Digital signalbehandling Fönsterfunktioner

Storlek: px
Starta visningen från sidan:

Download "Digital signalbehandling Fönsterfunktioner"

Transkript

1 Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers fouriertrasform. I det första fallet är avsikte att miska läckaget mella olka frekveskompoeter, upplösige kommer dock att avta då föster iförs. I filterdimesioerigsfallet är avsikte att miska filterkurvas rippel i pass- och spärrbad, vi får dock också e förädrig av filtrets gräsfrekves(er) och övergåge frå pass- till sapärrbad blir midre brat (mera flack) Vi skall här se på utseedet hos ett atal fösterfuktioer samt på deras frekvesgåg (beloppskurva) i lijär skala och med db-skala. Vi ser på föster med och termer, dvs N= och N=. Alla föster har i frekvesplaet ett huvudpassbad, e så kallad huvudloob av viss bredd som kommer att vara det frekvesbad som främst släpps igeom, dessutom har vi svägigar (rippel) i spärrbadet som gör att vi äve där får bad (sidoloober) där e del av sigale släpps igeom, dock mer dämpad ä i huvudloobe. Det är beräkigsmässigt eklast att studera föster om vi betraktar dom som symmetriska, dvs om de beskrivs av e fuktio [] w M M M = N 2 Förutsättige för detta är då att totalt atal termer är udda, vilket i allmähet ite behöver gälla, me det föreklar som sagt beräkigara och medför ige begräsig i aalyse. Vid frekvesaalys har vi ormalt sampelserie x [] N där varje term då skall viktas med si fösterterm w [] ( w[] x[] ). Här har vi alltså ite symmetriska termer me skillade mella dessa icke-symmetriska termer och symmetriska termer är bara e lijär fasvridig i frekvesplaet (se stecil om lijär fas)och vi ka öja oss med att betrakta det symmetriska fallet. I filtersammahag däremot är det aturligt att behadla symmetriska termer, se stecil om filterdimesioerig via ivers fouriertrasform. CHALMERS LINDHOLMEN Sida Istitutioe för data- och elektrotekik Sve Kutsso Box Göteborg Besöksdress: Hörselgåge 4 Telefo: Fax: Web: svek

2 Valiga fösterfuktioer Rektagulärt föster Det eklaste föstret tar med alla N sampel precis som de är, dvs w[] = M i övrigt M M = N 2 Eftersom vi tar med sample precis som de är så säger ma också ofta lite slarvigt att ma ite aväder ågot föster. Rektagulärt N= Figur Spektra rektagulärt N= Spektra rektagulärt N= db-skala Figur Figur 3 Digital sigalbehadlig kurspla sida 2

3 Rektagulärt N= Figur 4 Spektra rektagulärt N= Spektra rektagulärt N= db-skala Figur Figur 6 Vi ser att huvudloobe blir smalare då atalet termer ökar. Huvudloobe har bredde 2 f s f meda sidoloobera har bredde s. De relativa höjde hos varje idividuell loob N N förädras ite med atalet termer, dvs första sidoloobe har alltid samma höjd i förhållade till huvudloobe etc. Detta gäller för alla föstertyper. Ett idealt föster som är oädligt brett och tar med alla termer skulle ge e oädligt smal huvudloob. Triagulärt föster Vi har fuktioe [] w k = 2 k N + k = N + k 2 Digital sigalbehadlig kurspla sida 3

4 Och spektrat W M ( Ω) = M [ M + k] cos( k Ω) k = Maxvärdet iträffar då M = och är W M max = W k = [] = M ( M + k) = ( M + ) 2 Tragulärt N= Figur 7 Spektra tragulärt N= Spektra triagulärt N= db-skala Figur Figur 9 Digital sigalbehadlig kurspla sida 4

5 Tragulärt N= Figur Spektra tragulärt N= Spektra triagulärt N= db-skala Figur Figur 2 Bartlettföstret Bartlettföstret är sarlikt det triagulära föstret och beskrivs av fuktioe [] = 2 ( k ) w k N k = k N + 2 Digital sigalbehadlig kurspla sida 5

6 Bartlett N= Figur 3 Spektra Bartlett N= Spektra Bartlett N= db-skala Figur Figur 5 Bartlett N= Figur 6 Digital sigalbehadlig kurspla sida 6

