= (1 1) + (1 1) + (1 1) +... = = 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "= (1 1) + (1 1) + (1 1) +... = = 0"

Transkript

1 TALFÖLJDER OCH SERIER Läs avsitte - och 5 Lös övigara, abcd, 4, 5, 7-9, -5, 7-9, -abcd, 4, 5 Läsavisigar Avsitt Defiitioe av talföljd i boe är ågot ryptis, me egetlige är det ågot väldigt eelt: e talföljd är helt eelt e följd av tal a, a, a, Tale a, som allas följdes elemet, a vara heltal, reella tal eller omplexa tal och följde a vara ädlig eller oädlig, äve om det seare är det valigaste i matematie När ma allmät disuterar talföljder så bruar umrerige av elemete a börja på, me det är ite ödvädigt; iblad a det vara ädamålseligt att umrera dem på ågot aat sätt Det fis flera olia sätt att defiiera elemete i e talföljd: Med hjälp av e formel som i Exempel och Reursivt, vilet iebär att a uttrycs med hjälp av ett eller flera av de föregåede elemete Följdera i Exempel 9, och är reursivt defiierade Geom ågo egesap, t ex att vote mella två på varadra följade elemet alltid har samma värde (e geometris talföljd, se eda och boe Exempel 5 samt avsitt ) På ågot aat, mer eller midre fatasifullt sätt Exempelvis sulle ma ua låta a vara atalet bostäver i ord ummer i Krig och fred Tolstojs roma är visserlige gasa tjoc, me följde blir förstås ädå ädlig Avsitt Aritmetisa följder och summor är, till sillad frå geometrisa, ite så valiga i tillämpigar Sats är därför betydligt vitigare ä Sats Sist i Sats står e meig som förmodlige är felformulerad De bör lyda så här i stället: Summa S allas e geometris summa Efter Exempel 7 iförs det vitiga begreppet serie E summa har alltid bara ädligt måga termer, meda e serie a ha oädligt måga Eftersom ma ite a lägga ihop oädligt måga termer, så är det ite självlart vad ma sall mea med summa av e serie I apitlet om gräsvärde ommer detta att disuteras Att ma måste vara atsam är ma maipulerar serier framgår av följade halsbrytade räig: Betrata talföljde a ( ),,,, och motsvarade serie a + a + a Låt oss sätta i pareteser på två olia sätt och försöa räa ut summa: å ea sida är ( ) + ( ) + ( )

2 och å de adra sida är ( ) ( ) Följde a är ju dessutom geometris med vote Formel i Sats a) ger att summa av serie är ( ) Har vi fuit e motsägelse i matematie? Nej, lösige på de här paradoxe är att ma får ite maipulera serier på samma sätt som ädliga summor Formel i Sats gäller till yttermera visso bara då vote uppfyller < Avsitt Summasymbole äer du förmodlige till seda tidigare, och om ite, så är det bra om du lär dig aväda de u Sats 4 iehåller bara två självlarheter och beviset a du hoppa över (det är ite ett dugg upplysade) Produttecet är ett stort pi E särsilt vitig produt är faultete som defiieras geom j j Således är! (då har produte bara e eda fator),!,! 6 osv Räa ut 4!, 5! och 6! själv Observera att för gäller ( ) ( )! De här formel aväder ma då ma sall defiiera! Om vi vill att de sall gälla äve då, så måste! ( )!! och ma sätter därför! Jämför det här med hur ma gör för att defiiera a Faulteter uppträder aturligt i måga matematisa sammahag, som du ommer att se i urse För seare bru sall vi bara äma ett sådat Låt f(x) x, där är ett positivt heltal, dvs,,, Deriverar vi f upprepade gåger så får vi f (x) x f (x) ( )x f () (x) ( )( )x f (4) (x) ( )( )( )x 4 f (5) (x) ( )( )( )( 4)x 5 och allmät f () (x) ( ) ( ( ))x

3 (betecige f () betyder alltså derivata av ordig till f) Derivata av ordig blir således f () (x) ( ) x Äve produte ( ) ( ( )) a uttrycas med hjälp av faulteter: ( ) ( ( )) ( ) ( ( )) ( )( ) ( )( ) ( )! Sammafattigsvis är alltså f () (x) Vi sall aväda de här formel eda Avsitt 5 ( )! x () Ett biom är ett uttryc med två termer, t ex a + b Eligt vadrerigsregel är (a + b) a + ab + b och uberigsregel säger att (a + b) a + a b + ab + b De vitiga biomialsatse är geeraliserige av de här formlera till högre poteser (a + b) För att ua formulera satse behöver ma iföra de s biomialoefficietera ( ) När och är heltal sådaa att så sätter ma!( )! () Det ommer sart att visa sig att biomialoefficietera är heltal, me det är ite självlart ur defiitioe () De här tale har massor av itressata egesaper, av vila vi sall se ågra eda Till att börja med a vi otera att Vidare är eftersom!!( )! ( )!( ( ))!!( )!

4 E yttig räig med brå är ( ) ( ) + Sammafattig: + ( )!( ( ))! +!( )! ( )!( + )! +!( )! ( + ) +!( + )!!( + )! ( + + ) ( + )!( + )! ( + )!!( + )!!( + )! + () (4) + för (5) Pascals triagel är ett slags tabell över biomialoefficietera i vile rad ummer iehåller tale ( ), ( ), ( ),, ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 4 ) ( 4 ) ( 4 ) ( 4 ( 5 4 ) ( 4 4) 5) Numrerige av radera börjar alltså med, så det översta talet i toppe av triagel är ( ) och av egesape () följer att de begräsas av ettor Formel (4) iebär att triagel är symmetris med avseede på lodlije och (5) att ett visst tal i de är summa av de två tal som står ärmast i rade ovaför, exempelvis är ( ) ( ) !!! + 4! ( ) 5! !!!! 4

5 De här egesape gör att ma lätt a ostruera triagel successivt med börja i toppe: Sriv som övig er hela triagel t o m rad! Det här successiva sättet att ostruera Pascals triagel visar att de består av positiva heltal, vilet i si tur visar att biomialoefficietera fatist är heltal Lägg märe till att de defiieras som vissa ratioella tal och att det ite är uppebart att ma alltid a förorta bort ämara Vi a u formulera biomialsatse: (a + b) a b Om ma aväder ( ( ) ) och a b så blir detta utsrivet ( ) ( ) ( ) (a + b) a + a b + a b + + ab + b Ma a ju lägga märe till att ( ) ( )!( )! Beviset för biomialsatse igår ite i urse och framför allt sall du ite försöa läsa det bevis som fis i boe (det aväder e tei som allas idutio som vi ite sall prata om) För de som är särsilt itresserad följer här ett aat, lite elare bevis som aväder derivata Sätt f(x) ( + x) ; då är f ett polyom av grad Vad häder är ma multiplicerar ihop de paretesera ( + x) ( + x)( + x) ( + x)? Jo, ma får e summa i vile termera uppstår geom att ma tar atige eller x ur var och e av paretesera och multiplicerar ihop dem Termera i summa har alltså utseedet x för,,,,, så det fis tal c sådaa att ( + x) c x + c x + c x + + c x + c x 5

6 E term x a ma få bara geom att ta :a ur alla pareteser och e term x får ma geom att ta x ur e paretes och :a ur de adra paretesera E term av forme x får ma geom att ta x ur pareteser och :a ur de övriga Allmät gäller att c är atalet sätt att få e term x, vilet är lia med atalet sätt att välja ut x ur pareteser och :a ur reste Eftersom c :a tydlige betyder atalet sätt att göra ågot, så måste de vara positiva heltal Lihete ( + x) c + c x + c x + + c x gäller för alla x, speciellt gäller de för x Me då blir västerledet lia med och i högerledet blir bara c var Alltså är c Om vi deriverar båda lede så får vi ( + x) c + c x + c x + + c x och sätter vi x här så får vi c Här påstår vi alltså att derivata av f(x) (+x) är f (x) (+x) ; för e motiverig av detta se eda För att bestämma oefficiete c sall vi derivera gåger Vi har för det första Alltså är f () (x) ( ) ( ( ))( + x) f () () ( )! ( + x) ( )! (6) Eligt formel () ova är derivata av ordig av x j lia med då j <! då j då j >! (j )! xj De termer i f () (x) som iehåller ett eller flera x blir då vi sätter x och de eda term som överlever är!, dvs Eligt (6) och (7) är således!c f () ()!c (7) ( )!, så att c!( )! Vi har u visat att ( + x) c x x 6

7 För att härur få biomialsatse gör vi så här: Om a är satse självlar (båda lede är lia med b ) Om a så a vi göra omsrivige ( ( (a + b) a + b )) a ( + x), där x b a a Alltså är (a + b) a x a a a b ( ) ( ) b a a b Beviset är lart, så är som på att vi sall motivera varför derivata av f(x) ( + x) är f (x) ( + x) Defiitiosvis är f f(x + h) f(x) ( + x + h) ( + x) (x) lim lim h h h h Sätt ett ögoblic + x t; då är f (t + h) t (x) lim h h Me gräsvärdet i högerledet är ju iget aat ä derivata av t, som vi eligt gymasiematematie vet är lia med t Alltså är f (x) t ( + x) Lösigar till ågra övigar d) Ledig: Tale, 4, 6 och 56 osv är poteser av 5 Beteca radie frå börja med R och radie efter 4 dagar med R Motsvarade volymer är V 4πR / respetive V 4πR / 4 dagar är 4-dagarsperioder, så V V 8V Härav får vi R 8R och R R 9 Om det :te talet är a och vote, så gäller a a Alltså är a a, vilet ger 7 a ( /) och a 8 Det sjätte talet blir a 6 8( /) 5 7/8 Låt orgaismes vit frå börja vara m Efter e matig väger de och efter två matigar m m + m m( +, 5), 5m m m +, 5m, 5 m 7

8 osv, så att m, 5 m För att få reda på är de har fördubblat si vit måste vi lösa evatioe, 5, som ger l / l, 5 4, Svaret är alltså efter 5 timmar 9b) p p p+ 8 p+ p p p 8 8 p 8 ( 8 Detta är e geometris serie med vot /8 /4 Eftersom vote ligger mella och så är serie overget och dess summa är 8 /4 d) Som de står är serie ite geometris, me ma a dela upp de i två geometrisa serier: p ) p i i + 5 i i i i i + i 5 i i i /5 /5 + / / 5 4 ( ) i + 5 i ( ) i Observera att serieras voter /5 och / ligger mella och så att seriera är overgeta e) Sätt t + : t e t 4 t+ e 4 e ( e ) e 4 eftersom vote e/4 ligger mella och f) ( ( ) p p ( ) ) p p e/4 4 e (4 e) ( ( ) ) p ( ) p p (/) / eftersom votera (/) och / ligger mella och 8

9 c) Biomialsatse ger ( ) 4 x + x (x + x) ( ) 4 x (4 )+ ( ) 4 (x ) 4 (x) 4 ( ) 4 x 4 x x + 6 4x + 4 8x + 6x 4 x x x + 6x 4 4 Eligt biomialsatse är ( ) x x (x / x ) ( ) ( ) x ( ) ( ) (x / ) (x ) ( ) ( ) x 5 5/ För att e term sall vara oberoede av x måste 5 5/, dvs Terme i fråga är ( ) ( ) 45 5a) Efter dagar har populatioera storleara a ( +, ), respetive b, Biomialsatse ger a ( +, ) ( +, +, +, ) ( +, +, +, ), och b ( +, +, +, ) b) Vi måste bestämma det mista värde på sådat att b a, dvs,, Olihete a srivas,, och logaritmerig ger dvs Svaret är således efter 9 dagar ( ), l l,, l ) 8, l (,, 9

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal

TATM79: Föreläsning 3 Binomialsatsen och komplexa tal TATM79: Föreläsig 3 Biomialsatse och omplexa tal Joha Thim augusti 016 1 Biomialsatse Ett miestric för att omma ihåg biomialoefficieter (åtmistoe för rimligt små är Pascals triagel: 0 1 1 1 1 1 1 3 1 3

Läs mer

Kombinatorik. Torbjörn Tambour 21 mars 2015

Kombinatorik. Torbjörn Tambour 21 mars 2015 Kombiatori Torbjör Tambour mars 05 Kombiatori är de del av matematie som sysslar med frågor av type På hur måga sätt a ma? Några gasa typisa exempel är följade: På hur måga olia sätt a åtta persoer bilda

Läs mer

Multiplikationsprincipen

Multiplikationsprincipen Kombiatori Kombiatori hadlar oftast om att räa hur måga arragemag det fis av e viss typ. Multipliatiospricipe Atag att vi är på e restaurag för att provsmaa trerättersmåltider. Om det fis fyra förrätter

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Inledande kombinatorik LCB 2001

Inledande kombinatorik LCB 2001 Iledade kombiatorik LCB 2001 Ersätter Grimaldi 1.1 1.4, 3.1 (delvis) 1 Additios- och multiplikatiospricipera Kombiatorik hadlar om koste att räka atalet av saker och tig. Hur måga gåger geomlöpes e viss

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning...

Innehåll Grafräknaren och diskret matematik...1 Vad handlar diskret matematik om?...1 Permutationer och kombinationer...3 Något om heltalsräkning... Iehåll Grafräkare och diskret matematik...1 Vad hadlar diskret matematik om?...1 Permutatioer och kombiatioer...3 Något om heltalsräkig...4 Modulusoperator...4 Faktoriserig i primfaktorer...5 Talföljder...7

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

Inklusion och exklusion Dennie G 2003

Inklusion och exklusion Dennie G 2003 Ilusio - Exlusio Ilusio och exlusio Deie G 23 Proble: Tio ä lägger ifrå sig sia hattar vid ett besö på e restaurag. På hur åga sätt a alla äe läa restaurage ed fel hatt. Detta proble a lösas ed ägdläras

Läs mer

Bredbandsmarknaden i studentbostäderna i Lund ur ett mikroekonomiskt perspektiv

Bredbandsmarknaden i studentbostäderna i Lund ur ett mikroekonomiskt perspektiv 20060319 Kadidatuppsats i Natioaleoomi Bredbadsmarade i studetbostädera i Lud ur ett miroeoomist perspetiv Författare: Olof Karlsso Hadledare: Jerer Holm Dispositio... 3 INLEDNING... 4 Bagrud... 4 Syfte...

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

RSA-kryptering. Torbjörn Tambour

RSA-kryptering. Torbjörn Tambour RSA-rytering Torbjörn Tambour RSA-metoden för rytering har den seciella och betydelsefulla egensaen att metoden för rytering är offentlig, medan metoden för derytering är hemlig. Detta an om man funderar

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Gudkus i disket matematik Sammafattig, del I G. Gipebeg 1 Mägde och logik 2 Relatioe och fuktioe Aalto-uivesitetet 15 maj 2014 3 Kombiatoik etc. G. Gipebeg Aalto-uivesitetet MS-A0409 Gudkus i

Läs mer

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering.

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering. Kap 9. 9.5, 9.8 9.9, 6.5. Talföljd, mootoa talföljder, koverges, serier, koverges, geometriska serier, itegralkriterium, p serier, jämförelsekriterier, absolut koverges, altererade serier, potesserie,

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

Många tror att det räcker

Många tror att det räcker Bästa skyddet Måga vet ite hur familje drabbas ekoomiskt om ågo dör eller blir allvarligt sjuk. Här berättar Privata Affärer vilket skydd du har och hur du ka förbättra det. Av Aika Rosell och Igrid Kidahl

Läs mer

Försöket med trängselskatt

Försöket med trängselskatt STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

god stiftelsepraxis www.saatiopalvelu.fi

god stiftelsepraxis www.saatiopalvelu.fi god stiftelsepraxis SÄÄTIÖIDEN JA RAHASTOJEN NEUVOTTELUKUNTA RY DELEGATIONEN FÖR STIFTELSER OCH FONDER RF www.saatiopalvelu.fi 1 Cotets God stiftelsepraxis 1 Iledig 3 2 God stiftelsepraxis 3 Stipedier

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

Så här kommer byggherren och entreprenören överens om energianvändningen

Så här kommer byggherren och entreprenören överens om energianvändningen Så här kommer byggherre och etrepreöre överes om eergiavädige Så här kommer byggherre och etrepreöre överes om eergiavädige Sveby står för Stadardisera och verifiera eergiprestada i byggader och är ett

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på?

SveTys. Affärskultur i Tyskland. Vad är det? Och vad ska jag tänka på? SveTys Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2 Affärskultur i Tysklad Vad är det? Och vad ska jag täka på? 2008 SveTys, Uta Schulz, Reibek 3 Iledig När ma gör affärer i Tysklad eller

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

Hur månfa indianer...? och andra gåtor Lärarmaterial. Vad handlar boken om? Mål från Lgr 11: Att arbeta med gåtor. Lek med ord och bokstäver

Hur månfa indianer...? och andra gåtor Lärarmaterial. Vad handlar boken om? Mål från Lgr 11: Att arbeta med gåtor. Lek med ord och bokstäver Lärarmaterial sida 1 Författare: Keld Peterse Vad hadlar boke om? Här får ma täka till! Ka du lösa gåtora? Mål frå Lgr 11: Lässtrategier för att förstå och tolka texter samt för att apassa läsige efter

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Fouriertransformen. Faltning, filtrering och sampling

Fouriertransformen. Faltning, filtrering och sampling Faltig Fouriertrasforme Faltig, filtrerig och samplig Givet två sigaler f och g och deras respektive spektra f`, g`, hur bildar ma e tredje sigal såda att dess spektrum är lika med summa f` + g`. Lätt!

Läs mer

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol.

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol. Välj att flytta dia Utyttja di flytträtt om du ka. Det är Privata Affärers råd u är regeriges tillfälliga flyttstopp hävs de 1 maj. Flyttstoppet ifördes i februari i fjol som e direkt följd av Damarksmålet.

Läs mer

MARKNADSPLAN Kungälvs kommun 2010-2014

MARKNADSPLAN Kungälvs kommun 2010-2014 MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Plan för hasselmus vid Paradis, Sparsör

Plan för hasselmus vid Paradis, Sparsör 2010-06-28 Pla för hasselmus vid radis, Sparsör Bakgrud och syfte E pla för hasselmus har tagits fram i sambad med detaljplaeläggig av fastighet radis 1:4 i Sparsör, Borås Stad. Detaljpla syftar till att

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker

Utvärdering av tidigarelagd start av prismätningar i nya radio- och TV-butiker (5) PM till Nämde för KPI [205-05-8] PCA/MFO Kristia tradber Aders Norber Utvärderi av tidiarelad start av prismätiar i ya radio- och TV-butier För iformatio Prisehete har atait e stevis asats av implemeteri

Läs mer

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen

Lärarhandledning Att bli kvitt virus och snuva - När Lisa blev av med förkylningen Lärarhadledig Att bli kvitt virus och suva - När Lisa blev av med förkylige För ytterligare iformatio kotakta projektledare: Charlotte.Kristiasso@phs.ki.se 1 Iledig Atibiotikaresistes är ett växade problem

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Kollektivt bindande styre på global nivå

Kollektivt bindande styre på global nivå Iteratioell ivå Global, regioal eller mellastatlig? Allt fler viktiga politiska frågor går ite lägre att lösa på atioell ivå. Folk över hela världe berörs exempelvis av växthuseffekte. Vad fis det för

Läs mer

PTKs stadgar. Fastställda vid stämman 2009 06 16

PTKs stadgar. Fastställda vid stämman 2009 06 16 PTKs stadgar Fastställda vid stämma 2009 06 16 INNEHÅLLSFÖRTECKNING SYFTE OCH UPPGIFTER Syfte och uppgifter 3 Medlemskap 4 Orgaisatio 7 Stämma 8 Överstyrelse 12 Styrelse 15 Förhadligsorgaisatio 17 PTK-L

Läs mer

Innehållsförteckning Tabeller och polynom

Innehållsförteckning Tabeller och polynom Iehållsförteckig Tabeller och polyom -Utsigal och seebeckkoefficieter för termoelemet B, E, J, K, N, R, S, T eligt IEC 60584 (1995). 10:2 -Utsigal för termoelemet W3Re/W25Re och W5Re/W26Re eligt ASTM 988

Läs mer

Ny lagstiftning från 1 januari 2011

Ny lagstiftning från 1 januari 2011 Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q

Läs mer

Kontextfri grammatik (CFG)

Kontextfri grammatik (CFG) Kotextfri grammatik (CFG) Mats Dahllöf Ist. f ligvistik och filologi December 2015 1 / 23 Frasstrukturträd hud studt Aalys av de ord som häger lägst ed, hud studt. E graf med fler oder ä depdsaalys (fem

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

Icke-lineära ekvationer

Icke-lineära ekvationer Icke-lieära ekvatioer Exempel: Rote till ekvatioe x = cos( x) är lika med x -koordiate för skärigspukte mella kurvora y = x och y = cos( x). Vi ka plotta kurvora på itervallet [,] med följade Matlabkommado

Läs mer

Förslag FÖRSLAG. Riktlinjer

Förslag FÖRSLAG. Riktlinjer Förslag Riktlijer Övergripade riktlijer för lokaliserig Följade övergripade riktlijer gäller vid prövig av vidkraftsetablerigar. Riktlijera gäller för stora verk, 14-15 meter där gräse edåt är verk med

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Leif Abrahamsson. Uppsala Universitet

Leif Abrahamsson. Uppsala Universitet Två formler för talet π Leif Abrahamsso Uppsala Uiversitet Dea uppgift syftar till att härleda två formler för talet π. De två formleras härledig är oberoede av varadra och ka således var för sig utgöra

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

. Om man har n stycken valsituationer med k valmöjligheter var, är det totala antalet valmöjligheter k.

. Om man har n stycken valsituationer med k valmöjligheter var, är det totala antalet valmöjligheter k. . Saolihetslära. Kombiatori Vad är saolihetslära? Ma a allmät säga att iom saolihetslära försöer ma beräa chaser eller riser. Det a seda vara fråga om chase att via på lotto eller rise att bli sju i e

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Kommunstyrelsens planutskott

Kommunstyrelsens planutskott KALLELSE/ FÖREDRAGNINGSLISTA 1(2) Reviderad 8 jui 2015 Kommustyrelses plautskott Tid Tisdage de 9 jui 2015 kl. 10:00 Plats KS-sale, stadshuset Eligt uppdrag Aette Mellström Föredragigslista Val av protokollsjusterare

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

CONSTANT FINESS SUNFLEX

CONSTANT FINESS SUNFLEX Luex terrassarkiser. Moterigs- och bruksavisig CONSTNT FINESS SUNFLEX 5 6 Markises huvudkopoeter och ått Placerig av kobikosol rklockor och justerig Parallelljusterig vädig och skötsel Huvudkopoeter och

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1 Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION

Läs mer

Subsystem. Klasser är ett bra sätt att organisera små system. Klasser är för små enheter för att organisera stora system

Subsystem. Klasser är ett bra sätt att organisera små system. Klasser är för små enheter för att organisera stora system Desig av subsystem Subsystem Klasser är ett bra sätt att orgaisera små system Klasser är för små eheter för att orgaisera stora system Större eheter behövs för orgaiserige Subsystem Sex priciper diskuteras

Läs mer

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning ydkraft Nät AB, Tekiskt Meddelade för Jordigsverktyg : Dimesioerig, kotroll och besiktig 2005-04-26 Författare NUT-050426-006 Krister Tykeso Affärsområde Dokumettyp Dokumetam Elkrafttekik Rapport 1(6)

Läs mer

Tentamen i Kunskapsbaserade system, 5p, Data 3

Tentamen i Kunskapsbaserade system, 5p, Data 3 Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska

Läs mer

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede.

Produsert for bevegelses hemmede, og er det mest fleksible og variasjonrike alternativ på markedet. Tilpasnings-mulighetene er nesten ubegrensede. VÄSTIA DUSJROM Produsert for bevegelses hemmede, og er det mest fleksible og variasjorike alterativ på markedet. Tilpasigs-mulighetee er este ubegresede. HML Hjelpemiddel-leveradøre AS Braderudv. 90, 2015

Läs mer

Ett enklare. sätt att arbeta. XOR Compact 4.0 Demohandledning

Ett enklare. sätt att arbeta. XOR Compact 4.0 Demohandledning Ett eklare sätt att arbeta. XOR Compact 4.0 Demohadledig 1 Mer ä 12.000 ordiska företag aväder det reda. Opartiska tester utser det till markades bästa program. Facktidige Mikrodator gör det för tredje

Läs mer

Diagnostiskt test 1 tid: 2 timmar

Diagnostiskt test 1 tid: 2 timmar Diagnostist test tid: timmar Detta är ditt första diagnostisa test i matemati å den är reetitionsursen. Ge dig själv oäng för varje rätt svar. (ge inga ½ oäng). edömning: - oäng Du ar tillräcliga förunsaer

Läs mer

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad 1/5 Sektor samhällsbyggad Datum Beteckig 2015-02-10 PLAN.2014.19 Plaehete Hadläggare Jey Olausso Detaljpla Ekedal södra Behovsbedömig Förslag Geomföradet av plaförslaget bedöms ite medföra ågo betydade

Läs mer

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a

Kapitel 4.1. 4101, 4102, 4103, 4104 Exempel som löses i boken. = = = = 1. 4105 a) n a1 + a a a = = = = a a a Kompletterde löigförlg och ledigr, Mtemtik 000 kur C, kpitel Kpitel. 0, 0, 0, 0 Exempel om löe i boke. 0 ) 7 0 + + + 6 + 8 + 06 ) +, + 6 6 + + + 69 69 + +, + + 6 6+ 9 8+ + 07 Se boke ledig. Kotkt di lärre

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK Versio 9 december 4 Fel i lösigara mottages tacksamt till mattsso@math.kth.se. Notera att lösigara på vissa ställe utyttjar adra,

Läs mer