axel, me de lesta objekt ha e stolek d.v.s. bestå av me ä e pukt. Otast ita ma objektet som e ståede

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder;

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder; MKB till detaljpla Förbifart Stockholm Hälsoeffekter av tuelluft Studier idikerar att oöskade korttidseffekter, blad aat ökat atal iflammatiosmarkörer, börjar uppstå vid e expoerig som motsvaras av tuelluft

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

Bertrands postulat. Kjell Elfström

Bertrands postulat. Kjell Elfström F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

Tentamen i Kunskapsbaserade system, 5p, Data 3

Tentamen i Kunskapsbaserade system, 5p, Data 3 Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska

Läs mer

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden

A.Uppgifter om stödmottagare. B.Uppgifter om kontaktpersonen. C.Sammanfattning av projektet. C.1.Projektet genomfördes under perioden A.Uppgifte om stödmottagae Namn och adess Enköpings Biodlae c/o Mattias Blixt Kykvägen 3 749 52 GRILLBY Jounalnumme 2012-1185 E-postadess mattias.blixt@enviotaine.com B.Uppgifte om kontaktpesonen Namn

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården Järvägsutredig med miljökosekvesbeskrivig Hambaa Göteborg Dubbelspår Eriksbergsmotet - Pölsebobagårde Utställigshadlig 2011-03-04 Yta för bild eller möster Titel: Järvägsutredig Hambaa Göteborg dele Eriksbergsmotet

Läs mer

6 Strukturer hos tidsdiskreta system

6 Strukturer hos tidsdiskreta system 6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

ICKE KONVENTIONELLT AVFALL

ICKE KONVENTIONELLT AVFALL ICKE KONVENTIONELLT AVFALL Avfall Biologiskt avfall Cytostatikaavfall Geetiskt modifierade mikroorgaismer Läkemedelsavfall Kemiskt avfall Radioaktivt avfall Skärade/stickade avfall Smittförade avfall Sida

Läs mer

Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga

Ångestrapporten 2013. Om kvinnors erfarenheter som patienter och anhöriga Ågestappote 2013 Om kvios efaehete som patiete och ahöiga 1 Måga eve sitt iv med ågest Måga fe kvio ä mä dabbas ågo gåg i ivet av e ågestsjukdom. Nämae 1 800 kvio ha i de hä udesökige svaat på vad de ha

Läs mer

K3 Om andra ordningens predikatlogik

K3 Om andra ordningens predikatlogik KTH Matematik Bengt Ek Maj 2005 Kompletteringsmaterial till kursen 5B1928 Logik för D1: K3 Om andra ordningens predikatlogik Vi presenterar på dessa sidor kortfattat andra ordningens predikatlogik, vilket

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Applikationen kan endast användas av enskilda användare med förtroenderapportering.

Applikationen kan endast användas av enskilda användare med förtroenderapportering. Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.

Läs mer

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker (5) PM till Nämde för KPI [205-05-8] PCA/MFO Kristia tradber Aders Norber Utvärderi av tidiarelad start av prismätiar i ya radio- och TV-butier För iformatio Prisehete har atait e stevis asats av implemeteri

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Föreläsning 4 5 Sfärisk krökning och att mäta den; sag formeln

Föreläsning 4 5 Sfärisk krökning och att mäta den; sag formeln Föeäsig 4 5 Sfäisk kökig och att mäta de; sag fome De sfäiska ta ä de viktigaste tpe av ta iom optike. Det ä de atuiga fom två to få om de gids mot vaada och toa på de aa festa ise ka behadas som sfäiska

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

= (1 1) + (1 1) + (1 1) +... = = 0

= (1 1) + (1 1) + (1 1) +... = = 0 TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd

Läs mer

Familje- juridik Här är dina rättigheter. Bostad& fastighet. Sambo eller gift? Sambo eller gift? Privata Affärers serie om. Del 3

Familje- juridik Här är dina rättigheter. Bostad& fastighet. Sambo eller gift? Sambo eller gift? Privata Affärers serie om. Del 3 Äkteskap& samboförhållade Huvudregel eligt sambolage är att bostad och bohag, som skaffats för Är i ekoomiskt jämställda, det vill säga har ugefär lika stora skulder eller tillgågar, har det kaske ite

Läs mer

Kombinatorik. Torbjörn Tambour 21 mars 2015

Kombinatorik. Torbjörn Tambour 21 mars 2015 Kombiatori Torbjör Tambour mars 05 Kombiatori är de del av matematie som sysslar med frågor av type På hur måga sätt a ma? Några gasa typisa exempel är följade: På hur måga olia sätt a åtta persoer bilda

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Fördjupningsrapport om simuleringar av bombkurvan med Bolins och Eriksson matematisk modell

Fördjupningsrapport om simuleringar av bombkurvan med Bolins och Eriksson matematisk modell 1 Föjupningsappot o siuleinga av bobkuvan e Bolins och Eiksson ateatisk oell Av Peh Bjönbo Rappoten ge en bakgun so beskive Bolin och Eiksson (1959), speciellt eas ateatiska oell fö att siulea ängen aioaktiv

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

Tentamen i Energilagringsteknik 7,5 hp

Tentamen i Energilagringsteknik 7,5 hp UMEÅ UNIVERSIE illämpad fysik och elektonik Las Bäckstöm Åke Fansson entamen i Enegilagingsteknik 7,5 hp Datum: -3-5, tid: 9. 5. Hjälpmedel: Kusboken: hemal Enegy Stoage - systems and applications, Dince

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,

Läs mer

2009-11-20. Prognoser

2009-11-20. Prognoser 29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

CONSTANT FINESS SUNFLEX

CONSTANT FINESS SUNFLEX Luex terrassarkiser. Moterigs- och bruksavisig CONSTNT FINESS SUNFLEX 5 6 Markises huvudkopoeter och ått Placerig av kobikosol rklockor och justerig Parallelljusterig vädig och skötsel Huvudkopoeter och

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

Operativsystem - Baklås

Operativsystem - Baklås Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

AnvŠndarhandbok & Anvisningar fšr Installation

AnvŠndarhandbok & Anvisningar fšr Installation AŠdahadok & Aisiga fš Istallatio 110 Keamik SVENSKA KÖTTBULLAR INGREDIENSER TILL SÅSEN: safte få e hal cito 3 dl köttuljog 1 msk mjöl 1/2 dl ispgädde 1 uk ca. 200 g ligo- elle kösässlt SÅ HÄR LAGAR DU

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt,

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, Explorativ övning 1 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt matematiska språk,

Läs mer

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)

Läs mer

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer? Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera

Läs mer