Digital signalbehandling Alternativa sätt att se på faltning
|
|
- Ulla Sundström
- för 6 år sedan
- Visningar:
Transkript
1 Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [], som är käd vid ett atal tidpukter, oc e ekvatio, som beskriver ett sstem via e differesekvatio [] eller ett impulssvar [], bestämma sstemets utsigal vid samma tidpukter. Faltig ages av smbole * me jag väljer att i stället aväda smbole för att ite blada iop de med multiplikatio. Faltige beskrivs ret allmät av uttrcket [] x[] [] x[] k [ k] x[ k] [] k k där x [] är sstemets isigal oc [] är sstemets impulssvar. För att komma vidare så får vi titta lite på impulssvar först. Impulssvar Ett sstems impulssvar, som skrivs [], består av sstemets utsigal då dess isigal är e impuls δ [], dvs e sigal som är ett vid tide oc oll vid alla adra tider. Ka vi beskriva vårt sstem som ett icke-rekursivt sstem, dvs ett sstem där utsigale bara beror av uvarade oc fördröjda variater av isigale (vi begräsar oss till kausala sstem så sigaler framåt i tide ka ite förekomma) så blir övergåge frå differesekvatio till impulssvar ekel. Eftersom isigale x [] u är e impuls δ [] så är det bara att överallt i differesekvatioe bta x[ ] mot δ [ ], där är de aktuella termes fördröjig (som ka vara oll). Har vi t ex ett sstem som beskrivs av differesekvatioe [],8 x[] x[ ] +,5 x[ 2] så får sstemet impulssvaret CHALMERS LINDHOLMEN Sida Istitutioe för data- oc elektrotekik Sve Kutsso Box Göteborg Besöksdress: Hörselgåge 4 Telefo: Fax: svek@cl.calmers.se Web: svek
2 [],8 δ [] δ [ ] +,5 δ [ 2] e ekvatio som direkt ger oss utsigales värde vid olika tidpukter. Har vi ett rekursivt sstem så blir det lite mer komplicerat. Om vi tar sstemet [],8 x[] x[ ] +,5 [ ] me detta är ju utsigale vid föregåede sampligstillfälle, dvs i det är fallet impulssvaret vid föregåede sampligstillfälle oc vi ka skriva impulssvaret så ieåller dea ekvatio de a terme [ ] [ ] [ ],8 δ [ ] δ [ ] +,5 [ ] Här får vi ite direkt utsigales värde vid olika tidpukter, eftersom utsigale (impulssvaret) beror av tidigare utsigaler så får vi beräka utsigale tidpukt för tidpukt oc aväda föregåede beräkigsresultat vid ästa beräkig. Impulssvarets betdelse Impulse, som är e kort isigal vid e eda tidpuk (), aväds som vi sett ova för att beskriva ur ett sstem reagerar på e kort störig. Vi ka täka oss att sstemet svarar på störige (impulse) geom att uder e (lägre eller kortare) tid läma sitt viloläge (utsigal oll) för att seda återgå till viloläget. Beroede på sstemets sabbet ka avvikelse bli kort- eller lågvarig, återgåge ka atige ske mootot, dvs återgå uta extra svägar eller ske som e isvägig där utsigale pedlar rut viloläget ia de lägger sig i vila. Vi ka också täka oss att utsigale aldrig återgår till ursprugsläget uta amar på e ivå då sstemet åter är i vila, vi ar då fått ett kvarståede fel. Ett tredje alterativ är att utsigale ite går mot e kostat ivå (oll eller ivå) uta får e kvarståede självsvägig eller att vi får e utsigal som växer okotrollerat till dess de bottar sstemet. [] [] [] [] [] Digital sigalbeadlig Alterativa sätt att se på faltig sida 2
3 I sigalbeadligssammaag ka vi täka oss sstem av de första tpe vars sigal återgår till viloläget efter impulse oc sstem som självsväger eller ger okotrollerad utsigal. Det första sstemet sägs vara stabilt meda de två seare ssteme är istabila. I de allra flesta fall kräver vi att våra sstem skall vara stabila. Vi ka täka oss att söka sstem som självsväger för att få e form av digital oscillator me istabila sstem med växade impulssvar vill vi absolut ite a, vem vill a ett bottade sstem? Om vi ser på ett icke-rekursivt sstem så visar impulssvaret att ett sådat sstem alltid är stabilt. Detta beror på att vi är bara ar uvarade oc fördröjda variater av isigale oc är är dea alltså bara e etta vid tide oc efter e tid ar dea etta vadrat igeom alla fördröjigar av isigale oc försvuit ur sstemet, dvs utsigale ar återgått till att vara oll. För ett rekursivt sstem ar vi däremot e eller flera fördröjda variater av utsigale som återkopplas oc aväds i seare beräkigar av impulssvaret. Dessa återkoppligar ka ge självsvägig oc växade utsigal, dvs vi ka är få istabila sstem. Vi ka med uvarade kuskaper ite ge ågot riktigt svar på villkoret för att sstemet skall bli stabilt, vi ka dock ise att det måste bero på storleke oc tecket os de kostater som vi multiplicerar de återkopplade, fördröjda utsigalera med. Vi ka ge ett svar agåede sstemets stabilitet är vi ar studerat z-trasforme oc poler oc ollställe i z-polaet i kapitel 4. För ett första ordiges rekursiva sstem som bara ar de fördröjda utsigale [ ] är det dock rätt lätt att ise att kostate måste a ett belopp midre ä ett (se uppgift Q.2 i L/Fuerst). Stegsvar E aa form av testsigaler är eetssteg oc sstemets utsigal kallas då stegsvar. Ett eetssteg är e sigal som är oll före tide me frå dea tid blir ett oc seda ligger kvar på dea ivå i fortsättige, i alla fall så läge vi studerar sstemet. Sigale aväds för att testa ur ett sstem reagerar på e plötslig förädrig av dess isigal. För ett reglersstem så iebär det att vi plötsligt ädrar sstemets så kallade börvärde, vi talar t ex om för ett ivåsstem att vätskeivå skall öjas frå tre till fra eeter eller vi ager för e ug att temperature skall öjas med grader. Stegsvarets iebörd Stegsvaret visar då ur sstemet reagerar på de plötsliga ädrige av isigale. Reaktioe är oftast gaska sarlik vad vi ova beskrev för impulssvar. Vi ka få e mooto ädrig till de a ivå eller e isvägig mot ivå. Vi ka äve få självsvägig oc växade utsigal, dvs istabila sstem. Ädrige av isigale ka också ge e utsigal som reagerar på förädrige me seda återgår till ursprugsläget i vila, vi ar då ett sstem av ögpasskaraktär som ite reagerar på de a ivå, som är e likspäig (om det är e elektrisk sigal), uta bara reagerar på de plötsliga förädrige, flake, som är ögfrekvet. Vi ka ställa olika krav på ur utsigale skall uppföra sig. Tar vi det tidigare exemplet med temperaturöjige i uge så gör det og iget om sigale pedlar över oc temperature blir lite för ög oc seda sväger i mot rätt ivå om ssslar med att baka bröd. Översväge ka däremot få avgörade följder om vi t ex ssslar med bräig av keramik av ög kvalité. Digital sigalbeadlig Alterativa sätt att se på faltig sida 3
4 Metoder för faltig Vi kommer är att titta på ågra olika metoder för att lösa faltigsuppgifter oc via de olika metodera försöka få e förståelse vad faltig är. Eftersom isigalera impuls oc eetssteg bara är specialfall av isigaler så fugerar metodera äve för beräkigar av impulsoc stegsvar. Vi illustrerar metodera med exempel oc eftersom icke-rekursiva oc rekursiva sstem kräver lite olika beadlig så kommer vi att se på ett exempel av varje tp. Vi aväder de sstem som agivits ova alltså det icke-rekursiva sstemet [],8 x[] x[ ] +,5 x[ 2] oc det rekursiva sstemet [],8 x[] x[ ] +,5 [ ] Vi aväder i båda falle isigale x [],6 δ [] +,5 δ [ ],4 δ [ 2] +,2 δ [ 3] Tabellmetode Metode fis preceterad i stecile Ett ratioellt sätt att beräka faltig oc vi preseterar bara lösige uta att gå i på metode ige. Icke-rekursivt exempel,8 -,5 x[] x[-] x[-2] [] -2 -,6,48,5,6 -,2 2 -,4,5,6 -,52 3,2 -,4,5,6 4,2 -,4 -,4 5,2,6 6 Digital sigalbeadlig Alterativa sätt att se på faltig sida 4
5 Rekursivt exempel,8 -,5 N x[] x[-] [-] [] -,6,48,5,6,48,4 2 -,4,5,4 -,8 3,2 -,4 -,8,96 4,2,96 -,72 5 -,72 -,36 6 -,36 -,8 Grafisk metod Här ritar vi upp sstemets blockscema oc låter isigale vadra i i detta tidpukt för tidpukt oc beräkar utsigale allt eftersom. Vi ka öja oss med att rita e figur om vi skriver upp våra sigalvärde i tabeller i dea. Icke-rekursivt exempel x[],6,5 -,4,2,6,5 -,4,2 Z - Z -,6,5 -,4,2,8 -,5,48,4 -,32,96 + +,3,25 -,2,6 -,6 -,5,4 -,2,48 -,2 -,52,6 -,4,6 [] -,6 -,2,65 -,4,6 Digital sigalbeadlig Alterativa sätt att se på faltig sida 5
6 Rekursivt exempel,6,5 -,4,2 x[],8,48,4 -,32,96,48 -,2 -,82,36 -,2 + + Z - Z - -,5,48,4 -,8,96 -,72 -,36 [],6,5 -,4,2 -,6 -,5,4 -,2,24,2 -,4,48 -,36,48,4 -,8,96 -,72 Superpositio av impulssvar Oberoede av ur vår isigal ser ut så ka vi betrakta de som ett atal impulser med olika skalfaktorer oc fördröjigar. Eftersom vi jobbar med lijära tidsivariata sstem (LTI) så ka vi beadla var oc e av dessa delsigaler var för sig. Eftersom varje isigal u är e impuls så kommer dess resulterade utsigal att vara likada som sstemets impulssvar me då skalat med de aktuella impulses skalfaktor oc fördröjd lika måga steg som de aktuella iimpulse är fördröjd. Vi beräkar alltså respektive utsigal för att seda beräka de totala utsigale som summa av dessa utsigaler tidpukt för tidpukt. I våra exempel ar vi isigale x [],6 δ [] +,5 δ [ ],4 δ [ 2] +,2 δ [ 3] Vilket alltså ger de fra isigalera x x x x 3 [],6 δ [] [],5 δ [ ] [],4 δ [ 2] [],2 δ [ 3] 2 4 Icke-rekursivt exempel Sstemet ar impulssvaret (se ova) [],8 δ [] δ [ ] +,5 δ [ 2] Digital sigalbeadlig Alterativa sätt att se på faltig sida 6
7 x [] ger då detta impulssvar me skalat med faktor,6 [],48 δ [],6 δ [ ] +,3 δ [ 2] x 2 [] ger ett ett steg fördröjt impulssvar med skalfaktor,5 [],4 δ [ ],5 δ [ 2] +,25 δ [ 3] 2 x 3 [] ger ett två steg fördröjt impulssvar med skalfaktor -,4 [],32 δ [ 2] +,4 δ [ 3],2 δ [ 4] 3 oc till slut ger x 4 [] ett tre steg fördröjt impulssvar med skalfaktor,2 [],96 δ [ 3],2 δ [ 4] +,6 δ [ 5] 4 Vi ka ställa upp e tabell för att beräka de tota,a utsigale [] 2 [] 3 [] 4 [] [] -,48,48 -,6,4 -,2 2,3 -,5 -,32 -,52 3,25,4,96,6 4 -,2 -,2 -,4 5,6,6 6 Rekursivt exempel Vi ka aväda resoemaget frå ova äve är me vi ser väl ite impulssvaret lika ekelt uta vi får börja med att bestämma detta oc vi ställer upp e tabell för detta,8 -,5 x[] x[-] [-] [] -,8,8 -,6 2 -,6 -,3 3 -,3 -,5 4 -,5 -,75 5 -,75 -, ,375 -,875 Samma resoemag som ova ger då edaståede tabell för utsigale Digital sigalbeadlig Alterativa sätt att se på faltig sida 7
8 [] 2 [] 3 [] 4 [] [] -,48,48 -,36,4,4 2 -,8 -,3 -,32 -,8 3 -,9 -,5,24,96,96 4 -,45 -,75,2 -,72 -,72 5 -,225 -,375,6 -,36 -,36 6 -,25 -,875,3 -,8 -,8 Istegig av sigal i impulssvar Äve detta är e grafisk metod som ar vissa liketer med de ova beskriva metode med istegig av sigale i blockscemat. Metode är ekelt tillämpbar bara på icke-rekursiva sstem. Vi ritar upp sstemets impulssvar i ett diagram oc ritar för varje tidpukt i isigale i ett aat diagram där vi ser till att de två diagramme ar respektive tidpukt () uder varadra oc vi ka få resultatet geom att multiplicera iop isigalsfaktor med si impulssvarsfaktor oc summera produktera. Då vi ritar isigale på detta sätt så får vi spegelväda de så att e sigal som kommer vid tidpukt ett kommer till väster om sigale vid tidpukt oll etc. Icke-rekursivt exempel Vi ar bestämt sstemets impulssvar ova till [],8 δ [] δ [ ] +,5 δ [ 2] Vi börjar med situatioe direkt ia ågot äder dvs vid - [] - - x[] Digital sigalbeadlig Alterativa sätt att se på faltig sida 8
9 Vid tidpukte börjar vi så stega i sigale i impulssvaret oc får då vid dea tidpukt [] [],8,6 + ( ),48 +,5 - x[] Vi går vidare till oc får [],8,5 + ( ),2,6 +,5 [] - x[] 2 ger [] 2,8 (,4) + ( ),52,5 +,5,6 [] 2 - x[] Digital sigalbeadlig Alterativa sätt att se på faltig sida 9
10 3 ger [] 2,8,2 + ( ) (,4),6 +,5,5 [] 3 - x[] 4 [] 4,8 + ( ),2 +,5 (,4),4 [] - x[] 5 [] 5,8 + ( ),6 +,5,2 [] - x[] Digital sigalbeadlig Alterativa sätt att se på faltig sida
11 6 [] 5,8 + ( ) +,5 [] 6 - x[] Digital sigalbeadlig Alterativa sätt att se på faltig sida
3 Signaler och system i tidsplanet Övningar 3.1 Skissa följande signalers tidsförlopp i lämpligt tidsintervall
Sigaler och sstem i tidsplaet. Skissa följade sigalers tidsförlopp i lämpligt tidsitervall a) 0 6 [ ] b) [ ] c) 07 [ ] 0 [ ] d) u [ ] e) 06u[ ] u[ ] [ ] f) r [ ] 0 r[ ] r[ ] r[ 6] 0 r[ 8] g) 08 cos π h)
Digital signalbehandling Fönsterfunktioner
Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers
Digital signalbehandling Digital signalbehandling
Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso
Genomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Andra ordningens lineära differensekvationer
Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom
Föreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser.
Lasse Björkma 999 . Rita följade tidssekveser. a) δ e) u b) δ f) u u c) δ + δ g) u d) u h) u. Givet tidssekvese x i edaståede figur. Rita följade tidssekveser. a) x c) x b) x + 3 d) x 3. Givet tidssekvesera
