Universitetet: ER-diagram e-namn
|
|
- Mona Jansson
- för 8 år sedan
- Visningar:
Transkript
1 Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig Lagra samma data flera ggr i oöda Ite kua lagra viss iformatio Otydlig betydelse av e tupel som ka komma frå otydlig betydelse av etitetsistas tel.r. pr koto e- Uiversitetet: ER-diagram e- f- tjästerum f- studet aställd e-post 1 ast.r löse m reg. på hålls av jobbar på betyg kurskod 1 läsperiod kurs asv. av 1 istitutio 1 driver projekt år poäg adress tidspla budget Relatiosmodell Uiversitetet Studet (pr, e-, f-, epost, koto, löse) Kurs (, kurskod, läsår, period, poäg, kursasv, istitutio) Aställd (f-, e-, astummer, rum, telefo, istitutio) Istitutio (, adress) Projekt(istitutio,, tidspla, budget) RegistreradPå (studetpr, kursr, läsår, betyg)
2 Relatioe kurs (exempel) Problem med kurs Kurskod År Nam Läsperiod Poäg Kursasvarig As vist 732G Databaser vt2 7.5 Eva Ragemalm IDA 729G Databaser ht2 7.5 Eva Ragemalm IDA 732G Databaser vt2 7.5 Eva Ragemalm IDA 732G Databaser vt2 7.5 Magus Igmarso IDA HIBB Databaser Vt1 5 Magus Igmarso IDA TSEA Datorgrafik HT2 6 Igemar Ragemal ISY Samma, poäg och istitutio återkommer: redudas Tar plats. Uppdaterigsaomali Isättigsaomali Borttagigsaomali Otydlig tolkig Hur udvika redudas? Normaliserig 1:a Normalform E metod att fia redudas Normaliserigs-villkor: ormalformer Begrepp: fuktioella beroede kom ihåg: ycklar och primattribut iformatiosbevarade relatiosschemauppdelig Alla attribut ska vara atomära (odelbara) Relatiosmodelle atar att alla attribut är odelbara. 2:a ormalform, 3:e ormalform, BCNF baseras på Fuktioella beroede i relatioe.
3 Fuktioellt beroede X är e delmägd av attribute i e relatio. Om X etydigt bestämmer värdet på ett attribut Y, kallas det att Y är fuktioellt beroede av X eller att X bestämmer Y. X Y X kallas determiat i det fuktioella beroedet. Exempel För ycklar fis alltid fb till alla attribut i hela relatioe: ex: Studet {pr} {e-} {pr} {f-} {pr} {koto} {pr} {epost} {pr} {löse} me äve: {pr} {pr} {koto} {pr,e-,f-,epost,koto,löse} {epost} {pr,e-,f-,epost,koto,löse} Fuktioella beroede, forts Fullt fuktioellt beroede Fuktioella beroede baseras på relatioes sematik. Ett fb ska gälla i alla möjliga istaser av database OBS: Att det fis ett fb X Y betyder ite att det fis ett fb Y X Givet X Y. Om iget attribut ka tas bort ur X uta att vi förlorar det fuktioella beroedet (dvs X är miimal), kallas det fullt fuktioellt beroede, ffb ex: Kurs (, kurskod, läsår, period, poäg, kursasv, istitutio) {kurskod, läsår} {kursasv} FFB {kurskod, läsår} {poäg} Ej FFB för e kurs får ite ädra poäg hur som helst
4 Fullt fuktioellt beroede, forts exemplet kurs {kurskod} {poäg} FFB Ett attribut (poäg) är ej FFB av yckel Adra FFB i Kurs: {kurskod} {} FFB {kurskod} {istitutio} FFB OBS att verklighete styr Adra ormalforme - 2NF Defiitio: Ett relatiosschema R är i 2NF om det är i 1:a ormalform och varje icke-primattribut A i R är FFB av varje kadidatyckel i R. Fråga: Är alla attribut som ite är primattribut FFB av alla kadidatycklar? Exempel 2NF Exemplet kurs Relatioe Studet (pr, e-, f-, epost, koto, löse) Har FFB: {pr} {e-, f-, löse} {koto} {e-, f-, löse} {epost} {e-, f-, löse} Kurs (, kurskod, läsår, period, poäg, kursasv, istitutio) {kurskod, läsår} {kursasv} FFB {kurskod, läsår} {läsperiod} {kurskod} {poäg} {kurskod} {} {kurskod} {istitutio} Uppfyller ej 2NF FFB FFB FFB FFB
5 Relatiosschemauppdelig Lyft ut det/de problematiska fuktioella beroedet/a till e ege tabell Exempel: Kurs (kurskod,, poäg, istitutio) KursÅr(kurskod, läsår, kursasv, läsperiod) iformatiosbevarade? Iformatiosbevarade relatiosschemauppdelig Om vi delar upp e relatio R i relatioera R1 och R2 så kallas uppdelige iformatiosbevarade om R1 * R2 iehåller samma iformatio som R. * = aturlig sammasättig Varke mer eller midre aturlig sammasättig Sammasättig av relatioer e operatio frå relatiosalgebra. R VS varje tupel i relatioe R kombieras med varje tupel ur S och de där villkoret V är uppfyllt blir resultatet Iformatiosbevarade relatiosschemauppdelig, exempel Perso(Pr,Nam,Adress) med fuktioella beroede: Pr Nam, Pr Adress, ite Nam Adress ex: studet kurs kurs=kurskod Naturlig sammasättig: R*S varje tupel i R kombieras med varje tupel ur S och de där de attribut som har samma i R och S har samma värde, väljs ut. pr Adress Aa Ågata Aa Rydsv.12 pr Aa Aa Adress Aa Ågata 3 Aa Rydsv.12
6 Exempel Exempel, forts E firma som admiistrerar adrahadsuthyrig av lägeheter vill hålla reda på kotraktisiformatioe. Ma vill hålla reda på vem hyr vad (kud, kudummer, lägehetsummer, lägehetsadress) är (start och slutdatum) samt till vilke hyra (som är olika för varje lägehet). De lagrar också iformatio om vem som egetlige äger lägehete. För tills vidare -kotrakt registreras slutdatum som ull. Varje perso atas bara hyra varje lägehet e gåg och ka bara hyra e lägehet åt gåge. E ägare ka dock låta firma hatera flera lägeheter. Möjlig relatiosmodell: Kotrakt(kudNr, lghnr, knam, lghadr, start, slut, hyra, ägarnr, änam) Exempel, forts Exempel, forts 1:a ormalform? 2:a ormalform? Fuktioella beroede? Kotrakt(kudNr, lghnr, knam, lghadr, start, slut, hyra, ägarnr, änam) Fb1, 5 och 6 visar kadidatycklara: {kudnr, lghnr}, {lghnr, start} samt {kudnr, start} Primattribut? kudnr, lghnr, start Det iebär att följade attribut är icke-primattribut: knam, lghadr, slut, hyra, ägarnr, änam 2NF?
7 Exempel, forts Dela upp relatioe så att de problematiska beroedea får e ege relatio. Kud(kudNr, knam) Lgh(lghNr, lghadr, hyra, ägarnr, änam) Hyra(kudNr, lghnr, start, slut) Är dessa i 2NF? Är iformatioe bevarad? Övig på iformatiosbevarade relatiosschemauppdelig Kud Lgh Kud Lgh Start Slut Hyra Ägar Ägar r Nr Nam Adr Nr Nam CR76 PG4 J.Kay Lagv CO40 T.Moe CR76 PG16 J.Kay Nyv ull 3500 CO93 U.Si CR56 PG4 A.So Lagv ull 3200 CO40 T.Moe CR56 PG35 A.So Husg CO93 U.Si CR56 PG16 A.So Nyv CO93 U.Si Tredje ormalform - 3NF Defiitio: Ett relatiosschema R är i 3NF om det är i 2NF och det för varje FFB X A som fis i R, gäller ågot av följade villkor: a) X är e superyckel för R b) A är ett primattribut i R Fråga för 3NF: För varje beroede: är X e superyckel eller Y ett primattribut? Dela upp ige. Exempel (3NF) LghIfo(lghNr, lghadr, hyra, ägarnr) Ägare (ägarnr, änam) Kud(kudNr, knam) Hyra(kudNr, lghnr, start, slut) Är dessa i 3NF?
8 Boyce-Codd ormalform - BCNF Ett relatiosschema R är i BCNF om det är i 3NF och för varje beroede X A som fis i R, X är e superyckel för R. Dvs alla determiater är atige e kadidatyckel eller iehåller e (hel). Fråga för BCNF: är varje determiat e superyckel? Exempel (BCNF) Fråga för BCNF: är varje determiat e superyckel? LghIfo(lghNr, lghadr, hyra, ägarnr) Ägare (ägarnr, änam) Kud(kudNr, knam) Hyra(kudNr, lghnr, start, slut) 3NF/BCNF Ytterligare exempel Ite alltid möjligt att trasformera ett schema till BCNF och behålla beroedea. 3NF har de flesta av BCNF s fördelar. Det är ite självklart att ma måste uppfylla BCNF. OBS: 3NF tillåter ågo sorts redudas som BCNF ite gör (fuktioella beroede mella primattribut). Atag att uthyrigsfirma ispekterar varje lägehet mella uthyrigara och oterar brister och problem. När ispektio ska göras rekvirerar ma e bil som aväds uder dage. E bil ka dock avädas av flera persoer uder samma dag, me e ispektör bokar samma bil hela dage. E ispektör ka ispektera flera lägeheter uder samma dag, me varje lägehet ispekteras edast e gåg e viss dag.
9 Ispektios Tid Kommetar Ispektör Ispektör BilNr datum Nr Nam Ispektios Tid Kommetar Ispektör Ispektör BilNr Trasigt prosli SG37 A Beech ABC123 datum Nr Nam Fit SG14 David Ford DEF Trasigt prosli SG37 A Beech ABC Mögel i badrum SG14 David Ford ABC Fit SG14 David Ford DEF Slitet bord i kök SG14 David Ford ABC123 Exempel på rapport Det fis alltså ett (eller flera) sådaa rapportformulär per lägehet. Lägehetsummer: PG4 Lägehetsadress Studetv 8 Nollköpig Fuktioella beroede? Exempel, forts. Facit: lgh(lghnr, lghadr) persoal(pnr, pnam) ispektio(lghnr, idatum, itid, kommetar, pnr) persobil(pnr, idatum, bil)
Universitetet: ER-diagram e-namn
Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig
Universitetet: ER-diagram
Databaser Design och programmering Fortsättning på relationsmodellen: Normalisering funktionella beroenden normalformer informationsbevarande relationsschemauppdelning Varför normalisera? Metod att skydda
Databaser - Design och programmering. Databasdesign. Funktioner. Relationsmodellen. Relationsmodellen. Funktion = avbildning (mappning) Y=X 2
Databaser Desig och programmerig Relatiosmodelle Databasdesig Förstudie, behovsaalys defiitioer ER-modell -> relatiosmodell ycklar Relatiosmodelle Itroducerades av Edward Codd 1970 Mycket valig Stödjer
Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:
Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS
Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering
Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell
Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering
Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad
Databaser Design och programmering
Databaser Design och programmering Fortsättning på relationsmodellen: Normalisering funktionella beroenden normalformer informationsbevarande relationsschemauppdelning 2 Varför normalisera? Metod att skydda
Databasteori. Övningar
Databasteori Övningar Erik Prytz Uppdaterad november 2014, november 2015 Eva L. Ragnemalm November 2009, uppdaterad april 2010 Kapitel 1: ER- modellering Skapa ER- diagram för nedanstående övningar (läs
Databasteori Övningar
Databasteori Övningar Eva L. Ragnemalm November 2009, uppdaterad april 2010 Kapitel 1: ER-modellering Skapa ER-diagram för nedanstående övningar (läs om ERmodeller i boken) 1. Universitetet (Detta är samma
Databasteori Övningar
Databasteori Övningar Eva L. Ragnemalm November 2009, reviderad augusti 2016 Kapitel 1: ER-modellering Skapa ER-diagram för nedanstående övningar (läs om ERmodeller i boken). Övningarna kräver inte EER-komponenter.
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Jag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Systemdesign fortsättningskurs
Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Tentamen 19 mars, 8:00 12:00, Q22, Q26
Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator
Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret
KOM IHÅG ATT NOTERA DITT TENTAMENSNUMMER NEDAN OCH TA MED DIG TALONGEN INNAN DU LÄMNAR IN TENTAN!!
