Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp"

Transkript

1 Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar. Ofullstädiga lösigar, eller lösigar som är svåra att följa ger poägavdrag. Skriv tydligt! Motivera väl! Edast svar accepteras ej! För bedömig och betygsgräser se kurses hemsida. Lösigsförslag aslås på kurses hemsida efter tetame. Lycka till! Bertil Del A Hadräkig, p/uppgift.. Om ett ibrott görs e att så riger tjuvlarmet med saolikhete Om iget ibrott görs riger larmet med saolikhete 0.0. Atag att saolikhete är 0.00 att ett ibrott iträffar uder e viss att. E att riger tjuvlarmet. Vad är saolikhete att ett ibrott har skett? Lösigsförslag: Låt I = Ibrott, P I = 0.00 och L = Larmet går, P L I = och P L I C = 0.0. Vi söker P I L = ÅÅÅÅÅÅÅÅÅÅÅÅÅ P L I P I P L I 0.00ÿ0.999 Å = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ P L P I P L I + P I c P L I C 0.00ÿ ÿ0.0 º I L L c I c L L c. Varje vecka ordar MC-klubbe Hjulkul ett lotteri. Saolikhete att via på e lott e give vecka är p = Vad är saolikhete att via åtmistoe ågo gåg uder 5 veckor om ma köper e lott per vecka? Lösigsförslag: Låt x = atal vistlotter av 5, då är x œ Bi 5; 0.04 (oberoede upprepigar med samma p). Så P mist vist på 5 veckor = P x = - P x = 0 = º Eva har e arkitektfirma och tar betalt för varje uppdrag ho får eligt formel x = h, där x är ikomst i kr och h är atalet arbetade timmar i uppdraget. h atas vara N 5; 5 (ehet timmar). a) Hur mycket pegar tjäar ho i geomsitt per uppdrag och vilke fördelig har x? b) Vad är saolikhete att ho tjäar mer ä 0000 kr på sitt ästa uppdrag? Lösigsförslag: a) Vi får vätevärdet E x = E h = E h = 3300 och tillsammas med V x = V h = 500 V h = har vi fördelige x œ N 3300; 500. b) P x > 0000 = - P x 0000 = -F ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅ = -F -.3 =F.3 = Eergi (mätt i ågo lämplig ehet) hos e viss partikel ka betraktas som e diskret stokastisk variabel x med saolikhetsfuktioe x 3 4 p x Eergi hos olika partiklar ka atas vara oberoede.

2 a) Bestäm E x och D x. b) Bestäm ett tal w så att summa av eergi hos 50 partiklar överstiger w med saolikhete (Lämpliga och väl motiverade approximatioer tillåta) Lösigsförslag: a) Vi får 4 E x = i= x i p x i = och V x = E x -E x 4 = i= x i p x i - = fl D x = V x = b) Låt z = 50 i= x i vara sammalagd eergi för 50 partiklar, så har vi E z = E 50 i= x i = 50 i= E x i = 50 ÿ = 00 V z = V 50 i= x i = 50 i= V x i = 50 ÿ = 50 Nu är z º N 00; 50 så CGS P z >w = 0.90 ñ P z w = 0.0 ñf ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ w-00 w-00 = 0.0 ñ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ =-.86 ñ w = E läkemedelstillverkare aväder iblad e viss läkemedelsfärg och ma vill veta hur färge påverkar utseedet hos framställda läkemedlet. Ur tillverkige tar ma därför på måfå tio förpackigar och mäter grumlighete (i ågo lämplig ehet) i iehållet efter e tids lagrig. Resultat: Uta färgtillsats brukar de geomsittliga grumlighete m =4.00. Materialet ases vara ett slumpmässigt stickprov frå N m; s. Hur klarar sig läkmedel med färgtillsats i förhållade till läkemedel uta tillsats? Besvara fråga geom att beräka och tolka ett kofidesitervall för m med kofidesgrad 95%. Lösigsförslag: m * = êê x = 4.55, s * 9 = s = 0.044, = 0 och t 0.05 =.6. Ett kofidesitervall för de geomsittliga grumlighete ges av m œ x êê 9 s t 0.05 ÅÅÅÅÅÅÅÅ (95%) så mœ % flmœ 4.008, %. Det är alltså statistiskt säkerställt att grumlighete förädras, med felrisk (sigifikasivå) 5%. Grumlighete ökar då kofidesitervallet ova med 95% säkerhet ite iehåller m = Del B Avädig av Mathematica. Markera alla stora bokstäver i Mathematica geom att stryka uder dem! Skilj oga på ()[]{}.ä! Age om du aväder Palette eller Â-sekveser! Aväd gära förklarade text&pilar! p/uppgift. 6. Beräka medelvärdet, mediae, variase och stadardavvikelse för thedata , 6.933, , , 5.3, 6.374,.35077, , 4.56, Lösigsförslag: Direkt avädig av ibyggda fuktioer i Mathematica... thedata , 6.933, , , 5.3, 6.374,.35077, , 4.56, ; Mea thedata Media thedata Variace thedata