7 Sjunde lektionen. 7.1 Digitala filter
7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas
Kompletterande kurslitteratur om serier
KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du
Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)
Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit
Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Digital signalbehandling fk Talrepresentation och inverkan av begränsad ordlängd
Istitutioe för data- och elektrotekik 999--9 Talrepresetatio och iverka av begräsad ordlägd Iledig Eftersom register och miesareor i e processor har ett begräsat atal bitar så måste äve de tal som lagras
Introduktion till statistik för statsvetare
"Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I
MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober
ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a
POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio
Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 5/11 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10 2 8
101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Föreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje
Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Räkning med potensserier
Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som
Armin Halilovic: EXTRA ÖVNINGAR
Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
RESTARITMETIKER. Avsnitt 4. När man adderar eller multiplicerar två tal som t ex
Avsitt 4 RESTARITMETIKER När ma adderar eller multiplicerar två tal som t ex 128 + 39..7 128 43..4 så bestämmer ma först de sista siffra. De operatioer som leder till resultatet kallas additio och multiplikatio
Uppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1
Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION
Lösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(
Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då
x 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.
Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk
Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL
Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade
Operativsystem - Baklås
Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes
(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?
Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt
4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Resultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken.
Kommetarer till Christer Nybergs bok: Mekaik Statik Kommetarer kapitel 2 Sida 27 Resultatet av kryssprodukte i exempel 2.9 ska vara följade: F1 ( d cos β + h si β ) e z Det vill säga att lika med tecket
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Björkduge (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 1-2 22% 3-4 50% 5-6
b 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Visst kan man faktorisera x 4 + 1
Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp
Befolkning per födelseland Reviderad metod vid framskrivningar. Version: 2
Befolkig per födelselad Reviderad metod vid framskrivigar Versio: 2 Tillväxtverket stärker Sverige geom att stärka företages kokurreskraft Vi skapar bättre förutsättigar för företagade och bidrar till
Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede.
VÄSTIA DUSJROM Produsert for bevegelses hemmede, og er det mest fleksible og variasjorike alterativ på markedet. Tilpasigs-mulighetee er este ubegresede. HML Hjelpemiddel-leveradøre AS Braderudv. 90, 2015
Borel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)
1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10
Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:
Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS
1 Första lektionen. 1.1 Repetition
Första lektioe. Repetitio.. Eergi, effekt och effektivvärde Atag att vi har aslutit ett motståd R Ω till vägguttaget skulle det vara smart i praktike?. Beräka eergi och effekte över R, samt amplitude för
Jag läser kursen på. Halvfart Helfart
KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:
Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.
Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a
Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.
Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).
1. Hur gammalt är ditt barn?
Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Käppla (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? Atal svarade: 27 0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 22% 24%
Många tror att det räcker
Bästa skyddet Måga vet ite hur familje drabbas ekoomiskt om ågo dör eller blir allvarligt sjuk. Här berättar Privata Affärer vilket skydd du har och hur du ka förbättra det. Av Aika Rosell och Igrid Kidahl
= (1 1) + (1 1) + (1 1) +... = = 0
TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd
Tentamen i Matematisk statistik för V2 den 28 maj 2010
Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att
2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Egna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
DEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].
MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella
Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering
Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad
LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN
Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator
Vikingen FutureLook. Delphi Finansanalys AB
Vikige FutureLook by Delphi Fiasaalys AB Referesmaual för Vikig FutureLook Översikt Futurelook är ett uikt och mycket kraftfult verktyg för fiasaalytiker och kapitalplacerare. Med FutureLook är det möjligt
REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system
Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology
Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005
Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de
HYPOTESPRÖVNING. De statistiska metoderna som används för att fatta denna typ av beslut baseras på två komplementära antaganden om populationen.
HPOTESPRÖVNING De tatitika metodera om aväd för att fatta dea typ av belut baera på två komplemetära atagade om populatioe. Partiet produkter har atige de utlovade kvalitete eller å har de de ite. Atige
TAMS79: Föreläsning 9 Approximationer och stokastiska processer
TAMS79: Föreläsig 9 Approximatioer och stokastiska processer Joha Thim 18 ovember 2018 9.1 Biomialfördelig Vi har reda stött på dea fördelig flera gåger. Situatioe är att ett slumpförsök har två möjliga
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering
Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell
1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.
Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att
Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som
Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor
Stokastiska variabler
TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,
Lycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret
1. Test av anpassning.
χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler
Lektion 3 Kärnan Bindningsenergi och massdefekt
Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där
Trigonometriska polynom
Trigoometriska polyom Itroduktio Iga strägistrumet eller blåsistrumet ka producera estaka siustoer, blott lieära kombiatioer av dem, där de med lägsta frekvese kallas för grudtoe, och de övriga för övertoer.
Datorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.
UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt
Två enkla egenvärdesproblem. Två - gissningsvis välbekanta - egenvärdesproblem
Partiella differetialekvatioer Trasformmetodslösigar av lieära differetialekvatioer har vi reda stött på. Me då har det - såär som på ågot udatag - hadlat om ordiära ekvatioer. Nu har ture kommit till
Innanför skalet på centralenheten: Mikroprogrammering
Iaför skalet på cetralehete: Mikroprogrammerig 1997 Stefa Gustavso, ITN-LiTH Lätt uppdaterat 2004-09-06-1 - 1. Iledig Det fis måga olika abstraktiosivåer ma ka välja att lägga sig på är ma skall förklara
a) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan
Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger
Korrelatio n : Korrelation Korrelation är samma sak som faltning med. Signal- och Bildbehandling FÖRELÄSNING 12
Sigal- oc Bildbeadlig FÖELÄSNING Korrelaio (D) Korskorrelaio (ofa kalla bara korrelaio) Auokorrelaio oc effekspekrum Brus Lijära ssem LTI-ssem (Lijär idsivaria ssem) Differeial- oc differes-ekvaioer (kursiv)
F10 ESTIMATION (NCT )
Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,
Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.
KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso
Applikationen kan endast användas av enskilda användare med förtroenderapportering.
Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.
Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
TATM79: Föreläsning 2 Absolutbelopp, olikheter och binomialkoefficienter
TATM79: Föreläsig Absolutbelopp, oliheter och biomialoefficieter Joha Thim augusti 018 1 Absolutbelopp Absolutbelopp Defiitio. För varje reellt x defiieras absolutbeloppet x eligt { x, x 0 x x, x < 0.
Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor
Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Bilaga 1 Formelsamling
1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste
Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen
Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem
TAMS15: SS1 Markovprocesser
TAMS15: SS1 Markovprocesser Joha Thim (joha.thim@liu.se) 21 ovember 218 Vad häder om vi i e Markovkedja har kotiuerlig tid istället för diskreta steg? Detta är ett specialfall av e kategori stokastiska
Jag läser kursen på. Halvfart Helfart
KOD: Tetame Psykologi Kurskod: PC106, Kurs 6: Idivide i ett socialt sammahag (15 hp) och PC145 Datum: 5/5-013 Hel- och halvfart VT 13 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig
Ny lagstiftning från 1 januari 2011
Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q