Göteborgs uiversitet Psykologiska istitutioe Tetame Psykologi kurskod PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC 145. Tid för tetame: 6/5-01. Hel och halvfart VT 1. Provmomet: Socialpsykologi
RESTARITMETIKER. Avsnitt 4. När man adderar eller multiplicerar två tal som t ex
Avsitt 4 RESTARITMETIKER När ma adderar eller multiplicerar två tal som t ex 128 + 39..7 128 43..4 så bestämmer ma först de sista siffra. De operatioer som leder till resultatet kallas additio och multiplikatio
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.
Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.
1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Björkduge (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 1-2 22% 3-4 50% 5-6
Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad
Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska
DEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.
Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.
Databasteori. Övningar
Databasteori Övningar Eva L. Ragnemalm November 2009, reviderad 2012, 2014, augusti 2016, mars 2017 Observera: det finns inget facit till dessa övningar, eftersom många går att lösa på flera sätt, mer
(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.
1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
Databaser - Design och programmering. Relationsmodellen. Relationer - som tabeller. Relationer som tabeller. Alternativa notationer: Relationsschema
Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Relationsmodellen Introducerades av Edward Codd 970 Mycket vanlig Stödjer kraftfulla
Ny lagstiftning från 1 januari 2011
Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q
AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol.
Välj att flytta dia Utyttja di flytträtt om du ka. Det är Privata Affärers råd u är regeriges tillfälliga flyttstopp hävs de 1 maj. Flyttstoppet ifördes i februari i fjol som e direkt följd av Damarksmålet.
Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1
Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION
Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik
03-0-4 F4 Matematirep Summatece Summatecet Potesräig Logaritmer Kombiatori Säg att vi har styce tal x,, x Summa av dessa tal (alltså x + + x ) srivs ortfattat med hjälp av summatece: x i i summa x i då
Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.
KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Vid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Databasteori. Övningar
Databasteori Övningar Eva L. Ragnemalm November 2009, senast reviderad mars 2018 Observera: det finns inget facit till dessa övningar, eftersom många går att lösa på flera sätt, mer eller mindre olika.
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Skogshydda (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? Atal svarade: 21 0% 10% 1 20% 2 30% 3 40% 4 50% 5 1-2 19%
Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Operativsystem - Baklås
Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes
Kontrakt baserad design. Design by contract
Kotrakt baserad desig Desig by cotract Motiverig Objekt ka valige ite avädas på ett godtyckligt sätt Metoder ska aropas med vissa parametervärde I rätt ordig Svårt att veta hur ett objekt ka avädas uta
Allmänna avtalsvillkor för konsument
Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras
Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion.
Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Programdesign, databasdesign Databasdesign Konceptuell design Förstudie, behovsanalys
Digital signalbehandling Alternativa sätt att se på faltning
Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],
NORMALISERING. Mahmud Al Hakim
NORMALISERING Mahmud Al Hakim mahmud@webacademy.se 1 SCHEMA Schema eller databasschema är en beskrivning av vilka data som kan finnas i en databas, oberoende av vilka data (innehållet) som råkar finnas
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen
Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem
Förfrågan till Klockarens redaktörer
Förfråga till Klockares redaktörer 1. Hur öjd är du med Klockare? Ge Klockare ett geerellt vitsord. Atal svarade: 29 1 2 3 4 5 6 7 8 9 10 Totalt Medelvär Usel 1 0 2 1 2 5 5 9 3 1 Utmärkt 29 6,72 3,45%
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Kundundersökning Kommuninfo/ Kuntainfo: Enkät om kommunens informationsverksamhet
Kududersökig 2017 Kommuifo/ Kutaifo: Ekät om kommues iformatiosverksamhet 1. Udersökiges bakgrud och syfte Eligt Larsmos budget för år 2017 skall kommue årlige rikta e ekät till kuder eller kommuivåare
Konceptuella datamodeller
Databasdesign Relationer, Nycklar och Normalisering Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Konceptuella datamodeller Om man ska skapa en databas som beskriver en del av verkligheten
Många tror att det räcker
Bästa skyddet Måga vet ite hur familje drabbas ekoomiskt om ågo dör eller blir allvarligt sjuk. Här berättar Privata Affärer vilket skydd du har och hur du ka förbättra det. Av Aika Rosell och Igrid Kidahl
Resultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken.