7 Spektra Bartlett N= Spektra Bartlett N= db-skala Figur Figur 8 Om vi jämför det triagulära föstret (eller Bartlettföstret) med det rektagulära föstret så ger det triagulära föstret ugefär dubbelt så stor dämpig av de första sidoloobe. Samtidigt blir huvudloobe ugefär dubbelt så bred vilket ger sämre upplösig vid frekvesaalys respektive flackare övergåg mella pass- och spärrbad vid filterdimesioerig. vo Haföster (Haig, raised cosie) w π M + [] =,5 +,5 cos M M Haig N= Figur 9 Digital sigalbehadlig kurspla sida 7

8 Spektra Haig N= Spektra Haig N= db-skala Figur Figur 2 Haig N= Figur 22 Spektra Haig N= Spektra Haig N= db-skala Figur Figur 24 Digital sigalbehadlig kurspla sida 8

9 Hammigföster w π M [] =,54 +,46 cos M M Hammig N= Figur Spektra Hammig N= Figur Spektra Hammig N= db-skala Figur 27 Hammig N= Figur 28 Digital sigalbehadlig kurspla sida 9

10 Spektra Hammig N= Spektra Hammig N= db-skala Figur Figur 3 E jämförelse ger att Hammigföstret har ågot bredare huvudloob ä det triagulära föstret och Haigföstrets huvudloob är ytterligare ågot bredare. Haigföstret har få sidoloober som är ågot mer dämpade ä motsvarade loober hos det triagulära föstret. Hammigföstret har fler sidoloober me de första sidoloobera är väl dämpade, speciellt de första sidoloobe. Blackmaföster π 2 π w[] =,42 +,5 cos +,8 cos N N Blackma N= Figur 3 Digital sigalbehadlig kurspla sida

11 Spektra Blackma N= Spektra Blackma N= db-skala Figur Figur 33 Blackma N= Figur 34 Spektra Blackma N= Spektra Blackma N= db-skala Figur Figur 36 Digital sigalbehadlig kurspla sida

12 Kaiserföster Med ett Kaiserföster, har vi fler frihetsgrader så att vi ka välja att optimera filtret för brat övergåg mella pass- och spärrbad eller litet rippel i pass- och sidbad, dvs vi byter lite badbredd mot små sidoloober. Vi ka ite få båda samtidigt uta vi byter i pricip det ea mot det adra. +δ -δ δ Ω δ Figur 37 Kaiserföster N= alfa= Figur 38 Spektra Kaiserföster N= alfa=8 Spektra Kaiserföster N= alfa=8 db-skala Figur Figur 4 Digital sigalbehadlig kurspla sida 2

13 Kaiserföster N= alfa= Figur 4 Spektra Kaiserföster N= alfa=8 Spektra Kaiserföster N= alfa=8 db-skala Figur Figur 43 Slutkommetar Om vi ser på de olika fösterfuktioera i frekvesplaet så ser vi att ökat atal termer alltid ger smalare huvudloob, me rektagulärt föster ger alltid de smalaste huvudloobe. Vi ser att olika fösterfuktioer ger lite olika breda huvudloober och dessutom är det olika delar av sidoloobera som dämpas mest av olika föster. Ma ka ite geerellt säga att ågo fösterfuktio är bättre ä de adra. Vid frekvesaalys framhäver de olika delar av sigales spektra och det ka vara lämpligt att göra aalys av samma sampelmägd med flera olika föster. Vid filterdimesioerig får ma låta applikatioe avgöra vilket föster som ka vara lämpligt. Digital sigalbehadlig kurspla sida 3

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede.

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede. VÄSTIA DUSJROM Produsert for bevegelses hemmede, og er det mest fleksible og variasjorike alterativ på markedet. Tilpasigs-mulighetee er este ubegresede. HML Hjelpemiddel-leveradøre AS Braderudv. 90, 2015

Läs mer

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal.

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal. Komressorer F1 F Skillad mot fläktar: Betydade desitetsförädrig, ryk mäts ormalt som absolut totaltryk. vå huvudgruer av komressorer: Förträgigskomressorer urbokomressorer Egeskaer Lågt massflöde Höga

Läs mer

Kontextfri grammatik (CFG)

Kontextfri grammatik (CFG) Kotextfri grammatik (CFG) Mats Dahllöf Ist. f ligvistik och filologi December 2015 1 / 23 Frasstrukturträd hud studt Aalys av de ord som häger lägst ed, hud studt. E graf med fler oder ä depdsaalys (fem

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Digitalteknik F6. Några sammansatta digitala komponenter och lite designmetodik. Digitalteknik F6 bild 1

Digitalteknik F6. Några sammansatta digitala komponenter och lite designmetodik. Digitalteknik F6 bild 1 Digitaltekik F6 Några sammasatta digitala kompoeter och lite desigmetodik Digitaltekik F6 bild Sammasatta kompoeter Problem: E större kostruktio är praktiskt omöjlig att mauellt realisera med bara gridar.

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Iehåll Föreläsig 6 Asymtotisk aalys usammafattig experimetell aalys uasymtotisk aalys Lite matte Aalysera pseudokode O-otatio ostrikt o Okulärbesiktig 2 Mäta tidsåtgåge uhur ska vi mäta tidsåtgåge? Experimetell

Läs mer

= (1 1) + (1 1) + (1 1) +... = = 0

= (1 1) + (1 1) + (1 1) +... = = 0 TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad. Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig

Läs mer

Visst kan man faktorisera x 4 + 1

Visst kan man faktorisera x 4 + 1 Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

Många tror att det räcker

Många tror att det räcker Bästa skyddet Måga vet ite hur familje drabbas ekoomiskt om ågo dör eller blir allvarligt sjuk. Här berättar Privata Affärer vilket skydd du har och hur du ka förbättra det. Av Aika Rosell och Igrid Kidahl

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg

Läs mer

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer?

Analys av algoritmer. Beräkningsbar/hanterbar. Stora Ordo. O(definition) Datastrukturer och algoritmer. Varför analysera algoritmer? Datastrukturer och algoritmer Föreläsig 2 Aalys av Algoritmer Aalys av algoritmer Vad ka aalyseras? - Exekverigstid - Miesåtgåg - Implemetatioskomplexitet - Förstålighet - Korrekthet - - 29 30 Varför aalysera

Läs mer

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning ydkraft Nät AB, Tekiskt Meddelade för Jordigsverktyg : Dimesioerig, kotroll och besiktig 2005-04-26 Författare NUT-050426-006 Krister Tykeso Affärsområde Dokumettyp Dokumetam Elkrafttekik Rapport 1(6)

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1 Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION

Läs mer

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol.

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol. Välj att flytta dia Utyttja di flytträtt om du ka. Det är Privata Affärers råd u är regeriges tillfälliga flyttstopp hävs de 1 maj. Flyttstoppet ifördes i februari i fjol som e direkt följd av Damarksmålet.

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =. Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a

Läs mer

Smärtlindring vid medicinsk abort

Smärtlindring vid medicinsk abort Smärtlidrig vid medicisk abort EN JÄMFÖRANDE STUDIE VETENSKAPLIGT ARBETE UNDER ST ELIN SJÖLANDER HANDLEDARE MARIE BOLIN Itroduktio Smärta vid medicisk abort valig, smärtlidrig vid medicisk abort dåligt

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

Grammatik för språkteknologer

Grammatik för språkteknologer Grammatik för språktekologer Språktekologi och grammatiska begrepp http://stp.ligfil.uu.se/~matsd/uv/uv11/gfst/ Mats Dahllöf Istitutioe för ligvistik och filologi November 2011 Dea serie Frasstrukturaalys

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Subsystem. Klasser är ett bra sätt att organisera små system. Klasser är för små enheter för att organisera stora system

Subsystem. Klasser är ett bra sätt att organisera små system. Klasser är för små enheter för att organisera stora system Desig av subsystem Subsystem Klasser är ett bra sätt att orgaisera små system Klasser är för små eheter för att orgaisera stora system Större eheter behövs för orgaiserige Subsystem Sex priciper diskuteras

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

Stadsbyggande och farligt gods

Stadsbyggande och farligt gods Stadsbyggade och farligt gods Dialog-pm 2004:2 Aktualiserig av Översiktspla 2000 Malmö Stadsbyggadskotor mars 2004 Dialog-pm 2004:2 Stadsbyggade och farligt gods Sammafattig Dialog-pm 2004:2 Stadsbyggade

Läs mer

n Marknadens minsta och mest robusta FRAinstrument n Marknadens högsta prestanda och användande n Uppfyller alla internationella standarder för

n Marknadens minsta och mest robusta FRAinstrument n Marknadens högsta prestanda och användande n Uppfyller alla internationella standarder för FRAX 101 SFRA Aalysator Markades mista och mest robusta FRAistrumet Markades högsta prestada och avädade av stadardiserad sigalkabel-jordaslutig ger högsta möjliga repeterbarhet Uppfyller alla iteratioella

Läs mer

RÄKNESTUGA 2. Rumsakustik

RÄKNESTUGA 2. Rumsakustik RÄKNESTUGA Rumsakustik 1. Beräka efterklagstidera vid 15, 500 och 000 Hz i ett rektagulärt rum med tegelväggar och med betog i tak och golv. Rummets dimesioer är l x 3,0 l y 4,7 l z,5 [m].. E tom sal med

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR

Armin Halilovic: EXTRA ÖVNINGAR Stokastiska rocesser Defiitio E stokastisk rocess är e mägd (familj) av stokastiska variabler X(t) arameter t är oftast (me ite alltid) e tidsvariabel rocesse kallas diskret om X(t) är e diskret s v för

Läs mer

Ny lagstiftning från 1 januari 2011

Ny lagstiftning från 1 januari 2011 Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning ÖVRGÅNG De eklaste halvledarkomoete är diode. Diode består av e doad och e doad del. Vid kotaktyta mella och doat område ustår ett ire elektriskt fält.g.a. att elektroer i ledigsbadet å sida diffuderar

Läs mer

Biostatistik II - Hypotesprövning i teori och praktik. Frida Eek

Biostatistik II - Hypotesprövning i teori och praktik. Frida Eek Biostatistik II - Hypotesprövig i teori och praktik Frida Eek frida.eek@med.lu.se 1 Viktiga dimesioer vid val av test (och äve val av deskriptiv statistik) Urvalsstorlek Mätivå/skaltyp Fördelig av data

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs

SAMMANFATTNING TAMS79 Matematisk statistik, grundkurs SAMMANFATTNING TAMS79 Matematisk statistik, grudkurs LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 2015 Versio: 1.0 Seast reviderad: 2016-02-01 Författare: Viktor Cheg

Läs mer

Planområdets förutsättningar

Planområdets förutsättningar Plaområts förutsättigar Bjärehalvö är atursköa le av Halladsåse som sticker ut i Kattegatt. Åse bildar gräs mella ladskape Hallad och åe. Halladsåse ligger till största le i åe och sträcker sig frå Örkelljuga

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

Vägen till energiklassad personal. Kurskatalog Fastighetsautomation. www.siemens.se/utbildning

Vägen till energiklassad personal. Kurskatalog Fastighetsautomation. www.siemens.se/utbildning Väge till eergiklassad persoal Kurskatalog Fastighetsautomatio www.siemes.se/utbildig Vi ka ge er vad som krävs Fastighetsägare påverkas av EU s direktiv om byggaders eergiprestada. Ett område behadlar

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också

Läs mer

Fouriertransformen. Faltning, filtrering och sampling

Fouriertransformen. Faltning, filtrering och sampling Faltig Fouriertrasforme Faltig, filtrerig och samplig Givet två sigaler f och g och deras respektive spektra f`, g`, hur bildar ma e tredje sigal såda att dess spektrum är lika med summa f` + g`. Lätt!

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Identfiera orsaker och ge förslag på åtgärder och resultatmått Åtgärdstyp Ska risken åtgärdas genom att orsaken: Bakomliggande orsaker

Identfiera orsaker och ge förslag på åtgärder och resultatmått Åtgärdstyp Ska risken åtgärdas genom att orsaken: Bakomliggande orsaker Risk (möjlighet att e egativ RiskID Beskrivig av risk 4.1 R1 Öskemåle kommer osorterat och geererar måga aalyser - ökad arbetsisats och kostader Ma hittar ite 4.1 R2 produktera i lista 4.2 R3 Svårigheter

Läs mer

Extrem prestanda Nu utan BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER

Extrem prestanda Nu utan BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER Extrem prestada Nu uta BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER Formar för kall och varm mat BPA-fritt kommersiellt produktsortimet för livsmedelsservice Rubbermaid Commercial har

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Marknaden för PPM-förvaltning

Marknaden för PPM-förvaltning Nu är goda PPM- I dag fis det måga företag som vill placera dia PPM-pegar. Me du ska vara försiktig ofta kostar det mer ä det smakar. Markade för PPM-förvaltig har vuxit kraftigt det seaste året. Nu fis

Läs mer

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n

Tolkning av sannolikhet. Statistikens grunder, 15p dagtid. Lite mängdlära. Lite mängdlära, forts. Frekventistisk n A /n P(A) då n Tolkig av saolikhet Statistikes gruder, 15p dagtid HT 01 Föreläsigar F4-F6 Frekvetistisk A / A) då Klassisk atal(a) / atal(ω) = A) storlek(a) / storlek(ω) = A) Subjektiv (persolig) isats/total vist = A)

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive

Läs mer

Kuggremmar SECA SECAflex

Kuggremmar SECA SECAflex Kuggremmar SECA SECAflex Kuggremmar för hög effektöverförig och sykro drift. Tematic Idustrial Parts AB Kuggremmar med itegrerade korder, som ite töjer sig och garaterar miimalt glapp. SECA och SECAFLEX

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

En tablett innehåller 5 mg solifenacinsuccinat, vilket motsvarar 3,8 mg solifenacin. Hjälpämne: laktosmonohydrat (107,5 mg)

En tablett innehåller 5 mg solifenacinsuccinat, vilket motsvarar 3,8 mg solifenacin. Hjälpämne: laktosmonohydrat (107,5 mg) PRODUKTRESUMÉ 1 LÄKEMEDLETS NAMN Vesicare 5 mg filmdragerad tablett Vesicare 10 mg filmdragerad tablett 2 KVALITATIV OCH KVANTITATIV SAMMANSÄTTNING Vesicare 5 mg filmdragerad tablett: E tablett iehåller

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer

Doktorandernas uppfattningar om sin forskarutbildning vid Uppsala universitet

Doktorandernas uppfattningar om sin forskarutbildning vid Uppsala universitet Doktoraderas uppfattigar om si forskarutbildig vid Uppsala uiversitet Resultat frå e uiversitetsövergripade ekätudersökig: Språkveteskapliga fakultete Ehete för kvalitet och utvärderig Maria Wolters Maj

Läs mer

Parsningsalgoritmer. Parsningsalgoritmer: inledning. OH-serie 1: introduktion. Parsningalgoritmer I. Algoritmer. Vad är parsning? Vad är en algoritm?

Parsningsalgoritmer. Parsningsalgoritmer: inledning. OH-serie 1: introduktion. Parsningalgoritmer I. Algoritmer. Vad är parsning? Vad är en algoritm? Parsigsalgoritmer OH-serie 1: itroduktio http://stp.ligfil.uu.se/~matsd/uv/uv12/pa/ Mats Dahllöf Istitutioe för ligvistik och filologi April 2012 Parsigsalgoritmer: iledig Vad är parsig? Vad är e algoritm?

Läs mer

TRIBECA Finansutveckling

TRIBECA Finansutveckling TRIBECA Rådgivare iom fiasiella helhetslösigar TRIBECA a s k r e i v g S f a s k r i e v g S f g g r r e e a r a r e e i i f f TRIBECA s målsättig är att bidra med råd & produkter som hela tide gör att

Läs mer

Statistik för ingenjörer 1MS008

Statistik för ingenjörer 1MS008 Statistik för igejörer MS8 Föreläsig Kursmål: För godkät betyg på kurse skall studete käa till ett flertal metoder och tekiker för visualiserig av datamaterial; kua geomföra ekla beräkigar av saolikheter;

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller

Läs mer

största Nu är det dags att avslöja vilka bank- undersökning Sveriges Årets Bankjuryn

största Nu är det dags att avslöja vilka bank- undersökning Sveriges Årets Bankjuryn För artode året i rad utser Privata Affärer Årets Bak. Här ser du vilka baker som är bäst för just di privatekoomi. största bak- udersökig Nu är det dags att avslöja vilka baker som belöas av Privata Affärer.

Läs mer