3 StadardDeviatio thedata Beräka Lösigsförslag: Direkt avädig av ibyggd fuktio i Mathematica... Biomial 35, Låt x œ N 0, 5. Defiiera och rita täthetsfuktioe och fördeligsfuktioe. Lösigsförslag: Direkt avädig av ibyggda fuktioer i Mathematica... ormalfuctio NormalDistributio 0, 5 NormalDistributio 0, 5 pdffuctio PDF ormalfuctio, x - ÅÅÅÅÅÅ 50 x-0 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 5 p Plot pdffuctio, x, 0, 40, PlotStyle Red cdffuctio CDF ormalfuctio, x ÅÅÅÅÅ erf ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ x Plot cdffuctio, x, 0, 40, PlotStyle Darker Gree Låt x œ N 0, 5 och beräka saolikhete att x > 5. Lösigsförslag: Direkt defiitioe i föregåede uppgift. 3

4 CDF ormalfuctio, Lös uppgift 4. Lösigsförslag: Eergiivåera och deras saolikheter. x,, 3, 4 ; p 0.4, 0.3, 0., 0. ; a) Först E x och D x. E x.p. V x.p E. b) Seda E z och V z. E 50 E 00. V 50 V 50. Slutlige de efterfrågade eergiivå w. cdffuctio CDF NormalDistributio E, V,w ÅÅÅÅÅ erf 0. w FidRoot cdffuctio 0.9, w, 00 w Ø Del C Modellerig och Mathematica, 5 p/uppgift.. Ma vill kotrollera kvalite på ett parti av 000 st μ 4' - brädor. Ma plockar därför ut 0 st slumpvis valda brädor för kotroll. Om samtliga dessa är korrekta godkäs partiet. Om exakt e bräda är defekt tar ma ytterligare 0 slumpvis valda brädor ur partiet. Om samtliga dessa är korrekta godkäs partiet, aars uderkäs partiet. Vad är saolikhete att partiet uderkäs om det iehåller 50 defekta brädor? Lösigsförslag: Låt x vara atal defekta brädor i :a urvalet, x œ Hyp 000; 0; Partiet uderkäs om x >. Om x = tas ytterligare 0 brädor blade återståede = 980. Låt z vara atal defekta brädor i :a urvalet, zœhyp 980; 0; p där p = ÅÅÅÅÅÅÅÅ Så P Uderkäa partiet = - P Godkäa partiet = - P x = 0 + P x = P z =0 x = = 4

5 = - ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 000 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 980 º Ma ka också räka approximativt med e Poissofördelig då p+ ÅÅÅ Å N 49 x º Po 0 ÿ 0.05 = Po och z ºPo 0 ÿ ÅÅÅÅÅÅÅÅ = Po 0.5 varav 980 P Uderkäa partiet º - P x = 0 + P x = P z =0 x = = = ÿ = < 0., så med l =p har vi G G x=0 z=0 x= x> z>0 U U. Iför kommade fotbollallsveska tillfrågades 500 slumpvis utvalda Halmstadbor om Halmstad BK:s chaser. 87 st sa sig vara optimistiska och svarade att de tror att Halmstad BK vier guld. a) Beräka och tolka ett 95% kofidesitervall för adele optimistiska Halmstadbor. b) Hur måga behöver tillfrågas för att ett 99% kofidesitervall för adele optimistiska ska bli högst 5% lågt? Lösigsförslag: a) Låt x vara atal optimistiska, x º Bi 500; p, där p är adel optimistiska. p * = ÅÅÅÅ x º N p; ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ p -p p* obs = ÅÅÅÅÅÅÅÅÅ = 0.74 fls* p = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ º Ett kofidesitervall för p med approximativ kofidesgrad ges av p œ p * l p * -p * a ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ, º -a 00 % där l 0.05 =.96 fås ur tabell. Detta ger p œ , º 95 % eller p œ 0.4, 0.07, º 95 %. Eligt dea udersökig är mella 4.% och 0.7% av Halmstadbora optimistiska och tror att Halmstad BK vier allsveskt guld i fotboll 009. b) Ma ka göra detta uder olika förutsättigar. Vi vill att felmargiale l p * -p * a ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ Alt : Vi ka se udersökige om 500 som e förstudie och då vet vi att p º 0.74 så med l =.5758 får vi l p * -p * a ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ 0.05 fl ÿ.5758 ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ b 0.05 fl 56. Om ma vet att p º 0.74 behöver ma fråga mist 56 halmstadbor. Alt : Ma bortser frå tidigare udersökigar. Vi vill fortfarade att felmargiale ska var midre ä 5% det vill säga l p * -p * a ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ I så fall måste vi räka med de största stadadavvikelse p * -p * ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ och de iträffar då p * = ÅÅÅÅ, så ÿ.5758 ÅÅÅÅÅÅ b 0.05 fl r Om ma gör e förstudie behöver ma fråga mist 56 halmstadbor. Uta förstudie eller om ma bortser frå resultatet i tidigare studier behöver ma fråga mist 654 halmstadbor. 5

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten

Statistik. Språkligt och historiskt betyder statistik ungefär sifferkunskap om staten Statistik Språkligt och historiskt betyder statistik ugefär sifferkuskap om state E Statistisk udersökig består av fyra delar: Plaerig Dataisamlig Bearbetig Beskrivade statistik (kap 1) Statistisk aalys

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12

MA2003 Tillämpad Matematik I, 7.5hp, 2013-08-12 MA003 Tillämpad Matematik I, 7.5hp, 03-08- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T Ka. 5.5-7. Kolligativa egeskaer + fasjämvikter för 2-komoetsystem 5.2/5.5 Kolligativa egeskaer Kolligativa egeskaer: Egeskaer som edast beror å atalet artiklar som lösts Förutsättig: utsädda lösigar, lösta

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

Stokastiska variabler

Stokastiska variabler TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,

Läs mer

Applikationen kan endast användas av enskilda användare med förtroenderapportering.

