Introduktion till statistik för statsvetare

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Introduktion till statistik för statsvetare"

Transkript

1 "Det fis iget så praktiskt som e bra teori" November 2011

2 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

3 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

4 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

5 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma fördelig, så gäller ˆµ = X ärmar sig µ ju fler observatioer som tas Observera att detta äve gäller uder svagare villkor. Stora tales lag är därför e mycket avädbar lag (sats). Me de hjälper oss ite att bestämma hur stort vi behöver för att vara tillräckligt ära. Me vad är tillräckligt ära?

6 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

7 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

8 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

9 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag (forts) Iget speciellt atagade om fördelige görs varför vi äve har ˆσ 2 = 1 (X i X ) 2 ärmar sig σ 2 ju fler observatioer som tas ty om X i :a är oberoede så är äve X 2 i :a det. Me det står (X i X ) 2 och X i X :a är ite oberoede! Hur ser ma att de ite är oberoede? Hur ser ma att det ädock fugerar?

10 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

11 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

12 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

13 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

14 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

15 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

16 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

17 Bakgrud Stadardiserig E saolikhetsekvatio Stadardiserig Låt oss u först försöka utreda vad som skall meas med tillräckligt ära. Det tar ite mycket eftertake för att fia att svare på dessa frågor varierar frå situatio till situatio. Två kompisar som bor 1 km frå varadra bor de ära? Om de bor 1 meter frå varadra? Vi måste skapa ett mått som ite beror på vilke sort vi mäter i Eftersom vi hela tide pratar om X som vårt geomsittliga mått av våra mätigar skall vi utgå frå det aritmetiska medelvärdet. resoera x i x s

18 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

19 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

20 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

21 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

22 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

23 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio Begreppet tillräckligt ära bör således utyttja sig av stadardiserade variabler X i X S Vårt ärhetsbegrepp ka (och skall) vara att de flesta mätigar ligger ära det förvätade värdet µ = E (X ). Detta begrepp skall vi basera på ett saolikhetsuttalade. Mer kokret skall vi säga att vi är 1 α ära om P (a < µ < b) = 1 α Först varför 1 α och ite α? Detta har göra med att α har e speciell betydelse i testteori så svaret kommer seare.

24 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

25 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

26 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

27 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

28 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

29 Bakgrud Stadardiserig E saolikhetsekvatio E saolikhetsekvatio (forts) För det adra vart tog våra mätigar X 1, X 2,..., X väge? Svaret är att de ligger i kostatera a och b som således ite är ågra kostater uta fuktioer Ett mer korrekt skrivsätt blir således P (a (X 1, X 2,..., X ) < µ < b (X 1, X 2,..., X )) = 1 α Så arbetsgåge blir: bestäm hur stort 1 α skall vara. Därefter bestäm fuktioer a och b så att vi får ett itervall som med saolikhete 1 α täcker det saa värdet µ. Om 1 α = 0.95, a = 2 och b = 3 så har vi att det saa me okäda värdet µ ligger mella 2 och 3 med saolikhete Simulera med WiStats

30 Bakgrud Stadardiserig E saolikhetsekvatio De väsetliga fråga Så återstår de ite oväsetliga fråga Hur hittar ma a och b? Vars svar är att det ka bara göra frå fall till fall

31 Bakgrud Stadardiserig E saolikhetsekvatio De väsetliga fråga Så återstår de ite oväsetliga fråga Hur hittar ma a och b? Vars svar är att det ka bara göra frå fall till fall

32 Bakgrud Stadardiserig E saolikhetsekvatio De väsetliga fråga Så återstår de ite oväsetliga fråga Hur hittar ma a och b? Vars svar är att det ka bara göra frå fall till fall

33 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet Vi vet att X i N ( µ, σ 2) samt att slumpvariablera X i är oberoede varav följer X i N ( µ, σ 2) Me detta ger att (visa detta) X i µ σ 2 N (0, 1) Vi ka u sätta upp följade ekvatio ( ) P 1.96 < X i µ < 1.96 = 0.95 σ 2

