Tentamen 19 mars, 8:00 12:00, Q22, Q26

Storlek: px
Starta visningen från sidan:

Download "Tentamen 19 mars, 8:00 12:00, Q22, Q26"

Transkript

1 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också läma i kompletta lösigar till uppgiftera, me svarsbladet ska ädå alltid fyllas i. De maimala poäge är 6 poäg och det krävs 48 poäg för att bli godkäd. Om resultatet blir åtmistoe 46 poäg ges e möjlighet att skriva e kompletterigsskrivig för att bli godkäd på tetame. Tillåta hjälpmedel Vid dea skrivig får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig A4-sida med ega ateckigar (origial, ej kopia). Dea sida skall lämas i tillsammas med svarsbladet.

2 Uppgift (6 p) Besvara följade teorifrågor geom att välja ett alterativ, som du aser är korrekt. a) (2 p) E aktör som är balasasvarig har följade skyldigheter: I) Ma är ekoomiskt asvarig för att systemet uder e viss hadelsperiod (t.e. e timme) tillförs lika mycket eergi som es kuder förbrukat, II) Ma är fysiskt asvarig för att systemet uder e viss hadelsperiod (t.e. e timme) tillförs lika mycket eergi som es kuder förbrukat, III) Ma är fysiskt asvarig för att systemet i varje ögoblick tillförs lika mycket effekt som es kuder förbrukar.. Iget av påståedea är saa. 2. Edast I är sat.. Edast II är sat. 4. Edast III är sat. 5. I och II är saa me ite III. b) (2 p) Kosumetera på e vertikalt itegrerad elmarkad har följade valmöjligheter: I) De ka välja vilke systemoperatör de vill ha, II) De ka välja vilke elleveratör de vill ha, III) De ka välja vilke aktör som ska sköta deras balasasvar.. Iget av påståedea är saa. 2. Edast I är sat.. Edast III är sat. 4. I och II är saa me ite III. 5. II och III är saa me ite I. c) (2 p) Med förhadshadel avser vi all hadel som sker före själva leverastimme (eller ågo aa hadelsperiod). På förhadsmarkade ka ma hadla med följade typer av kotrakt: I) Balaskraft, d.v.s. då e balasasvarig aktör säljer ett evetuellt överskott i si balas till systemoperatöre, eller då e balasasvarig aktör köper av systemoperatöre för att täcka ett evetuellt uderskott i si balas, II) Självbetjäigskotrakt, d.v.s. då kude aboerar på e viss maimal effekt och uder kotraktets giltighetstid får köpa valfri mägd eergi per hadelsperiod, så läge de maimala effekte ite överskrids, III) Reglerkraft, d.v.s. då e aktör på begära av systemoperatöre tillför systemet mer effekt (uppreglerig) eller då e aktör på begära av systemoperatöre tar ut mer effekt frå systemet (edreglerig).. Iget av påståedea är saa. 2. Edast I är sat.. Edast II är sat. 4. Edast III är sat. 5. I och III är saa me ite II. 2

3 Uppgift 2 (8 p) a) ( p) Figure eda visar elpriset på e viss elmarkad uder ett år. Atag att det på dea elmarkad råder perfekt kokurres och att alla aktörer har perfekt iformatio. Hur mycket producerar ett kraftverk med driftkostade /MWh uder detta år, om de istallerade effekte i kraftverket är 5 MW? Observera att svaret ska ges i TWh! /MWh pris tid h b) ( p) Figurera eda visar utbuds- respektive efterfrågekurvora för e viss elmarkad. Vilket elpris får ma på dea elmarkad om ma atar att det råder perfekt kokurres, att alla aktörer har perfekt iformatio och att det ite fis ågra ät-, magasis- eller effektbegräsigar? /MWh pris /MWh pris Fossila bräsle 2 Vattekraft Kärkraft utbud efterfråga TWh/år TWh/år c) (2 p) Strålige är ett kärkraftverk med e produktioskapacitet på 8 TWh per år. Kraftverkets rörliga driftkostad är /MWh och företaget har fasta kostader på 2 4M /år. Atag att elpriset ett visst år är 5 /MWh. Går Strålige med vist eller förlust uder detta år?

4 Uppgift (8 p) Betrakta ett elsystem där primärreglerige är uppdelad i e ormaldriftreserv och e störigsreserv. Normaldriftreserve har reglerstyrka 4 75MW/Hz och är främst avsedd för att hatera ormala variatioer i t.e. last och vidkraftproduktio. Störigsreserve har reglerstyrka 2 MW/Hz och är främst utformad för att kua hatera bortfall i större kraftverk. Normaldriftreserve är tillgäglig i frekvesitervallet 49,9 5, Hz och störigsreserve är tillgäglig i frekvesitervallet 49,5 49,9 Hz. a) (2 p) Klocka 8:5 råder balas mella produktio och kosumtio i systemet och frekvese är 49,84 Hz. Vid detta tillfälle ökar laste i systemet med 4 MW. Vilke frekves får ma då primärreglerige har stabiliserat frekvese i systemet ige? b) (2 p) Klocka 8: råder balas mella produktio och kosumtio i systemet och frekvese är Hz. Vid detta tillfälle ökas elproduktioe i e havsbaserad vidkraftpark med 2 MW. Vidkraftparke deltar ite i primärreglerige. Vilke frekves får ma då primärreglerige har stabiliserat frekvese i systemet ige? c) (2 p) Klocka 8:5 råder balas mella produktio och kosumtio i systemet och frekvese är 49.8 Hz. Vid detta tillfälle aktiveras uppreglerigsbud på totalt 75 MW. Dessa uppreglerigsbud påverkar ite reglerstyrka i systemet. Vilke frekves får ma då primärreglerige har stabiliserat frekvese i systemet ige? d) (2 p) Klocka 8:2 råder balas mella produktio och kosumtio i systemet och frekvese är 49,92 Hz. Vid detta tillfälle startas vattekraftverket Språget, vilket leder till att systemet tillförs 5 MW produktio. Reglerstyrka i Språget är iställd på 625 MW/Hz och är tillgäglig i frekvesitervallet 49,9 5, Hz. Vilke frekves får ma då primärreglerige har stabiliserat frekvese i systemet ige? 4

5 Uppgift 4 (8 p) Stads eergi AB äger ett termiskt kraftverk med tre block. Bolaget säljer el till kuder med fastkraftavtal, me de förvätar sig också att de ska kua köpa eller sälja e viss volym per timme på de lokala börse ElKräg. Atag att bolaget formulerat sitt korttidsplaerigsproblem som ett MILP-problem och att ma har ifört följade beteckigar: Ide för kraftverke: Block I -, Block II - 2, Block III -. Gg = rörlig produktioskostad i kraftverk g, g =, 2,, C+ g = startkostad i kraftverk g, g =, 2,, D t = avtalad last timme t, t =,, 24, G g, t = elproduktio i kraftverk g, timme t, g =, 2,, t =,, 24, G g = istallerad effekt i kraftverk g, g =, 2,, G g = miimal elproduktio då kraftverk g är i drift, g =, 2,, t = förvätat elpris på ElKräg timme t, t =,, 24, p t = köp frå ElKräg timme t, t =,, 24, p t = maimalt köp frå ElKräg timme t, t =,, 24, r t = försäljig till ElKräg timme t, t =,, 24, r t = maimal försäljig till ElKräg timme t, t =,, 24, s+ g t = startvariabel för kraftverk g, timme t, g =, 2,, t =,, 24, u g, = driftstatus i kraftverk g vid plaerigsperiodes börja, g =, 2,, u g, t = driftstatus i kraftverk g, timme t, g =, 2,, t =,, 24. a) (8 p) Formulera målfuktioe i bolagets plaerigsproblem om syftet med plaerige är att maimera itäktera frå el såld på ElKräg mius kostade för el köpt frå ElKräg och mius kostadera i det termiska kraftverket. Aväd beteckigara ova. b) (4 p) Formulera lastbalasbivillkoret för timme t i bolagets korttidsplaerigsproblem. Aväd beteckigara ova. c) (6 p) Formulera gräsera för de ova defiierade optimerigsvariablera i Stads eergi AB:s korttidsplaerigsproblem. Age äve de möjliga idevärdea för varje gräs! 5

6 Uppgift 5 (2 p) Ebbuga är e lite stad i Östafrika. Stade är ite aslute till ågot atioellt elät, uta ma har ett eget lokalt system som försörjs av fyra likadaa dieselgeeratorer. Varje dieselgeerator har e istallerad effekt på 2 kw och driftkostade är /kwh. I tabell visas ågra delresultat då ma geomför e stokastisk produktioskostadssimulerig av elsystemet i Ebbuga. Tabell Resultat frå e stokastisk produktioskostadssimulerig av elsystemet i Ebbuga. = 2 = 4 = 6 = 8 = = 2 = F F d F F d F 2 F 2d F F d F 4 F 4d,,2,,,,, 2, 2, 4, 4, 4, 4, 4,,,2,,,,, 2, 2, 67, 7, 7, 7, 7,,,422,75,45,,, 2, 42,2 9,8 99,6 4, 4, 4,,,587,258,48,7,, 2, 5,9 44, 428,4 429,9 4, 4,,,5824,82,5,28,, 2, 58,2 44,8 456, 459,7 46, 46, a) ( p) Vilke tillgäglighet har ma atagit för dieselgeeratorera? Tips: Studera hur ma beräkar F 4! b) (4 p) Aväd stokastisk produktioskostadssimulerig för att beräka de förvätade driftkostade per timme i Ebbuga. c) ( p) Aväd stokastisk produktioskostadssimulerig för att beräka riske för effektbrist i Ebbuga. d) (4 p) Aväd de iversa trasformmetode för att slumpa fram ett värde på de tillgägliga kapacitete i e av dieselgeeratora i Ebbuga, G. Utgå frå slumptalet,8 frå e U(,)-fördelig. Beräka äve motsvarade slumptalskomplemet, G*. 6

7 e) (2 p) Ma öskar skatta vätevärdet E[X] med hjälp av kotrollvariabelmetode. Låt i betecka de i:te observatioe av X och låt z i betecka de i:te observatioe av kotrollvariabel, Z. Totalt har ma gjort observatioer. Hur beräkas skattige m X?. m X = + E[Z]. -- i i = 2. m X = E[Z] -- z i i =. m X = -- + E[Z]. i z i i = 4. m X = -- E[Z]. i z i i = 5. m X = -- z + E[Z]. i i i = f) (4 p) Atag att ma simulerar elmarkade i Ebbuga med stratifierad samplig. Resultate frå de femto första sceariera i Mote Carlo-simulerige fis sammaställda i tabell 2. Vilka skattigar av ETOC och LOLP får ma utifrå dessa resultat? Tabell 2 Resultat frå e Mote Carlo-simulerig av Ebbuga. Stratum, h Stratumvikt, h Observatioer av TOC [ /h] Observatioer av LOLO , 4, 4 2, 2 5, 2,,,, , 5, 6, 8, 5 9,,,,. 4, 4, 4, 4, 4,,,, 7

8 Efteram, föram Persoummer Program B lad r Uppgift Uppgift r 5 a) Alterativ... är korrekt. b) Alterativ... är korrekt. c) Alterativ... är korrekt. Uppgift 2 a)... TWh b)... /MWh c)... Uppgift a)... Hz b)... Hz c)... Hz d)... Hz Uppgift 4 a) b) c) Uppgift 5 a)... % b)... /h c)... % d) G:... kw G*:... kw e) Alterativ... är korrekt. f) ETOC... /h LOLP... %

9 Lösigsförslag till tetame i EG225 Drift och plaerig av elproduktio, 9 mars Uppgift a) 2. b). c). Uppgift 2 a) Kraftverket kommer att producera istallerad effekt uder de timmar då elpriset är högre ä /MWh. I figure ka vi se att så är fallet uder timmar, d.v.s. de totala produktioe uder detta år blir 5 = 5 MWh =,5 TWh. b) Elpriset sätts av skärigspukte mella utbuds- och efterfrågekurvora. För att efterfråga ska vara 5 TWh/år får elpriset ite vara högre ä /MWh, me vid detta elpris är utbudet edast 5 TWh/år. Alltså är efterfråga 4 TWh/år och för att få detta utbud krävs det ett elpris på 5 /MWh (halva fossilbräsleitervallet). c) Itäktera för Strålige uppgår till 8 TWh/år 5 /MWh = 2 8 M /år. Detta är ite tillräckligt för att täcka de totala rörliga produktioskostade (8 TWh/år /MWh = 8 M /år) och de fasta kostadera, vilket iebär att kraftverket går med förlust detta år. Uppgift a) Vid dee frekves är reglerstyrka i systemet 2 MW/Hz. De ökade elförbrukige leder till e frekvesmiskig f = G/R = 4/2 =,2 Hz, vilket iebär att de ya frekvese blir 49,84,2 = 49,82 Hz. b) De ökade elproduktioe leder till e frekvesökig f = G/R = 2/2 =, Hz, vilket iebär att de ya frekvese blir 49,78 +, = 49,79 Hz. c) Störigsreserve ka miska elproduktioe med, 2 = 2 MW då frekvese är 49,8 Hz. Frekvese har då ökat till 49.9 Hz. De återståede 75 MW produktiosmiskig måste hateras av ormaldriftreserve, vilket leder till e frekvesökig f = G/R = 75/4 75 =,4 Hz, vilket iebär att de ya frekvese blir 49,9 +,4 = 49,94 Hz. d) Då Språget startar ökar reglerstyrka i systemet till 5 MW/Hz. Ökige av elproduktioe leder till e frekvesökig f = G/R = 5/5 =,7 Hz, vilket iebär att de ya frekvese blir 49,92 +,7 = 49,99 Hz. Uppgift 4 a) maimise 24 t = t r t p t C + g sgt + G + Gg gt. g = b) G gt + p t = D t + r t. g = c) Mista respektive största elproduktio i varje timme regleras med särskilda bivillkor. De gräser som behöver ages är därmed för elhadel samt de biära variablera: p t p i, t =,, 24, r t r i, t =,, 24, + s gt {, }, g =, 2,, t =,, 24, u g, t {, }, g =, 2,, t =,, 24. Uppgift 5 a) F 4 = p F 4 + p F 2 p = F 4 F F F = 2 4, ,2 = 85%. b) De totala elproduktioe i de tre kraftverke beräkas geom 8 F d EG 24 = EENS EENS 4 = = d = F 4 F F 4 F 4 8 =4, (46, 456,) = 6, kwh/h, vilket ger ETOC = 6, = 6 /h. c) Riske för effektbrist ges av LOLP = F 4 8 =,5%. d) Om ma ritar fördeligsfuktioe eller varaktighetskurva för G så är det lätt att se att både U =,8 och U* = U trasformeras till 2 kw. F G F G U*,8 U*,8,6,6,4,4 U,2 U,2 2 kw 2 kw e). f) Följade skattigar erhålls av vätevärdet i respektive stratum: m TOC = 9 /5 = 82 m LOLO = m TOC2 = 24 9/5 = 4 98 m LOLO2 = /5 =,2 m TOC = 2 /5 = 4 m LOLO = 5/5 = Alltså får vi m TOC = h m TOCh =, , , 4 94 /h, h = m LOLO = h m LOLOh = +,76,2 +, = 4,62%. h =

Kompletteringsskrivning i EG2050 Systemplanering, 17 september 2009, 9:00-11:00, stora konferensrummet

Kompletteringsskrivning i EG2050 Systemplanering, 17 september 2009, 9:00-11:00, stora konferensrummet Kompletterigsskrivig i EG2050 Systemplaerig, 17 september 2009, 9:00-11:00, stora koferesrummet Istruktioer Edast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga uppgiftera

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22

Tentamen i EG2050/2C1118 Systemplanering, 14 mars 2009, 8:00 13:00, Q21, Q22 Tetame i EG2050/2C1118 Systemplaerig, 14 mars 2009, 8:00 13:00, Q21, Q22 Tillåta hjälpmedel Vid dea tetame får följade hjälpmedel avädas: Miiräkare uta iformatio med akytig till kurse. E hadskrive, ekelsidig

Läs mer

Tentamen 11 juni 2015, 8:00 12:00, Q21

Tentamen 11 juni 2015, 8:00 12:00, Q21 Avdelningen för elektriska energisystem EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 205 Tentamen juni 205, 8:00 2:00, Q2 Instruktioner Skriv alla svar på det bifogade svarsbladet. Det är valfritt

Läs mer

Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet

Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet Kompletteringsskrivning i EG2050/2C1118 Systemplanering, 14 april 2007, 18:00-20:00, seminarierummet Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de

Läs mer

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling

Repetition: Enkel sampling. Systemplanering VT11. Repetition: Enkel sampling. Repetition: Enkel sampling Systemplaeri VT Föreläsi F6: Mote Carlo Iehåll:. Repetitio av ekel sampli 2. Sampli av elmarkader 3. Multi-areamodelle 4. Räka exempel Repetitio: Ekel sampli Mål: Få fram E[X] Defiitio av E[X]: EX [ ]

Läs mer

Kompletteringsskrivning i EG2050 Systemplanering, 4 april 2011, 13:00-15:00, H21

Kompletteringsskrivning i EG2050 Systemplanering, 4 april 2011, 13:00-15:00, H21 Kompletteringsskrivning i EG2050 Systemplanering, 4 april 2011, 13:00-15:00, H21 Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga uppgifterna tillgodoräknas

Läs mer

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005

Föreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005 Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de

Läs mer

Kontrollskrivning 1 4 februari, 9:00 10:00, L44, L51

Kontrollskrivning 1 4 februari, 9:00 10:00, L44, L51 Avdelningen för elektriska energisystem EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 2015 Kontrollskrivning 1 4 februari, 9:00 10:00, L44, L51 Instruktioner Skriv alla svar på det bifogade svarsbladet.

Läs mer

Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36

Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36 Kontrollskrivning 1 i EG2050 Systemplanering, 6 februari 2014, 9:00-10:00, Q31, Q33, Q34, Q36 Instruktioner Studenter måste anlända till kontrollskrivningen inom 45 minuter efter skrivningens start. Ingen

Läs mer

Kompletteringsskrivning i EG2050 Systemplanering, 23 juni 2011, 9:00-11:00, seminarerummet

Kompletteringsskrivning i EG2050 Systemplanering, 23 juni 2011, 9:00-11:00, seminarerummet Kompletteringsskrivning i EG2050 Systemplanering, 23 juni 2011, 9:00-11:00, seminarerummet Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga uppgifterna

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 9 juni 2010, 8:00 13:00, V34, V35

Tentamen i EG2050/2C1118 Systemplanering, 9 juni 2010, 8:00 13:00, V34, V35 Tentamen i EG2050/2C1118 Systemplanering, 9 juni 2010, 8:00 13:00, V34, V35 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen.

Läs mer

Kompletteringsskrivning i EG2050 Systemplanering, 12 april 2013, 13:00-15:00, seminarierummet

Kompletteringsskrivning i EG2050 Systemplanering, 12 april 2013, 13:00-15:00, seminarierummet Kompletteringsskrivning i EG2050 Systemplanering, 12 april 2013, 13:00-15:00, seminarierummet Instruktioner Endast de uppgifter som är markerade på det bifogade svarsbladet behöver lösas (på de övriga

Läs mer

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.

Efter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar. Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade

Läs mer

Kompletteringsskrivning i 2C1118 Systemplanering, 27 mars 2007, 17:00-19:00, Q36

Kompletteringsskrivning i 2C1118 Systemplanering, 27 mars 2007, 17:00-19:00, Q36 Kompletteringsskrivning i 2C1118 Systemplanering, 27 mars 2007, 17:00-19:00, Q36 Instruktioner Skriv alla svar på det bifogade svarsbladet. Några motiveringar eller beräkningar behöver inte redovisas.

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Enkät inför KlimatVardag

Enkät inför KlimatVardag 1 Ekät iför KlimatVardag Frågora hadlar om dia förvätigar på och uppfattigar om projektet, samt om hur det ser ut i ditt/ert hushåll idag. Ekäte är uderlag för att hushållet ska kua sätta rimliga och geomförbara

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan

Tentamen i Statistik, STA A10 och STA A13 (9 poäng) 26 mars 2004, klockan Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för Statistik Tetame i Statistik, STA A10 och STA A13 (9 poäg) 6 mars 004, klocka 14.00-19.00 Tillåta hjälpmedel: Bifogad formelsamlig (med

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

Så här kommer byggherren och entreprenören överens om energianvändningen

Så här kommer byggherren och entreprenören överens om energianvändningen Så här kommer byggherre och etrepreöre överes om eergiavädige Så här kommer byggherre och etrepreöre överes om eergiavädige Sveby står för Stadardisera och verifiera eergiprestada i byggader och är ett

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15

Tentamen i Statistik STG A01 (12 hp) 5 mars 2010, kl. 08.15 13.15 Karlstads uiversitet Fakultete för ekoomi, kommuikatio och IT Statistik Tetame i Statistik STG A0 ( hp) 5 mars 00, kl. 08.5 3.5 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1

Duo HOME Duo OFFICE. Programmerings manual SE 65.044.20-1 Duo HOME Duo OFFICE Programmerigs maual SE 65.044.20-1 INNEHÅLL Tekiska data Sida 2 Motage Sida 3-5 Programmerig Sida 6-11 Admiistrerig Sida 12-13 Hadhavade Sida 14-16 TEKNISKA DATA TEKNISK SPECIFIKATION

Läs mer

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso

Läs mer

Tentamen i EG2050 Systemplanering, 10 juni 2008, 8:00 13:00, V34, V35

Tentamen i EG2050 Systemplanering, 10 juni 2008, 8:00 13:00, V34, V35 Tentamen i EG2050 Systemplanering, 10 juni 2008, 8:00 13:00, V34, V35 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen. En

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

Allmänna avtalsvillkor för konsument

Allmänna avtalsvillkor för konsument Godkäare 7.2 Kudakuta Godkät Kommuikatio Distributio Kudservice Kommuikatio, deltagade och samråd Allmäa avtalsvillkor för kosumet för leveras av fjärrvärme Allmäa avtalsvillkor för kosumet för leveras

Läs mer

Extrem prestanda Nu utan BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER

Extrem prestanda Nu utan BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER Extrem prestada Nu uta BPA UPPLEV DEN FANTASTISKA STYRKAN HOS VÅRA BPA-FRIA PRODUKTER Formar för kall och varm mat BPA-fritt kommersiellt produktsortimet för livsmedelsservice Rubbermaid Commercial har

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

Tentamen i 2C1118 Systemplanering, 12 mars 2007, 8:00 13:00, D31-D34

Tentamen i 2C1118 Systemplanering, 12 mars 2007, 8:00 13:00, D31-D34 Tentamen i 2C1118 Systemplanering, 12 mars 2007, 8:00 13:00, D31-D34 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen. En

Läs mer

Monte Carlo-simulering. EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin

Monte Carlo-simulering. EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin Monte Carlo-simulering EG2205 Föreläsning 15 18, vårterminen 2015 Mikael Amelin 1 Kursmål Tillämpa Monte Carlo-simulering för att beräkna förväntad driftkostnad och risk för effektbrist på en elmarknad,

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed

Örserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Samtal med Karl-Erik Nilsson

Samtal med Karl-Erik Nilsson Samtal med Karl-Erik Nilsso,er Ert av Svesk Tidskrifts redaktörer, Rolf. Ertglud, itejuar här Karl-Erik Nilsso, ar kaslichej på TCO och TCO:s represetat ed i litagarfodsutredige. er e t or så å g. ). r

Läs mer

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:

REGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}: CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

Ny lagstiftning från 1 januari 2011

Ny lagstiftning från 1 januari 2011 Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q

Läs mer

Tentamen i EG2050/2C1118 Systemplanering, 18 mars 2010, 14:00 19:00, E31, E35, E36, E51-E53

Tentamen i EG2050/2C1118 Systemplanering, 18 mars 2010, 14:00 19:00, E31, E35, E36, E51-E53 Tentamen i EG2050/2C1118 Systemplanering, 18 mars 2010, 14:00 19:00, E31, E35, E36, E51-E53 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

Projektuppgift CD. Avdelningen för elkraftteknik EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 2016

Projektuppgift CD. Avdelningen för elkraftteknik EG2205 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 2016 Avdelningen för elkraftteknik EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårterminen 216 Projektuppgift CD Det här är en frivillig projektuppgift, som kan förbättra ditt slutbetyg i kursen (under förutsättning

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning

Sydkraft Nät AB, Tekniskt Meddelande för Jordningsverktyg : Dimensionering, kontroll och besiktning ydkraft Nät AB, Tekiskt Meddelade för Jordigsverktyg : Dimesioerig, kotroll och besiktig 2005-04-26 Författare NUT-050426-006 Krister Tykeso Affärsområde Dokumettyp Dokumetam Elkrafttekik Rapport 1(6)

Läs mer

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad. Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

Smärtlindring vid medicinsk abort

Smärtlindring vid medicinsk abort Smärtlidrig vid medicisk abort EN JÄMFÖRANDE STUDIE VETENSKAPLIGT ARBETE UNDER ST ELIN SJÖLANDER HANDLEDARE MARIE BOLIN Itroduktio Smärta vid medicisk abort valig, smärtlidrig vid medicisk abort dåligt