Applikationen kan endast användas av enskilda användare med förtroenderapportering. Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com ESBILAC mjölkersättig för hudvalpar BRUKSANVISNING De bästa starte för e yfödd valp är självklart att dia tike och få i sig mammas mjölk. Modersmjölke iehåller allt som de små behöver i form av ärigsäme,

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com

KMR. mjölkersättning för kattungar BRUKSANVISNING. www.kruuse.com KMR mjölkersättig för kattugar BRUKSANVISNING De bästa starte för e yfödd kattuge är självklart att dia mammas mjölk. För e yfödd kattuge är det framför allt viktigt att få i sig mammas mjölk de två första

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp, 2013-03-27

MA2004 Tillämpad Matematik II, 7.5hp, 2013-03-27 MA00 Tillämpad Matematik II,.hp, 0-0- Hjälpmedel: Räknedosa! Tänk på att dina lösningar ska utformas så att det blir lätt för läsaren att följa dina tankegångar. Ofullständiga lösningar, eller lösningar

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,

Läs mer

Tentamen i Kunskapsbaserade system, 5p, Data 3

Tentamen i Kunskapsbaserade system, 5p, Data 3 Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

Matematisk statistik

Matematisk statistik Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som

Läs mer

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11 rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg

Läs mer

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np.

FORMELSAMLING MATEMATISK STATISTIK, FMS601. Fördelning Väntevärde Varians. p x (1 p) n x x = 0, 1,..., n np np(1 p) ) x = 0, 1,..., n np. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK, FMS601 Valiga fördeligar Fördelig Vätevärde Varias Biomialfördelig, Bi (, p ) P (X = x) = ( x) p x (1 p)

Läs mer

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1

Sannolikheter 0 < P < 1. Definition sannolikhet: Definition sannolikhet: En sannolikhet kan anta värden från 0 till 1 Saolikheter E saolikhet ka ata värde frå 0 till 1 0 < P < 1 Beteckas: P Pr Prob Saolikhete för e hädelse Hädelse A P(A) Pr(A) Prob(A) Defiitio saolikhet: De frekves med vilke hädelse av itresse iträffar

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Formelblad Sannolikhetsteori 1

Formelblad Sannolikhetsteori 1 Formelblad Saolikhetsteori Bayes formel: Låt A och D vara två hädelser Då gäller P A D = P D AP A P D Chebyshevs olikhet: Låt X vara e stokastisk variabel med vätevärde µ och varias Då gäller för alla

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160928, kl. 14.00 18.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK Versio 9 december 4 Fel i lösigara mottages tacksamt till mattsso@math.kth.se. Notera att lösigara på vissa ställe utyttjar adra,

Läs mer

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar. Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp,

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, MA018 Tillämpad Matematik III-Statistik, 7.5hp, 01-03-16 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar. Ofullstädiga

Läs mer

Artificiell intelligens Probabilistisk logik

Artificiell intelligens Probabilistisk logik Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Inklusion och exklusion Dennie G 2003

Inklusion och exklusion Dennie G 2003 Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras

Läs mer

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Laboration 5: Konfidensintervall viktiga statistiska fördelningar

Laboration 5: Konfidensintervall viktiga statistiska fördelningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 5 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-02 Laboratio 5: Kofidesitervall viktiga statistiska fördeligar Syfte I dea laboratio

Läs mer

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder;

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder; MKB till detaljpla Förbifart Stockholm Hälsoeffekter av tuelluft Studier idikerar att oöskade korttidseffekter, blad aat ökat atal iflammatiosmarkörer, börjar uppstå vid e expoerig som motsvaras av tuelluft

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 24 januari 2004, kl. 09.00-13.00 Karlstads universitet Institutionen för informationsteknologi Avdelningen för statistik Tentamen i Statistik, STA A13 Deltentamen, 5p 4 januari 004, kl. 09.00-13.00 Tillåtna hjälpmedel: Ansvarig lärare:

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22 Tetame i EG2050/2C1118 Systemplaerig, 14 mars 2009, 8:00 13:00, Q21, Q22 Tillåta hjälpmedel Vid dea tetame får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematik tatitik KTH Formelamlig i matematik tatitik Vårtermie 07 Kombiatorik! = k k! ( k)!. Tolkig: mägd med elemet. = atalet delmägder av torlek k ur e k Stokatika variabler V (X) = E X (E (X)) C (X;

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik

Läs mer

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25 TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag

Läs mer

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer