TNA001 Matematisk grundkurs Övningsuppgifter

Storlek: px
Starta visningen från sidan:

Download "TNA001 Matematisk grundkurs Övningsuppgifter"

Transkript

1 TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri Komplexa tal Summor, Biomialsatse, Iduktiosbevis. De aritmetiska talöljde 5, 8,,,... är give. a) Hur måga av termera är midre ä 000? Beräka summa av de 0 örsta termera.. Vid ett rimärksjubileum diskuterade ma att ge ut e rimärksserie med 5 rimärke i valörera 0.50 kr, 0.90 kr,.0 kr,.70 kr o. s. v. Vad skulle e såda utgivig kosta e samlare, som brukar köpa 0 kompletta serier?. Bestäm summa av alla heltal rå och med 9 till och med 999 som slutar på 9.. Summa av de örsta termera i de aritmetiska serie, 0, 6,,... är lika med 80. Bestäm. 5. E geometrisk talöljd börjar med 5. Skriv de örsta yra termera i talöljde om kvote är: a) / c) - d) -/ 6. a) Tale x,,, y ileder e geometrisk talöljd. Bestäm x och y. Tale x,,, y ileder e geometrisk talöljd. Bestäm x och y. 7. I e geometrisk talöljd är a = 6 och a7 = 750. Bestäm talöljde och summa av de sju örsta termera. 8. År 990 var världskosumtioe av mieralolja Gt (gigato). De totala råoljereserve på jorde uppskattades då till Tt. När tar råolja slut om uttaget rå reserve a) ökar med % årlige miskar med % årlige 9. Beräka a) med hjälp av ormel ör e e geometrisk summa. 00 ( k ). k

2 0. Bevisa med hjälp av iduktio att öljade ormler gäller ör alla ( ) a) (k ) k k k Z :. Bestäm t så att ormel (k k) ( t) k gäller med detta t-värde ör alla =,,,... gäller ör =. Visa seda att ormel. Visa med iduktiosbevis att 7 - är delbart med 5 ör alla =,,,.... Visa att ör alla.. Visa att k k ( )( 6 ) ör alla =,,, Visa att k ( k ) ( )( 6 ) ör alla =,,, Visa att k k k k 7. Skriv som e summa a) (x + y) (x - y) 8. Beräka öljade biomialkoeicieter 7 a) 5 9. Vilke av öljade båda biomialkoeicieter är störst? 0 6 a) 8 0 eller eller 7 0. Bestäm så att 7. Beräka koeiciete ör a) x i uttrycket (x - ) 5 x i uttrycket ( - x). Beräka de term som är oberoede av x i utvecklige 6 a) x x x x c) x x 0

3 Ivers uktio. Visa att uktioera är omvädbara och bestäm seda de iversa uktioe på orme y ( x ). Bestäm deiitiosmägd och värdemägd ör både och. a) ( x) x ( x) x c) ( x) x. Fuktioe har ivers g. Om vet ma att ( ), ( ) 0 och ( 0) 5. Bestäm a) g (0) (5) e) Atag att D g c) g () d) g() x. Vad blir g (x)? ) Vilket krav skall ställas på x ör att g x) x 5. Bestäm iverse till (? a) ( x) x, x ( x) x, x 0 6. Bestäm () om ( x) x x 7. a) Visa att uktioe ( x) x x, x har ivers och bestäm dea ivers på orme y ( ). Rita i samma koordiatsystem y (x) och y ( ). c) Age deiitiosmägd och värdemägd ör y ( ). 8. Betrakta uktioe ( x) x, x. a) Visa att har e ivers och bestäm dea ivers. Bestäm deiitios- och värdemägd till uktioe ( ). c) Har kurvora y (x) och y ( ) ågra gemesamma pukter? Bestäm i så all dessa och age deras koordiater på så ekel orm som möjligt.

4 Logaritmer, Expoetialuktioer 9. Lös ör reella x ekvatioe l(x + ) + l( x) = l + l x. 0. a) Lös olikhete l l x l x. Lös olikhete l l x l x.. Bestäm alla lösigar till ekvatioe l x + l( x) = l x.. Bestäm alla reella värde på x sådaa att uttrycket l( x) x är deiierat.. Låt ( x) e x. a) Har ivers? Bestäm i så all dea iklusive dess deiitiosmägd. Bestäm alla reella lösigar till ekvatioe x ( x) e.. Betrakta uktioe ( x) l( x ) l( x ). a) Bestäm :s deiitiosmägd, D Bestäm alla reella lösigar till ekvatioe ( x) l6. 5. Bestäm deiitiosmägde ör uktioe och udersök om har ivers uktio och bestäm i så all ett uttryck ör iverse om (x) =. 6. Bestäm deiitiosmägde samt (om möjligt) iverse till om (x) =.

5 Trigoometri 7. Bestäm de exakta värdea på återståede trigoometriska uktioer, då a) cos α = /5 och α ligger i örsta kvadrate. si α = 7/5 och α ligger i adra kvadrate. c) ta α = och α ligger i tredje kvadrate d) cot α = - 5/ och α ligger i järde kvadrate. 8. Bestäm exakta värde på si 5, cos 5, ta 5 och cot 5 Ledig 5 = Förekla öljade uttryck: a) si (60 + x) - si (60 - x) cos (0 - x) - cos (0 + x) c) cos (5 - x) - si (5 + x) d) ta (5 + x) + ta (5 - x) 0. Bevisa öljade trigoometriska ormler a) ta α cot α cos α si α cos α si α c) si α = si α cos α d) cos α = cos α si α. a) α är e vikel i adra kvadrate, si α = /5. Bestäm si α och cos α cos α = /. Bestäm cos α c) ta α = /5. Bestäm ta α d) α är e vikel i tredje kvadrate, ta α = /7. Bestäm si α och cos α.. Bevisa likhetera: si α a) ta α cosα ta α c) cosα ta α ta α si α ta α. Bestäm r > 0 och v ]- π, π ], så att a si x + b cos x = r si (x + v ) om a) a =, b = a = -, b = - c) a = -, b = d) a =, b = - e) a =, b = - ) a = -, b = -. Aväd ett av resultatet i öregåede uppgit ör att lösa ekvatioera a) si x - cos x = si x - cos x = i itervallet x [0, π [ 5. a) Lös ekvatioera i uppgit a me i itervallet ] - π, π ] Lös ekvatioe i uppgit b me i itervallet ] - π, π ] 6. Rita, med ehetscirkel som utgågspukt, e relevat igur som illustrerar lösigsmägde till ekvatioe a) si x a cos x a c) ta x a 5

6 7. Lös ekvatioe π a) si x si si x c) si x 0 d) 5 si x 8. Lös ekvatioe π a) cos x cos cos x c) cos x d) cos x Lös ekvatioe π a) ta x ta ta x c) ta x 7 d) ta x (Ledig: Ekvatioe är ekvivalet med ta x ) 50. Bestäm samtliga lösigar till ekvatioe a) si x cos x π 6 c) cos 5x π om 0 x π π π 5. Lös ekvatioe geom att utyttja att cos v si v eller si v cos v. x π π a) cos x si x cos six, x π, π π c) si x cos x 5. Lös ekvatioe a) cos x si x c) cos x cos x 0 (Sätt t.ex. örst cos x t ) 5. Lös ekvatioe geom att bl.a. utyttja trigoometriska etta. 5 a) cos x si x si x cos x 5. Lös ekvatioe (Ledig: Utyttja t.ex. ormlera ör dubbla vikel samt trigoometriska etta.) a) cos x si x 0 si x si x cosx cos x six, x,0 c) d) si x cosx, x 0, π 6

7 Komplexa tal 55. a) Markera i det komplexa talplaet alla komplexa tal z som samtidigt uppyller de båda villkore 0 arg z π och z. Beräka + i. Age svaret på orme a + bi, a, b R. 56. Givet de två komplexa tale z = e och w = i. a) Bestäm produkte wz på orme a + bi. Bestäm arg(z w) 57. Givet det komplexa talet z = a) Bestäm z. beräka arg(z ). c) beräka (z + + i) på öreklad orm. 58. Beräka i. Age svaret på orme x iy, där x och y är reella tal. 59. Givet det komplexa talet z =. 00 p a) Beräka z och age svaret på orme x + iy, där x och y år skrivas på orme a, där a är ett reellt tal och p ett heltal. Välj v arg z så att v. Rita och markera i ett komplext talpla alla komplexa tal u ör vilka det samtidigt gäller att v arg u arg (0) och u. Figure skall ritas tydligt och med lämpliga hjälpmedel. 60. a) Åskådliggör i det komplexa talplaet de pukter ör vilka det gäller att Re z 0 och z. Förekla så lågt som möjligt ( + i) ( i). c) Visa att Re z = 0 om z =. 7

8 Svar till TNA00 Matematisk grudkurs - Övigsuppgiter. a) kr = 5 eller = 8 5. a) 5, 08, 6, 5, 6,, 6 c) 5, - 08, 6, - d) 5, -8, 6, - 6. a) x =, y = 8 x = /, y = 9/ 7. k 786 ak = 6 5, s(7) = 5 8. a) Uder år 057 Aldrig a) t = 7. a) x 8x y x y xy 6y x 6x y 96x y 56xy 56y 8. a) a) båda är 0 0 respektive edast = 0 (Ekvatioe har röttera 0, - och två komplexa rötter). a) a) 0 c) 05/. a) ( x) x, D R, V R V D x ( x), D V R, D V R c) ( x) x, D V R, D V R. a) 0 c) d) e) x ) x D g 5. a) ( x) x, x 0 ( x) x, x a) ( x) x y ( x) y (x) c) D V, V D,, 8

9 8. a) ( x) x c) Gemesam pukt: (, ) V D,, D V 0, 9. x 0. a) x, x,,. x. Alla x,. a) ( y) l( y ), D,. x l D, x. a) 5. D = [0, l [, (x) = l(x + ) l(x + ) 6. D = R, (x) = l, D =, 7. a) si α = /5, ta α = /, cot α = / cos α = - /5, ta α = - 7/, cot α = - /7 c) si α =, cos α =, cot α = 0 0 d) si α = - /, cos α = 5/, ta α = -/5 8. o 6 o 6 o o si 5, cos 5, ta5, cot 5 9. a) si x si x c) 0 d) - /cos x. a) si α = - /5, cos α = - 7/5-7/9 c) 5/8 d) si α = 7/5, cos α = /5. a) si x + cos x = si (x + π /) - si x - cos x = si (x - π /) c) - si x + cos x = si (x + π /) d) si x - cos x = si (x - π /) e) si x - cos x = si (x - π /6) ) - si x - cos x = si (x - π /). a) π / eller 7 π /6 π /6, 7 π /8, 5 π /6, 9 π /8, π / eller π /8 5. a) - 5 π /6 eller π / 7 π /8, - π /, -5 π /8, π /6, 7 π /8 eller 5 π /6 7. a) x π 5 π eller x π 5 π, Z π 6 π eller 5π 6 π, Z c) π, Z d) π π eller π π, Z 8. a) π 0 π, Z π 6 π, Z c) π π, Z d) π π, Z 9. a) π 7 π, Z π π, Z c) π 6 π, Z d) π π, Z π π 5π π 50. a) eller, Z 8 8 π 7π π 9π 7π π eller π, Z c),, π π π 5. a) eller π 7, Z π 0, c) Alla reella x π π π π 5. a), Z π eller π, Z 9

10 c) π eller π π 5. π π a) π, π 6 eller 5π 6 π, Z π π 5. π a), Z π, Z c) 0,,, π π π π d),,, 55. a) Se igur a) i 57. a) c) a) z 60. a) 0 0

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =

Läs mer

Förslag till övningsuppgifter FN = Forsling/Neymark, K = Kompendiet Vektorer, linjer och plan, ÖT = Övningstentamen

Förslag till övningsuppgifter FN = Forsling/Neymark, K = Kompendiet Vektorer, linjer och plan, ÖT = Övningstentamen TNA00 Förslag till övigsugiter FN = Forslig/Neymar, K = Komediet Vetorer, lijer och la, ÖT = Övigstetame Vetorer, lijer och la ÖT:4,, K, K och Ugitera, och eda Ugit x Lije y t, t R z a) Beräa avstådet

Läs mer

b 1 och har för olika värden på den reella konstanten a.

b 1 och har för olika värden på den reella konstanten a. Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

Om komplexa tal och funktioner

Om komplexa tal och funktioner Om komplexa tal och fuktioer Aalys60 (Grudkurs) Istuderigsuppgifter Dessa övigar är det täkt du ska göra i aslutig till att du läser huvudtexte. De flesta av övigara har, om ite lösigar, så i varje fall

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2 Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Inledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana:

Inledande matematisk analys. 1. Utred med bevis vilket eller vilka av följande påståenden är sana: TATA79/TEN3 Tetame, 08-04-06 Iledade matematisk aalys. Utred med bevis vilket eller vilka av följade påståede är saa: (a) Om x 7 är x(x 3) 5; (b) Om (x )(x 6) 0 är x 6; (c) (x + 6)(x ) > 0 om x > 6. Solutio:

Läs mer

Uppgifter 3: Talföljder och induktionsbevis

Uppgifter 3: Talföljder och induktionsbevis Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e

Läs mer

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process. Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b]. MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a

H1009, Introduktionskurs i matematik Armin Halilovic POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING. vara ett polynom där a POLYNOM, POLYNOMDIVISION, ALGEBRAISKA EKVATIONER, PARTIALBRÅKSUPPDELNING Defiitio Polyom är ett uttryck av följade typ P( ) a a a, där är ett icke-egativt heltal (Kortare 0 P k ( ) a a 0 k ) k Defiitio

Läs mer

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren? Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. använder vi oftast induktionsbevis.

H1009, Introduktionskurs i matematik Armin Halilovic. använder vi oftast induktionsbevis. MATEMATISK INDUKTION För att bevisa att ett påståede P() är sat för alla heltal 0 aväder vi oftast iduktiosbevis Iduktiossatse Låt P() vara ett påståede vars saigsvärde beror av heltalet 0 där 0 är ett

Läs mer

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL

APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a

Läs mer

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P(

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n grad( P( Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycket av type a a a 0 ( där är ett icke-egativt heltal) Defiitio Låt P( a a a0 vara ett polyom där a 0, då

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH

Tentamen i Linjär Algebra, SF december, Del I. Kursexaminator: Sandra Di Rocco. Matematiska Institutionen KTH 1 Matematiska Istitutioe KTH Tetame i Lijär Algebra, SF164 14 december, 21. Kursexamiator: Sadra Di Rocco OBS! Svaret skall motiveras och lösige skrivas ordetligt och klart. Iga hjälpmedel är tillåta.

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa

Läs mer

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10 KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade

Läs mer

1 Armin Halilovic: EXTRA ÖVNINGAR

1 Armin Halilovic: EXTRA ÖVNINGAR Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger

Läs mer

Övning 3 - Kapitel 35

Övning 3 - Kapitel 35 Övig 3 - Kapitel 35 7(1). Brytigsidex får vi frå Eq. 35-3: c = = v. 998 10 8 19. 10 8 ms ms = 156.. 6(4). (a) Frekvese för gult atriumljus är,998 10 589 10 5,09 10 (b) När ljuset färdas geom glas blir

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl 1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta

Läs mer

Svar till tentan

Svar till tentan UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Prov i matematik ES, K, KadKemi, STS, X ENVARIABELANALYS 0-03- Svar till teta 0-03-. Del A ( x Bestäm e ekvatio för tagete till kurva y = f (x =

Läs mer

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.

Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost. UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt

Läs mer

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1. Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att

Läs mer

Bertrands postulat. Kjell Elfström

Bertrands postulat. Kjell Elfström F r å g a L u d o m m a t e m a t i k Matematikcetrum Matematik NF Bertrads ostulat Kjell Elfström Bertrads ostulat är satse, som säger, att om > är ett heltal, så fis det ett rimtal, sådat att < < 2 2.

Läs mer

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering.

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering. Kap 9. 9.5, 9.8 9.9, 6.5. Talföljd, mootoa talföljder, koverges, serier, koverges, geometriska serier, itegralkriterium, p serier, jämförelsekriterier, absolut koverges, altererade serier, potesserie,

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de

Läs mer

S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och

S n = (b) Med hjälp av deluppgift (a) beräkna S n. 1 x < 2x 1? i i. och Uppgift 1 För vilka x R gäller x 4 = 4? Uppgift Låt S n = n k=1 3 k (a) Visa att S n är en geometrisk summa (b) Med hjälp av deluppgift (a) beräkna S n Uppgift 3 Lös ekvationen e x + e x = 3 Uppgift 4

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator

Läs mer

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte

Läs mer

FUNKTIONSLÄRA. Christian Gottlieb

FUNKTIONSLÄRA. Christian Gottlieb FUNKTIONSLÄRA Christia Gottlieb Matematiska istitutioe Stockholms uiversitet 2002 Iehåll 1. Komplexa tal och vektorer i plaet 1 Tillämpigar på trigoometriska formler 7 2. Geometriska serier 8 3. Biomialsatse

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara

Läs mer

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet.

. Mängden av alla möjliga tillstånd E k kallas tillståndsrummet. Stokastiska rocesser Defiitio E stokastisk rocess är e mägd familj av stokastiska variabler Xt arameter t är oftast me ite alltid e tidsvariabel rocesse kallas diskret om Xt är e diskret s v för varje

Läs mer

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1

Induktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1 duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a

Läs mer

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK

Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.

Läs mer

1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x

1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom

Läs mer

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN 48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på

Läs mer

Stången: Cylindern: G :

Stången: Cylindern: G : mekaik I, 09084- A V H f mg G N B 3 d Frilägg cylider och de lätta ståge! Ståge påverkas av kraftparsmometet M samt kotaktkrafter i A och O. Cylider påverkas av kotaktkrafter i A och B samt tygdkrafte

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =

Lösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) = Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

EKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer.

EKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer. Arm Hallovc: EXTRA ÖVNINGAR Bomska ekvatoer EKVATIONER MED KOMPLEXA TAL A Ekvatoer som ehåller både ett obekat komplext tal och dess kojugat B Bomska ekvatoer. A Ekvatoer som ehåller både och För att lösa

Läs mer

DEL I. Matematiska Institutionen KTH

DEL I. Matematiska Institutionen KTH 1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska

Läs mer

Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik

Tillämpad biomekanik, 5 poäng Plan rörelse, kinematik och kinetik Pla rörelse Kiematik vid rotatio av stela kroppar Iledade kiematik för stela kroppar. För de två lijera, 1 och, i figure bredvid gäller att deras vikelpositioer, θ 1 och θ, kopplas ihop av ekvatioe Θ =

Läs mer

Några saker att tänka på inför dugga 2

Några saker att tänka på inför dugga 2 LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.

Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera. Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie

Läs mer

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6

4. Uppgifter från gamla tentor (inte ett officiellt urval) 6 SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.

Läs mer

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x) Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-6, 29/10-8/11, = m n

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-6, 29/10-8/11, = m n Uppsala Uiversitet Matematiska Istitutioe Bo Styf Trasformmetoder, 5 hp ES, gyl, Q, W --9 Sammafattig av föreläsigara - 6, 9/ - 8/,. De trigoometriska basfuktioera. Dea kurs hadlar i pricip om att uttrycka

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

3 Signaler och system i tidsplanet Övningar 3.1 Skissa följande signalers tidsförlopp i lämpligt tidsintervall

3 Signaler och system i tidsplanet Övningar 3.1 Skissa följande signalers tidsförlopp i lämpligt tidsintervall Sigaler och sstem i tidsplaet. Skissa följade sigalers tidsförlopp i lämpligt tidsitervall a) 0 6 [ ] b) [ ] c) 07 [ ] 0 [ ] d) u [ ] e) 06u[ ] u[ ] [ ] f) r [ ] 0 r[ ] r[ ] r[ 6] 0 r[ 8] g) 08 cos π h)

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell

Läs mer

Lycka till! I(X i t) 1 om A 0 annars I(A) =

Lycka till! I(X i t) 1 om A 0 annars I(A) = Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om komplexa tal Mikael Hindgren 17 oktober 2018 Den imaginära enheten i Det finns inga reella tal som uppfyller ekvationen x 2 + 1 = 0. Vi inför den imaginära

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Övningshäfte 2: Komplexa tal

Övningshäfte 2: Komplexa tal LMA100 VT007 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden.

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden. Armi Hlilovic: EXRA ÖVNINGAR ylors ormelör evribeluktioer AYLORS FOREL FÖR FUNKIONER AV EN VARIABEL ylors ormel väds bl vid i umerisk beräkigr ii optimerig och iii härledigr iom olik tekisk och mtemtisk

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Explorativ övning 7 KOMPLEXA TAL

Explorativ övning 7 KOMPLEXA TAL Explorativ övning 7 KOMPLEXA TAL Övningens syfte är att bekanta sig med komplexa tal. De komplexa talen, som är en utvidgning av de reella talen, kom till på 1400 talet då man försökte lösa kvadratiska

Läs mer

Ekvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp.

Ekvationen (ekv1) kan beskriva vågutbredning, transversella svängningar i en sträng och andra fysikaliska förlopp. VÅGEKVATIONEN Vi betratar följade PDE u( u( x t, där > är e ostat, x, t (ev) Evatioe (ev) a besriva vågutbredig, trasversella svägigar i e sträg och adra fysialisa förlopp Radvärdesproblemet består av

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna. 1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.

Läs mer

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL

Fourierserien. fortsättning. Ortogonalitetsrelationerna och Parsevals formel. f HtL g HtL t, där T W ã 2 p, PARSEVALS FORMEL Fourierserie fortsättig Ortogoalitetsrelatioera och Parsevals formel Med hjälp av ortogoalitetsrelatioera Y Â m W t, Â W t ] =, m ¹, m = () där Xf, g\ = Ÿ T f HtL g HtL, där W ã p, ka ma bevisa följade

Läs mer

A-del. (Endast svar krävs)

A-del. (Endast svar krävs) Lösningar till tentamen i Matematik grundkurs den 7 juni 011. A-del. (Endast svar krävs) 1. Förenkla så långt som möjligt. Svar: 1 1 1 1 +1. Skriv talet på formen a + ib. Svar: 1 + i 3. Beräkna 10 + 5i

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11

Sannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11 rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5.

29 Det enda heltalet n som satisfierar båda dessa villkor är n = 55. För detta värde på n får vi x = 5, y = 5. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den 3 november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1 a) Lös den diofantiska ekvationen 9x + 11y 00 b) Ange alla lösningar x, y) sådana

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 67, 984 Årgång 67, 984 Första häftet 3340. a) Vilket av talen A = 984( + + 3 + + 984 ) är störst? b) Vilket av talen B 3 = 3 + 3 + 3 3 + + 984 3 är störst? A / = 984( + + 3 + + 984) B =

Läs mer

RESTARITMETIKER. Avsnitt 4. När man adderar eller multiplicerar två tal som t ex

RESTARITMETIKER. Avsnitt 4. När man adderar eller multiplicerar två tal som t ex Avsitt 4 RESTARITMETIKER När ma adderar eller multiplicerar två tal som t ex 128 + 39..7 128 43..4 så bestämmer ma först de sista siffra. De operatioer som leder till resultatet kallas additio och multiplikatio

Läs mer

Resultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken.

Resultatet av kryssprodukten i exempel 2.9 ska vara följande: Det vill säga att lika med tecknet ska bytas mot ett plustecken. Kommetarer till Christer Nybergs bok: Mekaik Statik Kommetarer kapitel 2 Sida 27 Resultatet av kryssprodukte i exempel 2.9 ska vara följade: F1 ( d cos β + h si β ) e z Det vill säga att lika med tecket

Läs mer

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer? Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera

Läs mer

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5)

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5) Matematikcentrum Matematik NF Räta linjen. Ange riktningskoefficient och skärningspunkter me alarna för följane linjer. a) y = 5 b) = y + 5 c) y = 5 + ) + y + = 0 e) y 4 = 0 f) + y = g) y 5 = h) y = 4

Läs mer