Kommetarer till Christer Nybergs bok: Mekaik Statik Kommetarer kapitel 2 Sida 27 Resultatet av kryssprodukte i exempel 2.9 ska vara följade: F1 ( d cos β + h si β ) e z Det vill säga att lika med tecket
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.
Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade
Karlstads Universitet, Datavetenskap 1
DAV B04 - Databasteknik KaU - Datavetenskap - DAV B04 - MGö 1 Normalisering Förut sunt förnuft Nu formell metod riktlinjer för att hjälpa till att gruppera attributen (egenskaperna) för varje relation
GÖTEBORGSSTUDENTER 2012
Uiversitetsövergripade resultatredovisig: Tabellsammaställig, frekveser GÖTEBORGSSTUDENTER 2012 ANALYS OCH UTVÄRDERING maj 2013 1. Hade du ågo arbetslivserfarehet ia du påbörjade dia studier vid Göteborgs
IAB Sverige Juni 2017
+ IAB Sverige Jui 2017 Realtidsstudie med sveska Mediebyråer E realtidsstudie av Native Advertisig i Sverige IAB Sverige har tillfrågat sveska mediebyråer om Native Advertisig. + Vad har vi gjort? IAB
Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed
Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område
Anvisningar för inrättande av utbildningsprogram vid Humanistiska fakulteten
Humaistiska fakultete BESLUT 1 / 5 2013-12-19 dr G 2013/558 Avisigar för irättade av utbildigsprogram vid Humaistiska fakultete Beslutsgåg Irättade av utbildigsprogram beslutas av fakultetsstyrelse efter
Digital signalbehandling Fönsterfunktioner
Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers
Räkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Sannolikhetslära statistisk inferens F10 ESTIMATION (NCT )
Stat. teori gk, vt 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlita till NCT Iferece Slutledig, ifere Parameter Parameter Saolikhetlära tatitik ifere Hittill har vi ylat med aolikhetlära. Problem av type:
Applikationen kan endast användas av enskilda användare med förtroenderapportering.
Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.
Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Enkät inför KlimatVardag
1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara
Tentamen Metod C vid Uppsala universitet, , kl
Tetame Metod C vid Uppsala uiversitet, 160928, kl. 14.00 18.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark
Jag läser kursen på. Halvfart Helfart
KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig
TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10
KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade
Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
Kommunstyrelsens planutskott
KALLELSE/ FÖREDRAGNINGSLISTA 1(2) Reviderad 8 jui 2015 Kommustyrelses plautskott Tid Tisdage de 9 jui 2015 kl. 10:00 Plats KS-sale, stadshuset Eligt uppdrag Aette Mellström Föredragigslista Val av protokollsjusterare
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Återanvändning. Två mekanismer. Nedärvning av egenskaper (inheritance) Objekt komposition
Iheritace Återavädig Två mekaismer Nedärvig av egeskaper (iheritace) Objekt kompositio A A +a +b B B Iheritace Återavädig geom att skapa subklasser kallas ofta white box reuse Ekelt att aväda Relatioe
Grammatik för språkteknologer
Grammatik för språktekologer Språktekologi och grammatiska begrepp http://stp.ligfil.uu.se/~matsd/uv/uv11/gfst/ Mats Dahllöf Istitutioe för ligvistik och filologi November 2011 Dea serie Frasstrukturaalys
IAB Sverige Juni 2017
+ IAB Sverige Jui 2017 Realtidsstudie med Aosörer E realtidsstudie av Native Advertisig i Sverige IAB Sverige har tillfrågat sveska aosörer om Native Advertisig. + Vad har vi gjort? IAB Sverige Task Force
TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar
TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan
Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med
Fakta om plast i havet
SIDAN 1 Lärarmaterial VAD HANDLAR BOKEN OM? Boke hadlar om att vi mäiskor måste fudera över all plast som vi aväder. Vad häder med plaste är vi har avät de? I boke får vi lära oss varför plaste är farlig
Kontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus
Kotrollsrivig till Disret Matemati SF60, för CINTE, vt 09 Eamiator: Armi Halilovic Datum: To 09-04-5 Versio B Resultat: Σ p P/F Etra Bous Iga hjälpmedel tillåta Mist 8 poäg ger godät Godäd KS r medför
= (1 1) + (1 1) + (1 1) +... = = 0
TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd