MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

Storlek: px
Starta visningen från sidan:

Download "MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I"

Transkript

1 MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19 Mägder Det eklaste sättet att beskriva e mägd är att räka upp de elemete i mägde, tex. A = {2, 4, 5, 8} och B = {4, 5, }. Ma skriver x A om x är ett elemet i A och x / A om x ite är det, så att tex. 2 A, 375 B me 6 / A och 3 / B. Mägdera {2, 3, 2} och {3, 2} är desamma eftersom de iehåller samma elemet och upprepigar och ordige ite har ågo betydelse. Ofta ages mägder som de elemet i e mägd A som har e viss egeskap P, dvs. B = { x A : P(x) } där P(x) för varje x A atige är sat eller falskt. Tex. är { x R : x 4 } alla reella tal som är midre eller lika med 4. = {} är de tomma mägde som ite har ågra elemet alls. A B = { x : x A eller x B } A B = { x : x A och x B } A \ B = { x : x A och x / B } A B om x B för alla x A A c = Ω \ A ifall A Ω och det är klart vad Ω är. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19

2 Satslogik Om a och b är satser eller påståede som ka vara saa eller falska, me ite ågotig mitt emella, så gäller satse a & b är sa då a och b är saa, satse a b är sa då a eller b är sa (och också då både a och b är saa). satse!a är sa då a ite är sa, dvs. falsk. satse a b är sa då (!a) b är sa, dvs. då atige b är sa eller a är falsk. I matematisk logik aväds valige istället för &, istället för och istället för! och a b är e förkortig av (a b) & (b a). Implikatioe Observera att implikatioe a b som logisk sats ite alltid motsvarar vad ma i dagligt tal mear med e implikatio, dvs. av a följer b eftersom a b är sa då a är falsk och de ite ödvädigtvis har ågot med orsakssambad att göra. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19 Predikatlogik Predikatlogike är e utvidgig av satslogike så att ma förutom satser har variabler x, y,... och predikat P, Q,... (eller hur ma u vill betecka dem). Predikate har ett ädligt atal argumet, tex. P(x), Q(x, y), osv. och ett predikat uta argumet är e sats. Förutom de operatioer (!, &, och ) som fis i satslogike aväder predikatlogike all- och existeskvatorera och som uttrycker för alla och det existerar. Förutom predikat ka ma också aväda fuktioer vars värde hör till det område som behadlas ( domai of discourse ). E fuktio med oll argumet är då e kostat. Fuktioer och kostater ka också uttryckas med hjälp av predikat, me det blir lätt oödigt klumpigt. Operatorordig Om ma ite vill aväda pareteser, som aturligtvis har högsta prioritet) ka ma utyttja att de logiska operatorera (valigtvis) evalueras i följade ordig: Först!, seda och, seda & och och till sist. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19

3 Peaos axiom och de aturliga tale Vi har e kostat o ( det första talet, urspruglige 1, u ofta 0), e fuktio S(x) ( successor, dvs. följade tal ) och ett predikat L(x, y) med två argumet (som uttrycker att x och y är lika) som här skrivs i forme x == y. De två första axiome är P1 x(!(s(x) == o)) (det första talet följer ite efter ågot tal) P2 x( y((s(x) == S(y)) (x == y))) (om de följade tale är lika är tale lika) Det tredje axiomet är egetlige ett axiomschema eller oädligt måga axiom eftersom det skall gälla för alla predikat P: P3 (P(o) & ( x(p(x) P(S(x))))) ( xp(x)) (iduktiospricipe) Eftersom P3 egetlige säger vad som gäller för alla predikat, P är det här fråga om adra ordiges predikatkalkyl. Observera också att P3 säger att de aturliga tale är precis {o, S(o)), S(S(o)),...} och ite ågot mera. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19 Iduktiospricipe Om P() är ett påståede (som för alla 0 atige är sat eller falskt) så att P( 0 ) är sat P(k + 1) är sat ifall P(k) är sat (dvs. P(k) P(k + 1)) då k 0 så är P() sat för alla 0. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19

4 Kartesisk produkt De kartesiska produkte X Y av två mägder X och Y består av alla ordade par (a, b) eller [a, b] där a X och b Y, dvs. X Y = { [a, b] : a X och b Y }. Det fis olika sätt att defiiera paret [a, b] edast med hjälp av mägdteoretiska beteckigar och ett ofta avät sätt är att säga att [a, b] är mägde {{a}, {a, b}}. Relatioer E relatio mella mägdera X och Y (eller i X om Y = X ) är e delmägd av de kartesiska produkte X Y. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19 Vad är e graf? E graf består av e mägd oder och e mägd bågar mella odera, tex. såhär: I e riktad graf har varje båge e startpukt och e slutpukt, meda ma i e icke riktad graf ite gör skillad mella start och slutpukte. E riktad graf ka ekelt beskrivas som ett ordat par [V, E] (V som vertex, E som edge ) där V är e mägd (valigtvis ädlig och ite tom) och E V V, dvs. E är e relatio i V. E icke riktad graf ka beskrivas som ett ordat par [V, E] där V är e mägd (ige valigtvis ädlig och ite tom) och E { {a, b} : a V, b V }. E icke riktad graf ka förstås (?) också beskrivas som e riktad graf där relatioe E är symmetrisk, dvs. [a, b] E [b, a] E. Observera att med igedera av dessa defiitioer ka ma ha flera bågar mella samma oder me og e båge frå e od till samma od. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19

5 Olika slag av relatioer i e mägd X E relatio W i mägde X är reflexiv ifall [x, x] W för alla x X. symmetrisk ifall [x, y] W [y, x] W för alla x och y X. trasitiv ifall [x, y] W & [y, z] W [x, z] W för alla x, y och z X. e ekvivalesrelatio om W är reflexiv, symmetrisk och trasitiv. atisymmetrisk om [x, y] W & x y [y, x] / W för alla x och y X. e partiell ordig om de är reflexiv, atisymmetrisk och trasitiv. asymmetrisk om [x, y] W [y, x] / W för alla x och y X. total om [x, y] w [y, x] W för alla x och y X. Ofta skrivar ma xwy istället för [x, y] W, tex. x < y (istället för [x, y] <). G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober / 19 Fuktioer Om X och Y är mägder så är e fuktio f : X Y e relatio mella X och Y dvs. e delmägd i X Y så att för varje x X fis det ett y Y så att [x, y] f. om [x, y 1 ] f och [x, y 2 ] f så är y 1 = y 2. Valigtvis skriver ma relatioe så att [x, y] f om och edast om y = f (x), äve om y = xf eller y = x.f kude vara bättre om ma läser frå väster till höger. Med adra ord, e fuktio f frå X till Y är e regel som för varje x X ger som svar ett etydigt elemet y = f (x) i Y. Mägde { f : f är e fuktio frå X till Y } beteckas ofta med Y X. Ijektioer, surjektioer och bijektioer E fuktio f : X Y är e ijektio om f (x 1 ) = f (x 2 ) x 1 = x 2 för alla x 1, x 2 X. surjektio om det för varje y Y fis ett x X så att f (x) = y. bijektio om de är e ijektio och e surjektio. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19

6 Sammasatta och iversa fuktioer Om f : X Y och g : Y Z är två fuktioer så är h = g f : X Z fuktioe h(x) = g(f (x)). Om f : X Y, g : Y Z och h : Z W är fuktioer så är (h g) f = h (g f ) så att dea fuktio ka skrivas som h g f. Om f : X Y är e fuktio så att det fis e fuktio g : Y X så att (g f )(x) = x och (f g)(y) = y för alla x X och y Y så är f iverterbar, g är dess ivers och ma skriver ofta g = f 1. E fuktio f : X Y är iverterbar om och edast om de är e bijektio. Om f : X Y är iverterbar så är (f 1 ) 1 = f. Observera att f 1 ite är samma sak som fuktioe h(x) = f (x) 1 som förutsätter att ma i Y ka räka iverser, vilket är fallet i R \ {0} me ite i Z. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19 Ordo eller Stora O: f O(g) Om g är e fuktio som är defiierad för alla tillräckligt stora heltal så betyder f O(g) att f också är defiierad för alla tillräckligt stora heltal och att det fis e kostat C och ett heltal 0 så att f () C g(), 0, Avädige av dea beteckig betyder också att ma ite är speciellt itresserad av, eller ite exakt vet, vad C och 0 är. Ofta skriver ma f () = O(g()) istället för f O(g), me om ma då istället för O() + O( 2 ) O( 2 ) skriver O() + O( 2 ) = O( 2 ) så måste ma ise att ma ite ka förkorta bort O( 2 )! Det är iget speciellt med att fuktioera här atas vara defiierade bara för (edel) heltal och att ma ser vad som häder då. Tex. gäller också x 4 x 3 x 3 +x 2 O(x) då x 0. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19

7 Atalet elemet i e mägd Två mägder A och B har samma atal elemet (eller kardialiteter) A och B om det fis e bijektio A B. Mägde A har färre ä eller lika måga elemet som mägde B, dvs., A B, om det fis e ijektio A B. Mägde A har färre elemet ä mägde B, dvs., A < B, om det fis e ijektio A B me ige bijektio A B. Ifall A = {0, 1, 2,..., 1} så är A =. E mägd A sägs vara ädlig om det fis e bijektio A {0, 1, 2,..., 1} för ågot heltal 0, dvs., om A =. Obs! För att dessa defiitioer skall vara föruftiga måste ma visa att det fis e bijektio {0, 1, 2,..., 1} {0, 1, 2,..., m 1} om och edast om m = och att ifall det fis ijektioer A B och B A så fis det e bijektio A B. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19 Summerigsregel, ekel form Om A och B är två (ädliga) mägder så att A B = så är A B = A + B. Av detta följer att om B A så är A \ B = A B. Produktregel, ekel form Om A och B är två (ädliga) mägder så är A B = A B. Lådpricipe: Ekel me yttig! Ifall m 1 föremål placeras i 1 lådor så måste e låda iehålla mist m föremål! Varför? Om det största atalet föremål som fis i ågo av lådora är k så är k m så att k m och eftersom m defiieras som det mista heltal som är m så måste vi ha k m. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19

8 Summerigs eller iklusios-exklusiospricipe Om A och B är två (ädliga) mägder så är A B = A + B A B, och mera allmät (förutsatt att alla mägder A j eda är ädliga) Ifall k A j = j=1 k ( 1) r+1 r=1 E allmä form av produktregel 1 j 1 <j 2 <...<j r k r. A ji C = { (x 1, x 2,..., x k ) : x 1 A 1, x 2 A 2,x1,..., x k A k,x1,...,x k 1 }, där A 1 = 1, for varje x 1 A 1 gäller A 2,x1 = 2 och så vidare så att för alla x 1 A 1, x 2 A 2,x1,..., x k 1 A k 1,x1,...,x k 2 gäller A j,x1,x 2,...,x j 1 = j, 1 j k, så är C = k. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19 i=1 Välj r föremål ur e mägd med föremål eller elemet Det fis (åtmistoe) två sätt skilja på olika situatioer: Ordat val: Det har betydelse vid vilket val föremålet väljs Ite ordat val: Det har ite ågo betydelse vid vilket val föremålet väljs. Ige upprepig: ett föremål ka väljas bara e gåg Upprepig möjlig: samma föremål ka väljas måga gåger. Atalet olika sätt på vilket detta ka göras blir därför: Ige upprepig Upprepig möjlig Ordat ( 1). (.. ) ( r + 1) ( r ) + r 1 Ite ordat r r ( ) m m! Här är = j j! (m j)!. Upprepig ka både tolkas så att ma väljer ett föremål, oterar vilket det är, och sätter tillbaka det, och så att elemete i mägde är de olika slag av föremål som ma ka välja. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19