34 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet Vi vet att X i N ( µ, σ 2) samt att slumpvariablera X i är oberoede varav följer X i N ( µ, σ 2) Me detta ger att (visa detta) X i µ σ 2 N (0, 1) Vi ka u sätta upp följade ekvatio ( ) P 1.96 < X i µ < 1.96 = 0.95 σ 2

35 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet Vi vet att X i N ( µ, σ 2) samt att slumpvariablera X i är oberoede varav följer X i N ( µ, σ 2) Me detta ger att (visa detta) X i µ σ 2 N (0, 1) Vi ka u sätta upp följade ekvatio ( ) P 1.96 < X i µ < 1.96 = 0.95 σ 2

36 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) I ett första steg omskrives dea till ( P 1.96σ < X i µ < 1.96σ ) = 0.95 Vi har u två olikheter 1.96σ < X i µ och X i µ < 1.96σ Byt plats mella µ och 1.96σ µ < X i σ och X i 1.96σ < µ

37 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) I ett första steg omskrives dea till ( P 1.96σ < X i µ < 1.96σ ) = 0.95 Vi har u två olikheter 1.96σ < X i µ och X i µ < 1.96σ Byt plats mella µ och 1.96σ µ < X i σ och X i 1.96σ < µ

38 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) I ett första steg omskrives dea till ( P 1.96σ < X i µ < 1.96σ ) = 0.95 Vi har u två olikheter 1.96σ < X i µ och X i µ < 1.96σ Byt plats mella µ och 1.96σ µ < X i σ och X i 1.96σ < µ

39 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

40 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

41 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

42 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Dividera med µ < 1 X i σ och 1 X i 1.96 σ < µ Sätt ihop ( P X 1.96 σ < µ < X σ σ ) = 0.95 Ett kofidesitervall för µ är σ kät och med kofidesgrad 95% ka u skrivas ( x 1.96 σ, x σ ) Tyvärr kräver detta itervall kuskap om σ.

43 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

44 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

45 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

46 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Kofidesitervall för det förvätade värdet (forts) Om vi ite har kuskap om σ (och det har vi sälla) så måste σ skattas och ersättas med sitt approximativa värde de observerade skattige s. Me i rimlighetes am måste dea extra approximatio ge upphov till ett bredare itervall. Det är också vad som häder. Vi får ite talet 1.96 uta ett större tal som beteckas med t ( 1). Observera att detta tal beror på atalet observatioer.

47 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för µ är σ okät och med kofidesgrad 95% ka u skrivas ( x t ( 1) s, x + t ( 1) s ) Diskutera rut t-fördelige

48 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för µ är σ okät och med kofidesgrad 95% ka u skrivas ( x t ( 1) s, x + t ( 1) s ) Diskutera rut t-fördelige

49 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Example För skogsområdet upmättes E köpare vill via ett 95 procetigt symmetriskt kofidesitervall beräka de största mägd timmer dee rimlige ka erhålla för att med hjälp av de övre gräse kua beräka de högsta acceptabla iköpskostade per volymsehet. Beräka ett sådat kofidesitervall.

50 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Solutio Vi har tidigare fuit att x = s = så ett 95%-igt kofidesitervall för µ är σ okät blir ( , ) som ger oss att varje ruta iehåller mella 9.14 och 14.6 m 3 skog. Så köpare räkar med att få högst 14.6 m 3 skog per ruta. Me äve skattige σ är behäftad med osäkerhet. Vi behöver därför ett kofidesitervall för σ.

51 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

52 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

53 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

54 Kofidesitervall för varias Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Me om σ är e okäd parameter så bör vi äve för dea kua skapa ett kofidesitervall. Hur ser ett sådat ut? Vi söker u ett itervall med utseedet P ( a < σ 2 < b ) = 0.95 Här måste både a och b vara större ä oll ty variase skattas med e summa av kvadrater. Skattige av σ 2 är µ är käd är S 2 = 1 (X i µ) 2

55 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Betrakta u S 2 σ 2 = ( Xi µ Högerledet är e summa av kvadrerade N (0, 1)-variabler. Tidigare har kostaterats att e såda summa är χ 2 ()-fördelad. Därför är saolikhetsekvatioe P (a < S 2 ) < b = 0.95 σ 2 σ ) 2 meigsfull. Vi leds till att betrakta (diskutera χ och χ ) P (χ < S 2 ) σ 2 < χ = 0.95

56 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Betrakta u S 2 σ 2 = ( Xi µ Högerledet är e summa av kvadrerade N (0, 1)-variabler. Tidigare har kostaterats att e såda summa är χ 2 ()-fördelad. Därför är saolikhetsekvatioe P (a < S 2 ) < b = 0.95 σ 2 σ ) 2 meigsfull. Vi leds till att betrakta (diskutera χ och χ ) P (χ < S 2 ) σ 2 < χ = 0.95

57 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Betrakta u S 2 σ 2 = ( Xi µ Högerledet är e summa av kvadrerade N (0, 1)-variabler. Tidigare har kostaterats att e såda summa är χ 2 ()-fördelad. Därför är saolikhetsekvatioe P (a < S 2 ) < b = 0.95 σ 2 σ ) 2 meigsfull. Vi leds till att betrakta (diskutera χ och χ ) P (χ < S 2 ) σ 2 < χ = 0.95

58 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Vi löser u de två olikhetera med avseede på σ 2. Lösige blir χ < S 2 σ 2 och S 2 σ 2 < χ σ 2 < S 2 χ och S 2 χ < σ 2 varför ( S 2 P χ < σ 2 < S 2 ) χ 2 =

59 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Vi löser u de två olikhetera med avseede på σ 2. Lösige blir χ < S 2 σ 2 och S 2 σ 2 < χ σ 2 < S 2 χ och S 2 χ < σ 2 varför ( S 2 P χ < σ 2 < S 2 ) χ 2 =

60 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Vi löser u de två olikhetera med avseede på σ 2. Lösige blir χ < S 2 σ 2 och S 2 σ 2 < χ σ 2 < S 2 χ och S 2 χ < σ 2 varför ( S 2 P χ < σ 2 < S 2 ) χ 2 =

61 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för σ är µ är käd och med kofidesgrad 0.95 ka u skrivas ( ) S 2 S, 2 χ χ Tyvärr kräver dea lösig kuskap om µ.

62 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Ett kofidesitervall för σ är µ är käd och med kofidesgrad 0.95 ka u skrivas ( ) S 2 S, 2 χ χ Tyvärr kräver dea lösig kuskap om µ.

63 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

64 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

65 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

66 Kofidesitervall för varias (forts) Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Så om vi ite har kuskap om µ hur ser då itervallet ut? Ma ka visa att det räcker med e smärre korrigerig och erhåller: Ett kofidesitervall för σ är µ är okäd och med kofidesgrad 0.95 ka skrivas ( ) ( 1) S 2 ( 1) S χ 2, χ Där S 2 = 1 1 (X i X ) 2

67 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Example (forts) För skogsområdet gällde att kofidesitervallet (9.14, 14.6) för det förvätade ihållet. För stadardavvikelse har vi itervallet ( ) ( 1) S 2 ( 1) S χ 2, χ vilket ger ( ) (49 1) (49 1) , = (8.3, 12.5)

68 Iterval för µ är σ kät Iterval för µ är σ okät Itervall för σ 2 Itervall för σ 2 är µ käd Itervall för σ 2 är µ okäd Köpare har därför e ä större osäkerhet ( , ) = (9.6, 14.4) eller ( , ) = (8.4, 15.6) Vilket av de tre framräkade tale, 14.1, 14.6 och 15.6, skall dee välja?

69 Åkerareal Åkerareal Frå SCBs statistikdatabas fier vi de totala åkerareale i Uppsala A-regio för e följd av år Bestäm e approximatio av geomsittlig aväda areal uder agive tid samt ge ett 95%-igt kofidesitervall. Vi skapar följade modell X i = åkerareal Uppsala A-regio år i i = 1981, 1985,..., 2007 med atagadet att X i N (µ, σ) (oberoedekravet dubiöst här).

70 Åkerareal Åkerareal Frå SCBs statistikdatabas fier vi de totala åkerareale i Uppsala A-regio för e följd av år Bestäm e approximatio av geomsittlig aväda areal uder agive tid samt ge ett 95%-igt kofidesitervall. Vi skapar följade modell X i = åkerareal Uppsala A-regio år i i = 1981, 1985,..., 2007 med atagadet att X i N (µ, σ) (oberoedekravet dubiöst här).

71 Åkerareal Åkerareal Frå SCBs statistikdatabas fier vi de totala åkerareale i Uppsala A-regio för e följd av år Bestäm e approximatio av geomsittlig aväda areal uder agive tid samt ge ett 95%-igt kofidesitervall. Vi skapar följade modell X i = åkerareal Uppsala A-regio år i i = 1981, 1985,..., 2007 med atagadet att X i N (µ, σ) (oberoedekravet dubiöst här).

72 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

73 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

74 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

75 Åkerareal Vi söker först e approximatio på µ och dea är självklar: x = = Variase igår ästa alltid så ret sletriamässigt beräkar vi äve dea: s = (observera att variase ite är käd) Ett 95%-igt kofidesitervall för µ med σ okät blir u ± Varav vi fier itervallet (74303, 76833) för åkerareal.

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]

Läs mer

Så här kommer byggherren och entreprenören överens om energianvändningen

Så här kommer byggherren och entreprenören överens om energianvändningen Så här kommer byggherre och etrepreöre överes om eergiavädige Så här kommer byggherre och etrepreöre överes om eergiavädige Sveby står för Stadardisera och verifiera eergiprestada i byggader och är ett

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK Versio 9 december 4 Fel i lösigara mottages tacksamt till mattsso@math.kth.se. Notera att lösigara på vissa ställe utyttjar adra,

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22 Tetame i EG2050/2C1118 Systemplaerig, 14 mars 2009, 8:00 13:00, Q21, Q22 Tillåta hjälpmedel Vid dea tetame får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Fouriertransformen. Faltning, filtrering och sampling

Fouriertransformen. Faltning, filtrering och sampling Faltig Fouriertrasforme Faltig, filtrerig och samplig Givet två sigaler f och g och deras respektive spektra f`, g`, hur bildar ma e tredje sigal såda att dess spektrum är lika med summa f` + g`. Lätt!

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning ydkraft Nät AB, Tekiskt Meddelade för Jordigsverktyg : Dimesioerig, kotroll och besiktig 2005-04-26 Författare NUT-050426-006 Krister Tykeso Affärsområde Dokumettyp Dokumetam Elkrafttekik Rapport 1(6)

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2 Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +

Läs mer

Ny lagstiftning från 1 januari 2011

Ny lagstiftning från 1 januari 2011 Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q

Läs mer

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25 Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om

Läs mer

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T

( ) ( ) Kap. 5.5-7. Kolligativa egenskaper + fasjämvikter för 2-komponentsystem 5B.2/5.5 Kolligativa egenskaper R T Ka. 5.5-7. Kolligativa egeskaer + fasjämvikter för 2-komoetsystem 5.2/5.5 Kolligativa egeskaer Kolligativa egeskaer: Egeskaer som edast beror å atalet artiklar som lösts Förutsättig: utsädda lösigar, lösta

Läs mer

Lösningsförslag 081106

Lösningsförslag 081106 Lösigsförslag 86 Uppgift Trädslag: kvalitativ, omialskala (diskret) Diameter: kvatitativ, kvotskala, kotiuerlig Höjd: kvatitativ, kvotskala, kotiuerlig Ålder: kvatitativ, kvotskala, kotiuerlig Trädslag:

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

Vikingen FutureLook. Delphi Finansanalys AB

Vikingen FutureLook. Delphi Finansanalys AB Vikige FutureLook by Delphi Fiasaalys AB Referesmaual för Vikig FutureLook Översikt Futurelook är ett uikt och mycket kraftfult verktyg för fiasaalytiker och kapitalplacerare. Med FutureLook är det möjligt

Läs mer

Artificiell intelligens Probabilistisk logik

Artificiell intelligens Probabilistisk logik Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Nr Bilaga 1. Det rekommenderade värdet för flödestätheten i ett statiskt magnetiskt fält (0 Hz).

Nr Bilaga 1. Det rekommenderade värdet för flödestätheten i ett statiskt magnetiskt fält (0 Hz). Nr 94 641 Bilaga 1. Det rekommederade värdet för flödestäthete i ett statiskt magetiskt fält (0 Hz). Expoerig Hela kroppe (fortgåede) Magetisk flödestäthet 40 mt Förklarigar till tabelle Äve lägre magetisk

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

Framtidsutredningen 2007 Vad kostar det tillgängliga och trygga Stockholm?

Framtidsutredningen 2007 Vad kostar det tillgängliga och trygga Stockholm? Framtidsutredige 2007 Vad kostar det tillgägliga och trygga Stockholm? I dea rapport kommer stades ekoomiska framtidsutsikter att diskuteras. Klarar stade äve fortsättigsvis av åtagadet att erbjuda e god

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Solgläntans föräldrakooperativ Kvalitet och måluppfyllelse läsåret 2012/13

Solgläntans föräldrakooperativ Kvalitet och måluppfyllelse läsåret 2012/13 1 s föräldrakooperativ Kvalitet och måluppfyllelse läset 2012/13 Iehåll: Iledig 2 Förutsättigar...2 Bedömig av kvalitet och måluppfyllelse 3 Beslutade mål och åtgärder 6 Slutord 7 Bilaga: Resultat - seaste

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

2 Intervallskattning 14 2.1 Konfidensintervall för µ i normalfördelningen... 14

2 Intervallskattning 14 2.1 Konfidensintervall för µ i normalfördelningen... 14 UTDRAG UR FÖRELÄSNINGSANTECKNINGAR I STATISTIKTEORI PUNKT- OCH INTERVALLSKATTNINGAR SAMT HYPOTESTEST MATEMATISK STATISTIK AK FÖR F, E, D, I, C, Π; FMS 02 JOAKIM LÜBECK, MAJ 202 Iehåll Puktskattigar och

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1 Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION

Läs mer

ANOVA I: Kap 14. Åldersgrupper -30 år år 51- år. Totalt n k N = 9 X k X = s k s = 8.

ANOVA I: Kap 14. Åldersgrupper -30 år år 51- år. Totalt n k N = 9 X k X = s k s = 8. ANOVA I: ap 14 1 Åldersgrupper -30 år 31-50 år 51- år 39 6 6 43 3 0 41 30 Totalt 3 3 3 N = 9 X k.67 41.00 9.33 X = 31.00 s k 3.06.00 3.06 s = 8.38 s k 9.33 4.00 9.33 s = 70.5 Ex. OVERHEAD Åldersgrupper

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp,

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, MA018 Tillämpad Matematik III-Statistik, 7.5hp, 01-03-16 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar. Ofullstädiga

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning...

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning... Iehåll Grafräkare och diskret matematik...1 Vad hadlar diskret matematik om?...1 Permutatioer och kombiatioer...3 Något om heltalsräkig...4 Modulusoperator...4 Faktoriserig i primfaktorer...5 Talföljder...7

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Utlandskyrkans krisberedskap

Utlandskyrkans krisberedskap Utladskyrkas krisberedskap hadbok för beredskapsplaerig Kyrkokasliet Uppsala Sveska kyrkas kriscetrum 2 Kotaktiformatio veska kyrka i utladet S Kyrkokasliet 751 70 Uppsala Tel. 018-16 95 00 www.sveskakyrka.se

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

Försöket med trängselskatt

Försöket med trängselskatt STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då

Läs mer

Icke-lineära ekvationer

Icke-lineära ekvationer Icke-lieära ekvatioer Exempel: Rote till ekvatioe x = cos( x) är lika med x -koordiate för skärigspukte mella kurvora y = x och y = cos( x). Vi ka plotta kurvora på itervallet [,] med följade Matlabkommado

Läs mer

Avsnitt 5. Varför gör man prognoser och hur?

Avsnitt 5. Varför gör man prognoser och hur? Avsitt 5. Varför gör ma progoser och hur? Ofta har ma tid att förbereda sig ia ma måste hadla (framförhållig). Då ka ma göra e progos över läget då hadlige skall utföras och på effekte av es hadlade. Hadlig

Läs mer

Smärtlindring vid medicinsk abort

Smärtlindring vid medicinsk abort Smärtlidrig vid medicisk abort EN JÄMFÖRANDE STUDIE VETENSKAPLIGT ARBETE UNDER ST ELIN SJÖLANDER HANDLEDARE MARIE BOLIN Itroduktio Smärta vid medicisk abort valig, smärtlidrig vid medicisk abort dåligt

Läs mer

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad. Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig

Läs mer

CONSTANT FINESS SUNFLEX

CONSTANT FINESS SUNFLEX Luex terrassarkiser. Moterigs- och bruksavisig CONSTNT FINESS SUNFLEX 5 6 Markises huvudkopoeter och ått Placerig av kobikosol rklockor och justerig Parallelljusterig vädig och skötsel Huvudkopoeter och

Läs mer

Kontrakt baserad design. Design by contract

Kontrakt baserad design. Design by contract Kotrakt baserad desig Desig by cotract Motiverig Objekt ka valige ite avädas på ett godtyckligt sätt Metoder ska aropas med vissa parametervärde I rätt ordig Svårt att veta hur ett objekt ka avädas uta

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

För rörformiga instrument, slangar och liknande krävs speciella insatser för genomspolning för att få ett fullgott resultat.

För rörformiga instrument, slangar och liknande krävs speciella insatser för genomspolning för att få ett fullgott resultat. Sida 1 av 6 Avisig för kvalitetssäkrig av spol- och diskdesifektorer 141203 Avisig primärvård Föremål och istrumet avsedda för flergågsbruk ska regöras och desifekteras efter avädig i e värmedesifektor.

Läs mer

Leif Abrahamsson. Uppsala Universitet

Leif Abrahamsson. Uppsala Universitet Två formler för talet π Leif Abrahamsso Uppsala Uiversitet Dea uppgift syftar till att härleda två formler för talet π. De två formleras härledig är oberoede av varadra och ka således var för sig utgöra

Läs mer

Årets bästa skattetips

Årets bästa skattetips Årets bästa skattetips Aika Creutzers råd säker di skatt Årets deklaratio har måga glada yheter. Privata Affärers chefredaktör Aika Creutzer ger dig sia bästa råd till lägre skatt. Förmögehetsskatte är

Läs mer

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem

Läs mer

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården Järvägsutredig med miljökosekvesbeskrivig Hambaa Göteborg Dubbelspår Eriksbergsmotet - Pölsebobagårde Utställigshadlig 2011-03-04 Yta för bild eller möster Titel: Järvägsutredig Hambaa Göteborg dele Eriksbergsmotet

Läs mer

Parkerings- och handelsutredning Kristianstad centrum

Parkerings- och handelsutredning Kristianstad centrum Parkerigs- och hadelsutredig Kristiastad cetrum Del 1: Parkerigsstrategi, kompletterade iveterig 2011-11-21 Beställare Kristiastad kommu Aders Magusso Joha Gomér Lars Nyström Atkis Simo Radahl, Atkis Eli

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

YTTRE CENTRUM, SÖDRA

YTTRE CENTRUM, SÖDRA TECKENFÖRKLARING Barrskog ge vä Lövskog Gräsmarker Impedimet SETHS HAGE Parker Nygata ge ä av Grö Gårdspark Sofia gata Gröig Allé sv ä ge Trädgårdar dra Sto rga Bostadsträdgårdar Ha ta lla ryd Villaträdgårdar

Läs mer

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden.

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden. Översikt av ouppklarade fall av dödligt våld i Skåe uder tide 1985-07-01 och framåt i tide. OBSERVERA att översikte grudar sig på e iveterig, som ite är klar! Atalet ärede och urval av ärede ka komma att

Läs mer

MARKNADSPLAN Kungälvs kommun 2010-2014

MARKNADSPLAN Kungälvs kommun 2010-2014 MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,

Läs mer