Läs mer

Tentamen i Matematisk statistik för V2 den 28 maj 2010

Tentamen i Matematisk statistik för V2 den 28 maj 2010 Tetame i Matematisk statistik för V de 8 maj 00 Uppgift : E kortlek består av 5 kort. Dessa delas i i färger: 3 hjärter, 3 ruter, 3 spader och 3 klöver. Kortleke iehåller damer, e i varje färg. Ata att

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 5 73G70, 73G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 5 Stickprovsteori Sid 15-150 Statistisk iferes Populatio (äve målpopulatio) = de (på logisk väg

Läs mer

Försöket med trängselskatt

Försöket med trängselskatt STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då

Läs mer

Identfiera orsaker och ge förslag på åtgärder och resultatmått Åtgärdstyp Ska risken åtgärdas genom att orsaken: Bakomliggande orsaker

Identfiera orsaker och ge förslag på åtgärder och resultatmått Åtgärdstyp Ska risken åtgärdas genom att orsaken: Bakomliggande orsaker Risk (möjlighet att e egativ RiskID Beskrivig av risk 4.1 R1 Öskemåle kommer osorterat och geererar måga aalyser - ökad arbetsisats och kostader Ma hittar ite 4.1 R2 produktera i lista 4.2 R3 Svårigheter

Läs mer

Presentationsteknik. EG2205 Föreläsning 4, vårterminen 2015 Mikael Amelin

Presentationsteknik. EG2205 Föreläsning 4, vårterminen 2015 Mikael Amelin Presentationsteknik EG25 Föreläsning 4, vårterminen 15 Mikael Amelin 1 Kursmål Ge en kort muntlig presentation av lösningen till ett problem inom drift och planering av elproduktion. 2 Bakgrund Enligt

Läs mer

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25

Markanvisningsavtal för och försäljning av fastigheten Gesällen 25 TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag

Läs mer

Slutrapport Bättre vård i livets slutskede

Slutrapport Bättre vård i livets slutskede Team : Stadsvikes VC Syfte med deltagadet i Geombrott Att öka tillite och trygghete till de vård som bedrivs i det ega hemmet för de palliativa patiete. Teammedlemmar Eva Lidström eva.lidstrom@ll.se Viktoria

Läs mer

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol.

AMF. I princip är det bara möjligt att flytta privat sparande och sparande där avtalet tecknats efter den 2 februari i fjol. Välj att flytta dia Utyttja di flytträtt om du ka. Det är Privata Affärers råd u är regeriges tillfälliga flyttstopp hävs de 1 maj. Flyttstoppet ifördes i februari i fjol som e direkt följd av Damarksmålet.

Läs mer

Kollektivt bindande styre på global nivå

Kollektivt bindande styre på global nivå Iteratioell ivå Global, regioal eller mellastatlig? Allt fler viktiga politiska frågor går ite lägre att lösa på atioell ivå. Folk över hela världe berörs exempelvis av växthuseffekte. Vad fis det för

Läs mer

TRIBECA Finansutveckling

TRIBECA Finansutveckling TRIBECA Rådgivare iom fiasiella helhetslösigar TRIBECA a s k r e i v g S f a s k r i e v g S f g g r r e e a r a r e e i i f f TRIBECA s målsättig är att bidra med råd & produkter som hela tide gör att

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160928, kl. 14.00 18.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Applikationen kan endast användas av enskilda användare med förtroenderapportering.

Applikationen kan endast användas av enskilda användare med förtroenderapportering. Aktiverig mobil app 1 Aktiverig mobil app Aktiverig mobil app aväds för att koppla e eskild avädare till Visma Agdas mobilapplikatio. Applikatioe ka edast avädas av eskilda avädare med förtroederapporterig.

Läs mer

MARKNADSPLAN Kungälvs kommun 2010-2014

MARKNADSPLAN Kungälvs kommun 2010-2014 MARKNADSPLAN Kugälvs kommu 2010-2014 Fastställd av KF 2010-06-17 1 Iehåll Varför e markadspla? 3 Mål och syfte 4 Markadsförutsättigar 5 Processer, styrig och orgaisatio 6 Politisk styrig 7 Politisk styrig,

Läs mer

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning

E F. pn-övergång. Ferminivåns temperaturberoende i n-dopade halvledare. egen ledning. störledning ÖVRGÅNG De eklaste halvledarkomoete är diode. Diode består av e doad och e doad del. Vid kotaktyta mella och doat område ustår ett ire elektriskt fält.g.a. att elektroer i ledigsbadet å sida diffuderar

Läs mer

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också

Läs mer

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25 Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om

Läs mer

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad

Detaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad 1/5 Sektor samhällsbyggad Datum Beteckig 2015-02-10 PLAN.2014.19 Plaehete Hadläggare Jey Olausso Detaljpla Ekedal södra Behovsbedömig Förslag Geomföradet av plaförslaget bedöms ite medföra ågo betydade

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

INSTALLATIONSMANUAL COBRA 8800/8900 CAN

INSTALLATIONSMANUAL COBRA 8800/8900 CAN INSTALLATIONSMANUAL COBRA 8800/8900 CAN DRA UT MITTSEKTIONEN MED INSTALLATIONSSCHEMAT. INNEHÅLL 8808 8805 Larmehet 03CB0364A 10SA0623A Kablage Moterigspåse KA0001STSAA Ultraljudsesorer 04PC3600B 8800USER

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

Frasstrukturgrammatik

Frasstrukturgrammatik UALA UNIVERITET Metoder och tillämpigar i språktekologie Istitutioe för ligvistik och filologi Föreläsigsateckigar Mats Dahllöf http://stp.lig.uu.se/~matsd/uv/uv07/motist/ Oktober 2007 Frasstrukturgrammatik

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN

5. Linjer och plan Linjer 48 5 LINJER OCH PLAN 48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på

Läs mer

LINJÄR ALGEBRA II LEKTION 4

LINJÄR ALGEBRA II LEKTION 4 LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

PTKs stadgar. Fastställda vid stämman 2009 06 16

PTKs stadgar. Fastställda vid stämman 2009 06 16 PTKs stadgar Fastställda vid stämma 2009 06 16 INNEHÅLLSFÖRTECKNING SYFTE OCH UPPGIFTER Syfte och uppgifter 3 Medlemskap 4 Orgaisatio 7 Stämma 8 Överstyrelse 12 Styrelse 15 Förhadligsorgaisatio 17 PTK-L

Läs mer

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal.

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal. Komressorer F1 F Skillad mot fläktar: Betydade desitetsförädrig, ryk mäts ormalt som absolut totaltryk. vå huvudgruer av komressorer: Förträgigskomressorer urbokomressorer Egeskaer Lågt massflöde Höga

Läs mer

Art. 7953. Brugsanvisning

Art. 7953. Brugsanvisning Art. 7953 D GB F NL S I E DK Gebrauchsaweisug Licht- / Wasserspieldüse Operatig Istructios Light ad Waterworks Jet Mode d emploi Buse pour jet d eau avec éclairage Gebruiksaawijzig Licht- / waterspelsproeier

Läs mer

Frisörens arbetsmiljö

Frisörens arbetsmiljö Frisöres arbetsmiljö Iehåll De goda arbetsmiljö 3 Saloge som arbetslokal 4 Hälsa 9 Riskmomet i arbetet 11 Hygie 15 Belastigsergoomi 17 Arbetsklimat 18 Säkerhet 21 Rå, hot och våld 23 Miljöavfall 25 Tips

Läs mer

Tentamen i EG2050 Systemplanering, 5 juni 2013, 8:00 13:00, E34-E36

Tentamen i EG2050 Systemplanering, 5 juni 2013, 8:00 13:00, E34-E36 Tentamen i EG2050 Systemplanering, 5 juni 2013, 8:00 13:00, E34-E36 Tillåtna hjälpmedel Vid denna tentamen får följande hjälpmedel användas: Miniräknare utan information med anknytning till kursen. En

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

a utsöndring b upptagning c matspjälkning d cirkulation

a utsöndring b upptagning c matspjälkning d cirkulation I levade varelser bryts stora och sammasatta molekyler ed till små och ekla molekyler. Vad kallas dea process? S02_01 a utsödrig b upptagig c matspjälkig d cirkulatio S042009 Kalle hade ifluesa. Ha spelade

Läs mer