Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Storlek: px
Starta visningen från sidan:

Download "Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som"

Transkript

1 Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor kallar vi summor vars termer bildar aritmetiska talföljder. För aritmetiska summor fis e summatiosformel Allmäare: (atalet termer) (första)+(sista) Varje aritmetisk summa ka ma återföra till (1). (1) Geometriska summor Geometriska talföljder kallar vi talföljder som, 4, 8, 16, 3, 64, 18, 10 6, 10 5, 10 4, 10 3, 360, 10, 40, 40 3, för vilka kvote mella på varadra följade tal kostat. Geometriska summor kallar vi summor vars termer utgör geometriska talföljder. För geometriska summor fis e summatiosformel 1+x + x + + x x+1 1 x 1 () Varje geometrisk summa ka ma återföra till (), t.ex ( )

2 Icke-ekoomiska exempel 1. Atag att var och e som fått veta e viss yhet lyckas förmedla de till 3 adra ovetade persoer iom loppet av e kvart. Hur låg tid skulle det ta ia yhete på detta sätt ått alla på jorde? Lösig: Efter 1 kvart, så är det 1+3persoer som hört yhete Efter kvartarärdet Efter 3 kvartar Efter kvartar: Vi söker så att [geom.summa med kvot 3] > (6 miljarder mäiskor) > > l l 3 > 0.15 Det skulle alltså ta 1 kvartar, d.v.s. fem timmar och e kvart.. Saga om schackspelets uppfiare. När de förste schackspelare (i Idie, ågo gåg uder 500-talet) visade upp si uppfiig för kuge, blev de sistämde så förtjust att ha uppmaade schackspelare att fritt öska sig e belöig. Uppfiare ahöll då om att få sädeskor 1 för de första av brädets rutor, för de adra, 4 för de tredje, 8 för de fjärde o.s.v. till och med de 64:e och sista ruta. Kuge blev mycket förbryllad vad var det för e dåre som öjde sig med estaka kor? Me si där tog ha miste! Uppskatta hur stor mägd sädeskor schackspelare faktiskt begärde! Räka med att 0 sädeskor väger ca 30 goch jämför med 1990 års världsproduktio : 1800 miljoer to. Lösig: Totala atalet kor : Total vikt : [geom.summa med kvot ] to Atal årsproduktioer detta motsvarar :

3 3. (Np, C, vt1996) För att e viss medici ska få avsedd effekt, behöver e patiet ha 15 mg av de i kroppe. Om ma ger hela dea mägd på e gåg, fis risk för allvarliga biverkigar. Patietefårdärför10smådosermedetimmes mellarum. Först efter de tiode dose skall det fias 15 mg i kroppe och då upphör medicierige. Substase börjar dock geast brytas er i kroppe erbrytigstakt 16% i timme så det räcker ite med 15/ mg per dos. Hur stora skall dosera vara? Lösig: Av e dos på x mg fis efter 1 timme : x 0.84 mg efter timmar : x 0.84 mg efter 3 timmar : x mg De tiode dose tas 9 timmar efter de första. Då har ma i kroppe x mg frå första dose x mg frå adra dose x mg frå tredje dose x mg frå sista, tiode dose x x 15 x.9 mg Ekoomiska exempel 4. Sälla moster Tilda öppar ett bakkoto åt lille Kalle och sätter i 0kr. i slutet av varje år frå och med det år ha föds fram till och med det år ha fyller 49 år. Hur mycket pegar har Kalle på bake i slutet av det år ha fyller 50 år, om ma räkar med 3% årlig värdestegrig? Lösig: Om p procetsatse (på decimalform, 0.03 i vårt fall), så har K kroor förrätat sig efter 1 år till efter år till efter 3 år till efter år till K + pk (1+p) K (1 + p) K + p (1 + p) K (1+p) K (1 + p) K + p (1 + p) K (1+p) 3 K (1 + p) K Kalla det år Kalle föds för år 0, så att år är det år ha fyller år. Betrakta kotot som 50 olika högar (svarade mot de 50 isättigara) som växer separat. Hur stora har de blivit det år Kalle fyller 50? De 0 kr. som sattes i år 0 har växt till De 0 kr. som sattes i år 1 har växt till De 0 kr. som sattes i år har växt till O.s.v. Totalt har Kalle kr

4 5. (Cp:88, SE) Aa betalar i börja av varje år i kr. till e pesiosfod med e årlig tillväxt av %. Första ibetalige sker 000, desista år00. Pesiosfode får seda växa till år 05. Hur mycket mer skulle Aa haft i pesiosfode i börja av 05 om de årliga tillväxte i stället varit 3%? Lösig : Iför tillväxtfaktor f 1+ rätesatse i % d.v.s. f 1.0 alt i vårt fall. Värdet i fode vid börja av 05 skulle då vara f 5 + f f f 5 f 0 + f f 5 f 1 1 f 1 Skillade mella de två alterative är µ kr kr kr. 6. (Cp:76, SE) På ett lå har jag kvar 10 årliga avbetaligar på 6000 kr deförstauochdesista om9 år. Om jag skulle få amortera hela lået med e egågsbetalig u, och markadäta för de här type av lå är 6%, hurmycketskalljagbetala? Lösig: Att markadäta är 6% betyder att K kr. idag bedöms värda eller betraktat omvät: 1.06K kr. om 1 år 1.06 K kr. om år K kr. om 3 år K kr. om år K kr. u 1.06 Detta kallar vi uvärdet av K kr. om år. Så pegara jag plaeras återbetala är idag värda (mia återbetaligaras uvärde är) Ã µ kr µ! (Cp:81018, SE) E perso skall vid slutet av vart och ett av åre 00, 003, 004 och 005 betala 0 kr. till e bak. Ha bestämmer sig emellertid för att i stället erlägga ett egågsbelopp vid slutet av år 001. Hur stort blir detta om räta är 10%? Lösig: Betaligaras uvärde : Ã µ kr. Vi kude lika gärai likställt betaligaras värde år 005: µ 1 3! x x

5 8. (AllmSo:5, ja 1960) Ett föräldrapar ämar bekosta si dotters studier ärmast efter studetexame geom att vid börja av vart och ett av studieåre till hee utbetala ett visst belopp. Ho har att välja mella e treårig utbildig, som är förlagd till åre med e årlig kostad av 4800 kr., och e femårig utbildig uder åre med e årlig kostad av 0 kr. Vilket alterativ medför de mista kostade, om utgiftera täcks med medel, som är placerade till e rätesats av 3.5%? Lösig: Låt K kapitalet i börja av år 1960 r a 4800 b 0 I börja av 1965 har familje kvar, i första fallet och i det adra fallet (((K a) r a) r a) r 3 Kr 5 a r3 1 r 1 r3 ((((Kr b) r b) r b) r b) r b Kr 5 b r5 1 r 1 Vilket är störst? Kr 5 a r3 1 r 1 r3 < Kr 5 b r5 1 r 1 r 5 1 b < r 3 1 r 3 a r 5 1 b < r 3 1 r 3 a 563 < De femåriga utbildige ger mer pegar över! Alterativ: Summa av utbetaligaras värde i börja av år 1960 är a + a r + a r 1390 b resp. r + b r + b r 3 + b r 4 + b r Alltså är de adra utbildige billigare. 9. Ett företag behöver V m 3 olja per måad. Av säkerhetsskäl får högst V m 3 åt gåge lagras hos företaget. Vid förhadligar med oljeleveratöre diskuteras två täkbara leveraskotrakt: (a) Oljebolaget levererar varje måad V m 3 till dagspris. (b) Företaget köper geast olja för hela kotraktsperiode till uvarade dagspris, me oljebolaget levererar edast V m 3 /måad. Reste förvaras hos leveratöre, för vilket företaget betalar e viss hyresavgift. Vilket alterativ är förmåligast om V m 3 det aktuella dagspriset p 000 kr./m 3 hyresavgifte a 0 kr/m 3 priset förvätas stiga med r 1% per måad om kotraktsperiode är 6 måader? 1 år? 3 år? Hur stora är skilladera? Lösig: Sätt k 1+ r atal måader kotraktet löper på Alterativ 1 kostar Vp 1+k + k + + k Alterativ kostar V p + av ( ) ( 1) + 10 µ ( 1) 10 Skillade mella kostadera, alterativ alterativ 1 10 µ 5 µ 1+ 1 ( 1) för Alterativ är alltså (ågot) billigare för 6, me dyrare aars. 5

6 10. (Effektiv räta) Eva hade fr.o.m varje år i december måad betalat i $ till e egelsk kapitalförsäkrig, är det i jauari 1997 damp ett brev i hees brevlåda och meddelade att värdet på besparigara u uppgick till $3064. Vilke geomsittlig årlig tillväxt (i procet) motsvarar detta? Härled e ekvatio för tillväxte. Hur löser du ekvatioe? Ka ma täka sig e eklare ekvatio som ger e approximativ lösig till problemet? Lösig: Att värdet av ågotig ökar med, säg, 5% årlige iebär att Låt värdet u (värdet för1 år seda) 1.05 ((värdet för år seda) 1.05) 1.05 årlig tillväxt i procet x Betrakta tillgågara som ett atal högar, som skapas vid olika tidpukter och seda får växa separat. De, som betalats i i december 1996, har ite huit växa ågot. De, som betalats i i december 1995, har vuxit i 1 år till (1 + x) De, som betalats i i december 1994, har vuxit i år till (1 + x) De, som betalats i i december 1989, har vuxit i 7 år till (1 + x) 7 Västerledet är e geometrisk summa med kvot 1+x, så vi ka förekla till (1 + x) 8 1 x 3064 Utvecklar ma paretesera (det fis e sats biomialsatse med vars hjälp ma ka komma fram till resultatet sabbt) skulle detta kua skrivas 8+8x +56x +70x 3 +56x 4 +8x 5 +8x 6 + x ,me ite heller detta hjälper för att få e exakt aalytisk lösig ma får tillgripa umerisk metod. Med ebart e ekel miiräkare, så ka ma stäga i rote geom att pröva med olika värde av x i västerledet det är ju e växade fuktio av x. Med e grafritade maski, så plottar ma västerledet-högerledet och avläser var kurva skär x-axel. Ma får x Eftersom rote x ka förmodas bli ett litet (jämfört med 1) tal,och x À x À x 3 À för små x, så skulle ma kua försöka få e approximativ lösig geom att försumma högre ordiges termer : x x x +56x 3064 x Ite alls lågt ifrå det korrekta ! vilket ger ekvatioe + (1 + x)+ + (1 + x) + + (1 + x) (1 + x)

7 11. Kupogbligatioer är värdepapper, som berättigar iehavare till e årlig räta uder ett visst atal år. Räta ages i procet av obligatioes s.k. omiella värde, som ite behöver vara lika med obligatioes pris vid utgivige de s.k. emissioskurse som också ages i procet av det omiella värdet. Obligatioer ka hadlas i adra had, så att iehavara ite skall behöva behålla dem löptide ut. Uder tide hier räteläget ädras, vilket påverkar obligatioskurse obligatioes pris i procet av det omiella värdet. Vad blir kurse för e gammal obligatio med 8% räta och 10 års återståede löptid, om det vid samma tidpukt på markade tas upp ett ytt 10-årigt lå med 1% räta till emissioskurse %? Lösig: Om räteläget för 10-åriga lå är 1%, så är uvärdet av 1 kr. som utbetalas om 1 år år 3 år Att köpa e 10-årig obligatio om K kr. med 1% räta till emissiokurse % iebär att ma ger u K kr. och får tillbaka 0.1K kr. om 1 år 0.1K kr. om år 0.1K kr. om 9 år 0.1K + K kr. om 10 år Förhålladet mella uvärdet av de pegar ma får tillbaka och det ma låar ut u, är (mycket riktigt) % 10 Motsvarade förhållade för det gamla lået är De gamla obligatioera bör därför hadlas till 77.40% av omiellt värde. Rak amorterig E skuld om s kroor amorteras (avbetalas) på år med s/ kr. årlige, d.v.s. varje år betalar ma tillbaka s kr. + räta för det seaste året Om rätesatse är p% per år, hur mycket räta har sammalagt betalats, är skulde återbetalats helt? Lösig: Med r p/ så får ma 1 s r 3 Räta vid avbetalig r. ³ s s ³ s s r 1 r ³ s ( 1) s r 1 (Efter första avbetalige har skulde miskat frå s till s s ³ Därför betalas uder adra året räta för s s kr.) Sammalagt har vi i räta erlagt (summa av alla tale i högra kolume) : ( ) [aritmetisk summa] ( +1)/ 7

8 Auitetslå Låtsas att vi gör e avbetalig per år! Nuförtide gör ma ju avbetaligar måadsvis, me ma ka räkapå precis samma sätt, om ma först gör om rätesatse till e ekvivalet måadätesats : t.ex. 1% per år motsvarar ³ % per måad eftersom det är de procetuella ökig per måad som ger 1% ökig per år: Ett s.k. auitetslå har följade kostruktio: Ett visst belopp s låas på ett visst atal år N. Varje år avbetalas e del av lået (amorterig). Samtidigt skall räta betalas för det gåga året. Amorterige avpassas dock så att auitete de summa ma betalar varje år totalt (amorterig + räta) är desamma uder alla år. Säg att rätesatse är p% och sätt f 1+ p (f som i tillväxtf aktor ). Låt oss räka ut vad auitete måste vara. Betrakta skulde. Skulde strax efter låets upptagade? s, aturligtvis Skulde strax före 1:a avbetalige? p s + s sf (Ett års räta har lagts till.) Skulde strax efter 1:a avbetalige? Skulde efter 3:e avbetalige? sf af a f a sf 3 af af a sf 3 a f + f +1 Fortsätt så här! Uttrycke följer ett visst möster, eller hur?. Skulde strax efter N:te avbetalige? sf N a f N 1 + f N + + f + f +1 Kä ige e geometrisk summa! sf N a f N 1 f 1 Att lået skall vara avbetalat efter N år betyder att skulde efter N:te avbetalige skall vara 0. Därifrå ka vi lösa ut a! 0 sf N a f N 1 f 1 a s f N (f 1) f N 1 med f 1+ p Med t.ex. skall vi alltså betala s 000 kr. N 0 p 10% s (f 1) 1 f N 11746kr. per gåg sf a Skulde strax före :a avbetalige? sf a +(sf a) (sf a) f sf af p Skulde strax efter :a avbetalige? sf af a 8

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Många tror att det räcker

Många tror att det räcker Bästa skyddet Måga vet ite hur familje drabbas ekoomiskt om ågo dör eller blir allvarligt sjuk. Här berättar Privata Affärer vilket skydd du har och hur du ka förbättra det. Av Aika Rosell och Igrid Kidahl

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

Familje- juridik Här är dina rättigheter. Bostad& fastighet. Sambo eller gift? Sambo eller gift? Privata Affärers serie om. Del 3

Familje- juridik Här är dina rättigheter. Bostad& fastighet. Sambo eller gift? Sambo eller gift? Privata Affärers serie om. Del 3 Äkteskap& samboförhållade Huvudregel eligt sambolage är att bostad och bohag, som skaffats för Är i ekoomiskt jämställda, det vill säga har ugefär lika stora skulder eller tillgågar, har det kaske ite

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

TRIBECA Finansutveckling

TRIBECA Finansutveckling TRIBECA Rådgivare iom fiasiella helhetslösigar TRIBECA a s k r e i v g S f a s k r i e v g S f g g r r e e a r a r e e i i f f TRIBECA s målsättig är att bidra med råd & produkter som hela tide gör att

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

samt tandvård. De har även hand om kultur, kollektivtrafik och regional utveckling. Dessa ansvarsområden omfattar en större

samt tandvård. De har även hand om kultur, kollektivtrafik och regional utveckling. Dessa ansvarsområden omfattar en större Måadsrapport Jauari 2015 Måadsrapport Juli 2015 Måadsrapport Februari 2015 Måadsrapport Augusti 2015 Måadsrapport Mars 2015 Måadsrapport September 2015 Måadsrapport April 2015 Måadsrapport Oktober 2015

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Fråga: Erbjuder ni någon utbildning för förskrivare och apotekspersonal för att kunna använda webbapplikationerna på ett effektivt sätt?

Fråga: Erbjuder ni någon utbildning för förskrivare och apotekspersonal för att kunna använda webbapplikationerna på ett effektivt sätt? FAQ för det ya licessystemet KLAS Fråga: Hur skickar jag som förskrivare i mi licesmotiverig i KLAS? Svar: Läk fis på lv.se/lices uder Skapa licesmotiverig. Fråga: Varför ska jag som förskrivare skicka

Läs mer

PTKs stadgar. Fastställda vid stämman 2009 06 16

PTKs stadgar. Fastställda vid stämman 2009 06 16 PTKs stadgar Fastställda vid stämma 2009 06 16 INNEHÅLLSFÖRTECKNING SYFTE OCH UPPGIFTER Syfte och uppgifter 3 Medlemskap 4 Orgaisatio 7 Stämma 8 Överstyrelse 12 Styrelse 15 Förhadligsorgaisatio 17 PTK-L

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Årets bästa skattetips

Årets bästa skattetips Årets bästa skattetips Aika Creutzers råd säker di skatt Årets deklaratio har måga glada yheter. Privata Affärers chefredaktör Aika Creutzer ger dig sia bästa råd till lägre skatt. Förmögehetsskatte är

Läs mer

största Nu är det dags att avslöja vilka bank- undersökning Sveriges Årets Bankjuryn

största Nu är det dags att avslöja vilka bank- undersökning Sveriges Årets Bankjuryn För artode året i rad utser Privata Affärer Årets Bak. Här ser du vilka baker som är bäst för just di privatekoomi. största bak- udersökig Nu är det dags att avslöja vilka baker som belöas av Privata Affärer.

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

MARKNADSPLAN Kungälvs kommun 2010-2014

MARKNADSPLAN Kungälvs kommun 2010-2014 MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad. Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig

Läs mer

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com

ESBILAC. mjölkersättning för hundvalpar BRUKSANVISNING. www.kruuse.com ESBILAC mjölkersättig för hudvalpar BRUKSANVISNING De bästa starte för e yfödd valp är självklart att dia tike och få i sig mammas mjölk. Modersmjölke iehåller allt som de små behöver i form av ärigsäme,

Läs mer

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem

Läs mer

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden.

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden. Översikt av ouppklarade fall av dödligt våld i Skåe uder tide 1985-07-01 och framåt i tide. OBSERVERA att översikte grudar sig på e iveterig, som ite är klar! Atalet ärede och urval av ärede ka komma att

Läs mer

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder;

För att minimera de negativa hälsokonsekvenserna av tunnelluft finns i dagsläget tre metoder; MKB till detaljpla Förbifart Stockholm Hälsoeffekter av tuelluft Studier idikerar att oöskade korttidseffekter, blad aat ökat atal iflammatiosmarkörer, börjar uppstå vid e expoerig som motsvaras av tuelluft

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Slutrapport Bättre vård i livets slutskede

Slutrapport Bättre vård i livets slutskede Team : Stadsvikes VC Syfte med deltagadet i Geombrott Att öka tillite och trygghete till de vård som bedrivs i det ega hemmet för de palliativa patiete. Teammedlemmar Eva Lidström eva.lidstrom@ll.se Viktoria

Läs mer

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning...

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning... Iehåll Grafräkare och diskret matematik...1 Vad hadlar diskret matematik om?...1 Permutatioer och kombiatioer...3 Något om heltalsräkig...4 Modulusoperator...4 Faktoriserig i primfaktorer...5 Talföljder...7

Läs mer

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25 Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om

Läs mer

Marknaden för PPM-förvaltning

Marknaden för PPM-förvaltning Nu är goda PPM- I dag fis det måga företag som vill placera dia PPM-pegar. Me du ska vara försiktig ofta kostar det mer ä det smakar. Markade för PPM-förvaltig har vuxit kraftigt det seaste året. Nu fis

Läs mer

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol.

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol. Välj att flytta dia Utyttja di flytträtt om du ka. Det är Privata Affärers råd u är regeriges tillfälliga flyttstopp hävs de 1 maj. Flyttstoppet ifördes i februari i fjol som e direkt följd av Damarksmålet.

Läs mer

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1 Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION

Läs mer

Ett enklare. sätt att arbeta. XOR Compact 4.0 Demohandledning

Ett enklare. sätt att arbeta. XOR Compact 4.0 Demohandledning Ett eklare sätt att arbeta. XOR Compact 4.0 Demohadledig 1 Mer ä 12.000 ordiska företag aväder det reda. Opartiska tester utser det till markades bästa program. Facktidige Mikrodator gör det för tredje

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Extrem prestanda Nu utan BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER

Extrem prestanda Nu utan BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER Extrem prestada Nu uta BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER Formar för kall och varm mat BPA-fritt kommersiellt produktsortimet för livsmedelsservice Rubbermaid Commercial har

Läs mer

Framtidsutredningen 2007 Vad kostar det tillgängliga och trygga Stockholm?

Framtidsutredningen 2007 Vad kostar det tillgängliga och trygga Stockholm? Framtidsutredige 2007 Vad kostar det tillgägliga och trygga Stockholm? I dea rapport kommer stades ekoomiska framtidsutsikter att diskuteras. Klarar stade äve fortsättigsvis av åtagadet att erbjuda e god

Läs mer

Finansiell ekonomi Föreläsning 3

Finansiell ekonomi Föreläsning 3 Fiasiell ekoomi Föeläsig 3 Specifika tillgåga ätebäade - aktie Hu bestäms Avkastig? Utbud och eftefåga S = I Vad påveka utbud och eftefåga på spaade medel (spaade och låade) Kapitalets fövätade avkastig

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Smärtlindring vid medicinsk abort

Smärtlindring vid medicinsk abort Smärtlidrig vid medicisk abort EN JÄMFÖRANDE STUDIE VETENSKAPLIGT ARBETE UNDER ST ELIN SJÖLANDER HANDLEDARE MARIE BOLIN Itroduktio Smärta vid medicisk abort valig, smärtlidrig vid medicisk abort dåligt

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

Kollektivt bindande styre på global nivå

Kollektivt bindande styre på global nivå Iteratioell ivå Global, regioal eller mellastatlig? Allt fler viktiga politiska frågor går ite lägre att lösa på atioell ivå. Folk över hela världe berörs exempelvis av växthuseffekte. Vad fis det för

Läs mer

Hårt arbete för högre mjölkpris

Hårt arbete för högre mjölkpris Hårt arbete för högre mjölkpris ugada Tio kilometer på cykel ia mjölke ka levereras till kooperativet där mjölke kotrolleras och kyls. Så ser vardage ut för måga av Ugadas mjölkböder. 52 Husdjur 1/2014

Läs mer

HC. A ndersens magiska Sagovärld. Evenemangsguide. 27sept 3nov lightsinalingsas.se. för dig som endast låter fantasin sätta gränserna.

HC. A ndersens magiska Sagovärld. Evenemangsguide. 27sept 3nov lightsinalingsas.se. för dig som endast låter fantasin sätta gränserna. HC. A derses magiska Sagovärld Eveemagsguide för dig som edast låter fatasi sätta gräsera. 27sept 3ov lightsialigsas.se The 14th Aual Lights Exhibitio Lights i Aligsås e lysade idé. När Lights i Aligsås

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden.

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden. Översikt av ouppklarade fall av dödligt våld i Skåe uder tide 1985-07-01 och framåt i tide. OBSERVERA att översikte grudar sig på e iveterig, som ite är klar! Atalet ärede och urval av ärede ka komma att

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

DELTA-samverkan januari - april 2003

DELTA-samverkan januari - april 2003 Beställarförbudet DELTA på Hisige Tjästeutlåtade Dr 2003/17 På Hisige Sekretariatet, JJ 2003-05-27 DELTA-samverka jauari - april 2003 Jag stod och pratade med grae över staketet. Då berättade grae att

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede.

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede. VÄSTIA DUSJROM Produsert for bevegelses hemmede, og er det mest fleksible og variasjorike alterativ på markedet. Tilpasigs-mulighetee er este ubegresede. HML Hjelpemiddel-leveradøre AS Braderudv. 90, 2015

Läs mer

Så här kommer byggherren och entreprenören överens om energianvändningen

Så här kommer byggherren och entreprenören överens om energianvändningen Så här kommer byggherre och etrepreöre överes om eergiavädige Så här kommer byggherre och etrepreöre överes om eergiavädige Sveby står för Stadardisera och verifiera eergiprestada i byggader och är ett

Läs mer

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden.

Översikt av ouppklarade fall av dödligt våld i Skåne under tiden 1985-07-01 och framåt i tiden. Översikt av ouppklarade fall av dödligt våld i Skåe uder tide 1985-07-01 och framåt i tide. Översikte grudar sig på e iveterig, som hela tide är pågåede. Atalet och urval av ärede ka komma att förädras

Läs mer

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården

Hamnbanan Göteborg Dubbelspår Eriksbergsmotet - Pölsebobangården Järvägsutredig med miljökosekvesbeskrivig Hambaa Göteborg Dubbelspår Eriksbergsmotet - Pölsebobagårde Utställigshadlig 2011-03-04 Yta för bild eller möster Titel: Järvägsutredig Hambaa Göteborg dele Eriksbergsmotet

Läs mer

Plantering. en handledning från BillerudKorsnäs

Plantering. en handledning från BillerudKorsnäs Platerig e hadledig frå BillerudKorsäs 26 aug 2013 1. Vi följer lagstiftig och miljöcertifierigskrav. Att miljöapassa skogsbruket är vårt övergripade miljömål. Vi tar häsy till verksamhetes miljöaspekter

Läs mer

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning ydkraft Nät AB, Tekiskt Meddelade för Jordigsverktyg : Dimesioerig, kotroll och besiktig 2005-04-26 Författare NUT-050426-006 Krister Tykeso Affärsområde Dokumettyp Dokumetam Elkrafttekik Rapport 1(6)

Läs mer

Ny lagstiftning från 1 januari 2011

Ny lagstiftning från 1 januari 2011 Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Bibelordet. januari februari. Årstema 2011. Program tyrels onse Kontakt-sida mm. Högs Personligt

Bibelordet. januari februari. Årstema 2011. Program tyrels onse Kontakt-sida mm. Högs Personligt g li m T a s T r Y ö SN f s G M a A d S a lt FÖR Ve a i N l I l A L Årstema 2011 jauari februari 2012 fo a i e pe Program tyrels s r A o S ose Kotakt-sida mm. Past r Högs Persoligt Nr: 23 Bibelordet Vad

Läs mer

MASSOR AV NYHETER OCH GODA ERBJUDANDEN KAMPANJPRIS UNDER VÅRDAGARNA. Torsdag & Fredag 10-18, Lördag 10-15. Bonus! 5L Aspen till allt bensindrevet.

MASSOR AV NYHETER OCH GODA ERBJUDANDEN KAMPANJPRIS UNDER VÅRDAGARNA. Torsdag & Fredag 10-18, Lördag 10-15. Bonus! 5L Aspen till allt bensindrevet. VI BJU D ER LL PÅ GRILLAD LUNNAME E Vårdagar 5-7 maj Torsdag & Fredag 10-18, Lördag 10-15 KAMPANJPRIS UNDER VÅRDAGARNA MASSOR AV NYHETER OCH GODA ERBJUDANDEN 5 950:Husqvara LB 48V e (ord. 6 450:-) Bous!

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25 TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag

Läs mer

god stiftelsepraxis www.saatiopalvelu.fi

god stiftelsepraxis www.saatiopalvelu.fi god stiftelsepraxis SÄÄTIÖIDEN JA RAHASTOJEN NEUVOTTELUKUNTA RY DELEGATIONEN FÖR STIFTELSER OCH FONDER RF www.saatiopalvelu.fi 1 Cotets God stiftelsepraxis 1 Iledig 3 2 God stiftelsepraxis 3 Stipedier

Läs mer

48mars 2012. Amanda Söderlindh. Pris 25 kr

48mars 2012. Amanda Söderlindh. Pris 25 kr 48mars 2012 Pris 25 kr Amada Söderlidh Jag har tidigare i»på Ljuge«berättat om de Söderlidhska gårde i Skaör. Gårde var i de Söderlidhska släktes ägo frå 1823 fram till brade 1921. De sista av de Söderlidhska

Läs mer

Frisörens arbetsmiljö

Frisörens arbetsmiljö Frisöres arbetsmiljö Iehåll De goda arbetsmiljö 3 Saloge som arbetslokal 4 Hälsa 9 Riskmomet i arbetet 11 Hygie 15 Belastigsergoomi 17 Arbetsklimat 18 Säkerhet 21 Rå, hot och våld 23 Miljöavfall 25 Tips

Läs mer

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad 1/5 Sektor samhällsbyggad Datum Beteckig 2015-02-10 PLAN.2014.19 Plaehete Hadläggare Jey Olausso Detaljpla Ekedal södra Behovsbedömig Förslag Geomföradet av plaförslaget bedöms ite medföra ågo betydade

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]

Läs mer

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a Kompletterde löigförlg och ledigr, Mtemtik 000 kur C, kpitel Kpitel. 0, 0, 0, 0 Exempel om löe i boke. 0 ) 7 0 + + + 6 + 8 + 06 ) +, + 6 6 + + + 69 69 + +, + + 6 6+ 9 8+ + 07 Se boke ledig. Kotkt di lärre

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

tullinge FLEMINGSBERG TULLINGE Kommunens avsikter för Tullinge som helhet

tullinge FLEMINGSBERG TULLINGE Kommunens avsikter för Tullinge som helhet tullige VILLASTAD r be e tri Tulligesjö e äg v gs FLEMINGSBERG Ka TRÄDGÅRDSSTAD Nib ble väg e PARKHEM 10 BERG Tullige är e attraktiv plats i Stockholmsregioe att bo och bygga på. Tullige är också de del

Läs mer

Saltsjötunneln. Saltsjötunneln i korthet. Bil- och tunnelbanelänken för östra Östra Stockholm

Saltsjötunneln. Saltsjötunneln i korthet. Bil- och tunnelbanelänken för östra Östra Stockholm Saltsjötuel i korthet uelbaa till Nacka geom att Blå lije förlägs frå Kugsträdgårde. Norra läke och Södra läke kyts ihop med e tuel uder Saltsjö. Ett sammahållet projekt ger samordigsvister och stordriftsfördelar

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

Solgläntans föräldrakooperativ Kvalitet och måluppfyllelse läsåret 2012/13

Solgläntans föräldrakooperativ Kvalitet och måluppfyllelse läsåret 2012/13 1 s föräldrakooperativ Kvalitet och måluppfyllelse läset 2012/13 Iehåll: Iledig 2 Förutsättigar...2 Bedömig av kvalitet och måluppfyllelse 3 Beslutade mål och åtgärder 6 Slutord 7 Bilaga: Resultat - seaste

Läs mer