9 Plocka bollar ur e låda eller sätta bollar i e låda? Ett aat sätt att se på situatioe där ma väljer r föremål ur e mägd med föremål (med ett ordat eller ite ordat val, med upprepigar eller uta) är att täka på föremåle i mägde, ite som bollar i e låda, uta som lådor i vilka ma väljer att placera ett föremål, tex. e boll, som i det ordade fallet ka vara umrerade eller på aat sätt idetifierbara och i det ite ordade fallet idetiska. Ett val uta upprepigar iebär då att i varje låda ka sättas högst e boll och ett val med upprepigar att flera bollar ka sättas i samma låda. I ett ordat val är det alltså ite ordige som är det viktiga, det avgörade att vale är olika på ågot aat sätt ä blad vilka föremål det görs, dvs. bollara som sätts i lådor är ite idetiska. Om ma seda på ågo sätt ordar de valda föremåle eller lådora i det ite ordade fallet har ige betydelse. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19 Atalet fuktioer A B Atag A = m och B =. Atalet fuktioer: A B is är m (och därför är det föruftigt att betecka mägde av fuktioer A B med B A ). Observera att e fuktio är ett ordat val med upprepigar av m elemet ur e mägd med elemet. Atalet ijektioer A B är ( 1)... ( m + 1) =! ( m)! m. Varför? Orda elemete i A och gör seda ett ordat val uta upprepigar av m elemet ur mägde B (som har elemet) så att de blir värdea av fuktioe. ( ) Atalet surjektioer A B är ( 1) r r m. r r=0 Varför? Atalet surjektioer är atalet fuktioer mius atalet fuktioer till e strikt delmägd av B och detta seare atal ka ma räka med hjälp av iklusios-exklusiospricipe vilket efter diverse räkigar ger formel ova. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19

10 Multiomialtal ( ) = 1, 2,..., k! 1! 2!... k! = k. Om ma har valt föremål med upprepigar frå e mägd med k elemet så att ma har tagit 1 av typ y 1, 2 av typ y 2 och så vidare, då är ( ) 1, 2,..., k atalet sätt på vilka dessa föremål ka ordas så att föremål av samma typ ite ka skiljas åt. Om A är e mägd med elemet och B = {y 1,..., y k } är e mägd med k elemet och 1, 2,..., k är icke-egativa tal så att k = så då är ( ) 1, 2,..., k atalet fuktioer f : A B så att { x A : f (x) = y j } = j. Om 0 och k 1 så är (x x k ) = k = j 0 ( 1, 2,..., k ) x x k k. G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2 oktober I / 19

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

= (1 1) + (1 1) + (1 1) +... = = 0

= (1 1) + (1 1) + (1 1) +... = = 0 TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistiksammafattig,

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell

Läs mer

Inledande kombinatorik LCB 2001

Inledande kombinatorik LCB 2001 Iledade kombiatorik LCB 2001 Ersätter Grimaldi 1.1 1.4, 3.1 (delvis) 1 Additios- och multiplikatiospricipera Kombiatorik hadlar om koste att räka atalet av saker och tig. Hur måga gåger geomlöpes e viss

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

Bertrands postulat. Kjell Elfström

Bertrands postulat. Kjell Elfström F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

Kontextfri grammatik (CFG)

Kontextfri grammatik (CFG) Kotextfri grammatik (CFG) Mats Dahllöf Ist. f ligvistik och filologi December 2015 1 / 23 Frasstrukturträd hud studt Aalys av de ord som häger lägst ed, hud studt. E graf med fler oder ä depdsaalys (fem

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P( Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett

Läs mer

Visst kan man faktorisera x 4 + 1

Visst kan man faktorisera x 4 + 1 Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Artificiell intelligens Probabilistisk logik

Artificiell intelligens Probabilistisk logik Probabilistiska resoemag Artificiell itelliges Probabilistisk logik Are Jösso HCS/IDA Osäkerhet Grudläggade saolikhetslära Stokastiska variabler Bayes teorem Bayesiaska ätverk Kostruktio Iferes Osäkerhet

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer? Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Stokastiska variabler

Stokastiska variabler TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning...

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning... Iehåll Grafräkare och diskret matematik...1 Vad hadlar diskret matematik om?...1 Permutatioer och kombiatioer...3 Något om heltalsräkig...4 Modulusoperator...4 Faktoriserig i primfaktorer...5 Talföljder...7

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

Operativsystem - Baklås

Operativsystem - Baklås Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK Versio 9 december 4 Fel i lösigara mottages tacksamt till mattsso@math.kth.se. Notera att lösigara på vissa ställe utyttjar adra,

Läs mer

CONSTANT FINESS SUNFLEX

CONSTANT FINESS SUNFLEX Luex terrassarkiser. Moterigs- och bruksavisig CONSTNT FINESS SUNFLEX 5 6 Markises huvudkopoeter och ått Placerig av kobikosol rklockor och justerig Parallelljusterig vädig och skötsel Huvudkopoeter och

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal TATM79: Föreläsig 3 Biomialsatse och omplexa tal Joha Thim augusti 016 1 Biomialsatse Ett miestric för att omma ihåg biomialoefficieter (åtmistoe för rimligt små är Pascals triagel: 0 1 1 1 1 1 1 3 1 3

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Digitalteknik F6. Några sammansatta digitala komponenter och lite designmetodik. Digitalteknik F6 bild 1

Digitalteknik F6. Några sammansatta digitala komponenter och lite designmetodik. Digitalteknik F6 bild 1 Digitaltekik F6 Några sammasatta digitala kompoeter och lite desigmetodik Digitaltekik F6 bild Sammasatta kompoeter Problem: E större kostruktio är praktiskt omöjlig att mauellt realisera med bara gridar.

Läs mer

Introduktion till etik (2)

Introduktion till etik (2) Itroduktio till etik (2) Niklas Möller (moller@kth.se) ETIKMOMENT DD1390 Dages program: Itroduktio till argumetatiosaalys Itroduktio till etiska teorier: q Kosekvetialism q Deotologi q Dygdetik Rullade

Läs mer

Grammatik för språkteknologer

Grammatik för språkteknologer Grammatik för språktekologer Språktekologi och grammatiska begrepp http://stp.ligfil.uu.se/~matsd/uv/uv11/gfst/ Mats Dahllöf Istitutioe för ligvistik och filologi November 2011 Dea serie Frasstrukturaalys

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

Hur månfa indianer...? och andra gåtor Lärarmaterial. Vad handlar boken om? Mål från Lgr 11: Att arbeta med gåtor. Lek med ord och bokstäver

Hur månfa indianer...? och andra gåtor Lärarmaterial. Vad handlar boken om? Mål från Lgr 11: Att arbeta med gåtor. Lek med ord och bokstäver Lärarmaterial sida 1 Författare: Keld Peterse Vad hadlar boke om? Här får ma täka till! Ka du lösa gåtora? Mål frå Lgr 11: Lässtrategier för att förstå och tolka texter samt för att apassa läsige efter

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160928, kl. 14.00 18.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Kombinatorik. Torbjörn Tambour 21 mars 2015

Kombinatorik. Torbjörn Tambour 21 mars 2015 Kombiatori Torbjör Tambour mars 05 Kombiatori är de del av matematie som sysslar med frågor av type På hur måga sätt a ma? Några gasa typisa exempel är följade: På hur måga olia sätt a åtta persoer bilda

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Konvexa funktioner. Axel Flinth N3CD Hvitfeldtska Handledare: Åke Håkansson

Konvexa funktioner. Axel Flinth N3CD Hvitfeldtska Handledare: Åke Håkansson Kovexa fuktioer x 1, x I t 0,1 : tf x 1 + 1 t f(x ) f(tx 1 + 1 t x ) Axel Flith 90103-3397 N3CD Hvitfeldtska 009-010 Hadledare: Åke Håkasso Sammafattig Dea uppsats behadlar begreppet kovexa fuktioer utifrå

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer