Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system

Storlek: px
Starta visningen från sidan:

Download "Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system"

Transkript

1 Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology Lud Uivrsity 93

2 Kap 3 LTI systm x( Tidsdiskrt krts h( y( Diffrskvatio. y( a y( k) b x( k) k k k k Faltig. y( h( x( h( k) x( k) k Vi har typr av diffrskvatior. FIR: Alla a k, k, (ig åtrkopplig). Här blir impulssvart h ( ) { b b... b }, dvs impulssvar och diffrskvatios kofficitr är lika. IIR: ågot a k, k (Vi har åtrkopplig). Vi utyttjar z-trasform och fourirtrasform. Y ( z) H( z) X ( z) 94

3 Diffrskvatio y( a y( k) b x( k) k k k k Z-trasform: Y( z) a z Y( z)... a z Y( z) b X( z) b z X( z)... b z X( z) Y( z) b bz... b z a z... a z X ( z) H( z) X ( z) Utsigals trasform är alltså produkt Y( z) H( z) X ( z) md b b z H( z) a z... b... a z z Vi bskrivr ofta systmfuktio () H z md polr och ollställ och ritar i dm i tt pol-ollställsdiagram 95

4 Fourirtrasform: Sda tidigar; Om båda xistrar ( h ( får vi sambadt ) kausal och stabil) H( ) H( z) j z Dt gr => Y ( ) j j b b... b X ( ) H( ) X ( )... j j a a Utsigals trasform är alltså produkt Y ( ) H( ) X ( ) md H( ) b b a j j b a j j H () kallas frqucy rspos (frkvssvar). Vi skrivr ( ofta H ) i polära koordiatr och plottar blopp och fas 96

5 Siussigalr gom LTI Vad hädr om vi läggr på siussigal på filtrt. Av rfarht vt vi att om vi läggr to (sius) i på vårt filtr (förstärkar) får vi ut samma to m md ädrad amplitud och fas. Vi tittar på fall: A: Vi läggr på isigal i t=. B: Vi läggr på isigal i mius oädlight så att vtulla isvägigsförlopp dött ut. Hur sr dtta ut i våra formlr? Fall A lösr vi md z-trasform (och partialbråksuppdlig) Fall B lösr vi md faltig ty isigal är j kausal så vi ka it bräka dss z-trasform Först tt umriskt xmpl på fall A 97

6 Exmpl på siussigalr gom lijär krts, fall A 6 Givt: Isigal x( cos( u( och systmt H() z z z.7z.8z ligt tidigar x Sök: Bräka umriskt y(=x( * h( i ATLAB Lösig: isigal x( impulssvar h( utsigal y( Vi får y( = trasit + statioär lösig 98

7 Fall A: Lösig md z-trasform Vi läggr på isigal vid t=, dvs x( cos( u( 6 Da sigal är kausal och vi ka bstämma dss z-trasform (s formlsamlig llr övig). Trasformra av x( och h( är cos( ) z X ( z) 6 T( z) z z, H ( z) cos( ) z z ( z).7 z.8z 6 Vi ka u bräka utsigal md hjälp av z-trasform, dvs Y ( z) H ( z) X ( z) T ( z) ( z) trasit lösig T ( z) ( z) cos( ) z 6 cos( ) z z 6 C C z cos( ) z z 6 statioär lösig y( trasit A cos( ) B si( ) 6 6 A B cos( arcta( B / A)) 6 A Första trm är dämpad sius (ämar frå H(z)), trasit. Adra trm är d statioära lösig (ämar frå X(z)). Vill vi ha hla lösig måst vi bstämma partialbråksuppdlig T () z och T () z C C z och göra ivrstrasformrig. (umriska värd på ästa sida) 99

8 Fall A: fortsättig (av. atlab rsiduz.m ) umriska värd i ovaståd xmpl (partialbråksuppdlig) cos( ) z z z Y ( z) H ( z) X ( z) 6.7 z.8z cos( ) z z z.896 z z.8z cos( ) z z trasit lösig 6.9 cos( / 4) z si( / 4) z.35.7 z.8z cos( / 8) z (cos( / 8).896) / si( /6) si( /6) z.35 cos( ) z z 6 statioär lösig statioär lösig y(.35.9 cos( ) si( cos( ) si( ) 6 6 Statioärlösig.95 cos( 6.9) ) Övrst: Trasit. itt: Statioär dl: Udrst: Hla utsigal

9 Fall A: fortsättig Vi sr här att för isigal x( cos( u( cos( u( 6 fick vi d statioära lösig (ftr myckt räkad) y statioär (.95 cos(.9) 6 Vi ska sart visa att d statioära lösig gs av y [ ] H( z) cos( arg( H( z) ) där statioär z z 6 j j är isigals frkvs Sius i gr sius ut md amplitud ädrad md bloppt av H(z) och fas ädrad md argumtt av H(z) för z= j Amplitud är alltså H(z):s värd på htscirkl för isigals frkvs Amplitudfuktio Fasfuktio I atlab; [H,w]=frqz([ -],[ -.7.8],'whol'); plot(w//pi,abs(h));plot(w//pi,uwrap(agl(h))) Vi sr att för frkvs f får vi amplitudfuktio ugfär 6

10 j f j f x( cos( f ( ), Fall B: Siussigal pålagd i tvåtrmr u har d trasita dl av lösig dött ut. Vi börjar md komplx siussigal för dt blir klar, sid 3-36 Låt j f j x ( för alla, Isigal är j kausal så vi avädr faltig. y ( x j k h( k) k H ( H ( ) f ) ( h( f Komplx förstärki g f j j f Isigal f k kostat isigals frkvs h( k) x j f k h( k) k H ( f ) ( k) f f H ( f ) f f Förstärki g ( blopp) j ( k ) h( k) k alla trmra igårty vi startar i ( isvägigsförloppdött ut) j f j ( f ) fas OBS: Filtrt h( måst vara stabilt

11 Fall B: fortsättig Siussigal pålagd i För hla siussigal (bägg dlara i ulrs forml) j f * ( ) cos( ) ( j f x f ) ( x( x ( )) får vi tvåtrmr j f y( {( H ( f ) f f... H ( f ) f f cos( f förstärki g ) ( H ( f ) f arg{ H ( f ) f f }) f fasädrig j f ) * } Alltså: För x cos( f ( får vi y( H( f ) f f cos( f arg{ ( ) }) H f f f förstärki g fasädrig Vi ka bräka och plotta amplitud och fas för H ( f ) i tx ATLAB och s bara läsa av värdt av amplitud och fas för f f OBS: OBS: Dtta gällr ftr dt att vtulla isvägigsförlopp dött ut (vid FIR-filtr md lägd L ftr L- sampl). Kallas för statioär lösig (stady stat) Dtta gällr bara vid sius samt cosius sigalr (samt summa av dssa gom att bhadla varj kompot för sig). 3

12 Bstäm H() approximativt (sid 35-3) H( z) j z j 4 4 ( z. 9 ) ( z. 9 ) V j H( ) H( z) j z j j j 4 j 4 (.9 ) (.9 ) V H( ) H( z) j z U U U U värdt på htscirkl Rita i i figur f=/ = f=/4 =/ U z-pla V Godtycklig pukt z= jf f= = U z= jf =: V = gr H() = =/4: U =lit gr H() stort >/4: U, U ökar gr H() miskar 4

13 Lijär fas Vi vill ofta ha krtsar md lijär fas. Varför? x( H()=A() j () y( x[ ] si( y[ ] A( ) si( ( )) A ( ) ( ) si( ( )) tid Om ( ) är kostat för alla blir ( ) rät lij i dvs lijär fas Filtr md lijär fas fördröjr alla frkvsr lika myckt. Bra g d( ( )) d kallas grupplöptid (group dlay) 5

14 Lijär fas fortsättig Exmpl på tt filtr md lijär fas x( H()=A() j () y( Impulssvar: h ( { } Fourirtrasform (spktrum): H ( ) j j ( cos( )) j cos( ) j j ( om cos( ) ) A( ) j ( ) Blopp Fas A ( ) cos( ) ( ) ( om cos( ) ) Lijär fuktio (md hopp) 6

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)

Läs mer

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B. Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity Förläsig : Digital Sigalbhadlig ESS4 Digital sigalbhadlig ESS4 3 ISBN -3-873-5 ISBN -3-87374- Digital Sigal Procssig: Pricipls, Algorithms, ad Applicatios.

Läs mer

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat Sigal- och Bildbhadlig FÖREÄSNING 6 -trasform - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta systm. Vi ska s hur d hägr ihop md TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig.

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita

Läs mer

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson) Digital sigalbhadlig ESS040 Förläsig 0 Digital sigalbhadlig ESS040 Kapitl 7 Digitala FourirTrasform DFT LTH 0 dlo Grbic (mtrl. frå Bgt Madrsso Istitutio för ltro- och iformatiosti Lud Uivrsity 53 Digital

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity örläsig : Sigalbhadlig ESS4 Sigalbhadlig sigalbhadlig A/D sig. bhadl. D/A Lågpassiltr Lågpassiltr ESS4 9 Samplig krts Rkostruktio Sigal Procssig:

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

3 Signaler och system i tidsplanet Övningar 3.1 Skissa följande signalers tidsförlopp i lämpligt tidsintervall

3 Signaler och system i tidsplanet Övningar 3.1 Skissa följande signalers tidsförlopp i lämpligt tidsintervall Sigaler och sstem i tidsplaet. Skissa följade sigalers tidsförlopp i lämpligt tidsitervall a) 0 6 [ ] b) [ ] c) 07 [ ] 0 [ ] d) u [ ] e) 06u[ ] u[ ] [ ] f) r [ ] 0 r[ ] r[ ] r[ 6] 0 r[ 8] g) 08 cos π h)

Läs mer

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 12. Ex) på användning av z-transform: ljud. z-transform och TDFT, formler

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 12. Ex) på användning av z-transform: ljud. z-transform och TDFT, formler Sigal- och Bildbhadlig FÖREÄSNING -trasfor - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta syst. Vi ska s hur d hägr ihop d TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig. aplac-trasfor

Läs mer

1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser.

1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser. Lasse Björkma 999 . Rita följade tidssekveser. a) δ e) u b) δ f) u u c) δ + δ g) u d) u h) u. Givet tidssekvese x i edaståede figur. Rita följade tidssekveser. a) x c) x b) x + 3 d) x 3. Givet tidssekvesera

Läs mer

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( ) 6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så

Läs mer

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }. Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio

Läs mer

Digital signalbehandling Sampling och vikning på nytt

Digital signalbehandling Sampling och vikning på nytt Ititutio ör data- och lktrotkik Digital igalbhadlig Samplig och vikig på ytt 00-0-6 Bgrpp amplig och vikig har viat ig lit våra att hatra å till vida att dt har kät vårt att tolka vad om hädr md igal om

Läs mer

Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson) Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit

Läs mer

Föreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson) Digitl siglbhdlig E040 örläsig 9 Digitl siglbhdlig E040 Kpitl 6 mplig LH 04 Ndlko Grbic (mtrl. frå Bgt Mdrsso Dprtmt of Elctricl d Iformtio chology Lud Uivrsity 6 Kpitl 6 mplig Vi tittr u ärmr på smplig

Läs mer

Institutionen för data- och elektroteknik 1999-11-30. samplingsvillkoret f. Den diskreta fouriertransformen ges av

Institutionen för data- och elektroteknik 1999-11-30. samplingsvillkoret f. Den diskreta fouriertransformen ges av Istitutio för data- och ltroti 999--3 Digital sigalbhadlig f Implmtrig av FFT- och IFFT-rutir Vi har här tidigar i digital sigalbhadlig studrat tidsdisrt fourirtrasform, DFT och mölightra att aväda Fast

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör ltro- och iormtiosti LH, Lud Uivrsity örläsig : Siglbhdlig ESS4 Siglbhdlig siglbhdlig A/D sig. bhdl. ESS4 Smplig Rostrutio ISB -3-873-5, ISB -3-87374- Sigl Procssig: Pricipls, Algorithms,

Läs mer

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl 1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta

Läs mer

Digital signalbehandling Alternativa sätt att se på faltning

Digital signalbehandling Alternativa sätt att se på faltning Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],

Läs mer

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25 SF676, am 5 aug 7 Isiuio för mamaik, KH SF676, Diffrialkvaior md illämpigar am isdag 5 aug 7 Skrivid: 8:-: Eamiaor: Krisia Bjrklöv För godkä (bg E krävs r godkäda modulrr frå dl I Varj moduluppgif bsår

Läs mer

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1 Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Tunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0

Tunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0 Förläsig 9. Förra gåg: Sridig ot ottialarriär. Pottialodll (idalisrad): U U ( ) 0, 0 L, för övrigt ψ( ) ik ik ifallad U = U ψ( ) F trasittrad ik rflktrad U = 0 0 L Iuti arriär 0 < < L: ( fall) ) E U ψ

Läs mer

Uppskatta lagerhållningssärkostnader

Uppskatta lagerhållningssärkostnader B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,

Läs mer

Investering = uppoffring av konsumtion i dag för högre konsumtion i framtiden

Investering = uppoffring av konsumtion i dag för högre konsumtion i framtiden Ivstrg = uppoffrg av osumto dag för högr osumto framtd Vad är förtagsooms vstrg? Rsurs som a aväds udr låg td. Asaffgar udr tdsprod som mdför btalgar udr flra tdsprodr framåt. Ivstrgar förtagsprsptv. Dl

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12 KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn

Läs mer

ρ. Farten fås genom integrering av (2):

ρ. Farten fås genom integrering av (2): LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt

Läs mer

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2 Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)

Läs mer

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2 Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:

Läs mer

Digital signalbehandling Föreläsningsanteckningar Bilagor

Digital signalbehandling Föreläsningsanteckningar Bilagor Bilaa Istitutio ör data- och lktrotkik Bilaor -3-8 U ma U ma U ma Varias (kvatisrisbrusts kt) 3 σ P() d 3 d 3 3 4 4 Altrativt, kvatisrislts kt τ är d tid som sial lir iom kvatisrisstt Bil.vsd Flt är ästa

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (

Läs mer

24 poäng. betyget Fx. framgår av. av papperet. varje blad.

24 poäng. betyget Fx. framgår av. av papperet. varje blad. Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga

Läs mer

Digital signalbehandling Digital signalbehandling

Digital signalbehandling Digital signalbehandling Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso

Läs mer

Ekosteg. En simulering om energi och klimat

Ekosteg. En simulering om energi och klimat Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr

Läs mer

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt: Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga

Läs mer

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför

Läs mer

Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost.

Problem 2 löses endast om Du hade färre än 15 poäng på duggan som gavs arctanx sin x. x(1 cosx) lim. cost. UPPSALA UNIVERSITET Matematiska istitutioe Abrahamsso 7-6796 Prov i matematik IT, W, lärarprogrammet Evariabelaalys, hp 9-6-4 Skrivtid: : 5: Tillåta hjälpmedel: Mauella skrivdo Varje uppgift är värd maimalt

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.

Tentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00. Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt

Läs mer

där a och b är koefficienter som är större än noll. Här betecknar i t

där a och b är koefficienter som är större än noll. Här betecknar i t REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt

Läs mer

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik: Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,

Läs mer

Digital Signalbehandling i multimedia

Digital Signalbehandling i multimedia Digil siglbhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy örläsig Digil Siglbhdlig i mulimdi EI65 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Digil Siglbhdlig Smplig AD Digil sig. bhdl. Digil

Läs mer

Svar till tentan

Svar till tentan UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Prov i matematik ES, K, KadKemi, STS, X ENVARIABELANALYS 0-03- Svar till teta 0-03-. Del A ( x Bestäm e ekvatio för tagete till kurva y = f (x =

Läs mer

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt

Läs mer

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x) Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

INTRODUKTION. Akut? RING: 031-51 20 12

INTRODUKTION. Akut? RING: 031-51 20 12 INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och

Läs mer

Räkneövning i Termodynamik och statistisk fysik

Räkneövning i Termodynamik och statistisk fysik Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn

Läs mer

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +

Läs mer

re (potensform eller exponentialform)

re (potensform eller exponentialform) Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt

Läs mer

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2) LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj

Läs mer

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4. TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar

Läs mer

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

om X har följande sannolikhetsfunktion λ λ . Då gäller a) väntevärdet E(X) = λ b) variansen σ = λ och därmed c) standardavvikelsen σ = λ

om X har följande sannolikhetsfunktion λ λ . Då gäller a) väntevärdet E(X) = λ b) variansen σ = λ och därmed c) standardavvikelsen σ = λ Arm Hallovc: ETRA ÖVNINGAR ossofördlg OISSONFÖRDELNING ossofördlg aväds oftast för att bsrva atalt hädlsr som träffar obrod av varadra udr tt gvt tdstrvall E ossofördlad stoasts varabl a ata av fölad värd,,,

Läs mer

Andra ordningens lineära differensekvationer

Andra ordningens lineära differensekvationer Adra ordiges lieära differesekvatioer Differese Differese f H + L - f HL mäter hur mycket f :s värde förädras då argumetet förädras med de mista ehete. Låt oss betecka ämda differes med H Df L HL. Eftersom

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E (8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p

Läs mer

Föreläsning 5 pn-övergången II: Spänning&ström

Föreläsning 5 pn-övergången II: Spänning&ström Förläsig 5 -övrgåg : Säig&ström Laddigar vid jämvikt Yttr ålagd säig Laddigar md ålagd säig Diffusiosströmmar Kort diod 2013-04-11 Förläsig 5, Komotfysik 2013 1 Komotfysik - Kursövrsikt Biolära Trasistorr

Läs mer

ÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION

ÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION SVENSKA KRAFTNÄT / ENETJÄRN NATUR AB Riskaalys Stamätstatio Sösätra UPPDRAGSNUMMER 1270858000 ÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION Ikom till Stockholms stadsbyggadskotor

Läs mer

Fasta tillståndets fysik.

Fasta tillståndets fysik. Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.

Läs mer

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U. MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1.

= x 1. Integration med avseende på x ger: x 4 z = ln x + C. Vi återsubstituerar: x 4 y 1 = ln x + C. Villkoret ger C = 1. Lösigsförslag till tetamesskrivig i Matematik IV, 5B0 Torsdage de 6 maj 005, kl 0800-00 Hjälpmedel: BETA, Mathematics Hadbook Redovisa lösigara på ett sådat sätt att beräkigar och resoemag är lätta att

Läs mer

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2 Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,

Läs mer

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl

Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Korrelatio n : Korrelation Korrelation är samma sak som faltning med. Signal- och Bildbehandling FÖRELÄSNING 12

Korrelatio n : Korrelation Korrelation är samma sak som faltning med. Signal- och Bildbehandling FÖRELÄSNING 12 Sigal- oc Bildbeadlig FÖELÄSNING Korrelaio (D) Korskorrelaio (ofa kalla bara korrelaio) Auokorrelaio oc effekspekrum Brus Lijära ssem LTI-ssem (Lijär idsivaria ssem) Differeial- oc differes-ekvaioer (kursiv)

Läs mer

Digital Signalbehandling i multimedia

Digital Signalbehandling i multimedia Digil siglhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy Digil siglhdlig, Is ör lkro- och iormioskik örläsig Exmpl: Ekok Digil Siglhdlig i mulimdi EI65 Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00 TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armi alilovi: EXTRA ÖVNINGAR omoga lijära diffrtialkvatior OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Lijär diffrtialkvatio (DE) md kostata koffiitr är kvatio av följad tp ( ) (

Läs mer

Uppskatta ordersärkostnader för tillverkningsartiklar

Uppskatta ordersärkostnader för tillverkningsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad

Läs mer

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int

Läs mer

Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem

Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem Institutionn för Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-845 ntamn i 4 Mani II, 845 Hjälpmdl: Pappr, pnna, linjal. Lca till! Problm ) B l r Ett sänghjul md

Läs mer

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ] TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift

Läs mer

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2 Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen

Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University

Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan

Höftledsdysplasi hos dansk-svensk gårdshund - Exempel på tavlan Höftledsdysplasi hos dask-svesk gårdshud - Exempel på tavla Sjö A Sjö B Förekomst av parasitdrabbad örig i olika sjöar Exempel på tavla Sjö C Jämföra medelvärde hos kopplade stickprov Tio elitlöpare spriger

Läs mer

Arkitekturell systemförvaltning

Arkitekturell systemförvaltning Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm

Läs mer

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen: Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-6, 29/10-8/11, = m n

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-6, 29/10-8/11, = m n Uppsala Uiversitet Matematiska Istitutioe Bo Styf Trasformmetoder, 5 hp ES, gyl, Q, W --9 Sammafattig av föreläsigara - 6, 9/ - 8/,. De trigoometriska basfuktioera. Dea kurs hadlar i pricip om att uttrycka

Läs mer

TSRT62 Modellbygge & Simulering

TSRT62 Modellbygge & Simulering TSRT62 Modllbygg & Simulring Förläsning 8 Christian Lyzll Avdlningn ör Rglrtknik Institutionn ör Systmtknik Linköpings Univrsitt C Lyzll (LiTH) TSRT62 Modllbygg & Simulring 2013 1 / 22 Sammanattning: Förläsning

Läs mer

Laboration 1a: En Trie-modul

Laboration 1a: En Trie-modul Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr

Läs mer