TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00

Storlek: px
Starta visningen från sidan:

Download "TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00"

Transkript

1 TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg A, B, C,, E krävs, 9,, rspktiv poäng Komplttring: 9 poäng på tntamn gr rätt till komplttring btg F Vm som har rätt till komplttring framgår av btgt F på MINA SIOR Komplttring skr :a två vkor ftr att tntamn är rättad Om komplttring är godkänd rapportras btg E, annars rapportras F Hjälpmdl: Endast bifogat formlblad miniräknar är int tillåtn Till samtliga inlämnad uppgiftr fordras fullständiga lösningar Skriv ndast på n sida av papprt Skriv namn oh prsonnummr på varj blad Inlämnad uppgiftr skall markras md krss på omslagt Skriv klass på omslagt, A, B llr C nna tntamnslapp får j bhållas ftr tntamnstillfällt utan ska lämnas in tillsammans md lösningar Uppgift p a Bstäm dfinitionsmängdn till funktionn f ln ln b Bstäm dn invrsa funktionn till g ln Bräkna följand gränsvärd: lim sin d rivra funktionn h artan ln Uppgift p Låt f a p Bstäm samtliga asmptotr lodräta/vågräta/snda b p Bstäm samtliga stationära punktr oh dras karaktär min-/ma-/trrasspunkt p Rita grafn till funktionn Var god vänd!

2 Uppgift p Bstäm Talorpolnomt av trdj ordningn kring punktn till funktionn f Uppgift p Bstäm vntulla lokala trmvärdn oh tp min/ma till funktionn f, ln Uppgift p Bräkna följand intgralr: a p ln d b p d Uppgift p Bräkna volmn av kroppn som uppstår då områdt,, rotrar kring -aln Uppgift 7 p Bräkna volmn av kroppn som dfiniras av z,, Uppgift p Bstäm tngdpunktn för ndanstånd områd som i polära koordinatr dfiniras av r, θ s figurn / Lka till!

3 FACIT Uppgift p a Bstäm dfinitionsmängdn till funktionn f ln ln b Bstäm dn invrsa funktionn till g ln Bräkna följand gränsvärd: lim sin d rivra funktionn h artan ln Lösning: a finitionsmängd till funktionn f ln ln : > > oh > < gr < < Svar a: < < Altrnativt svar, b n invrsa funktionn till funktionn g ln g ln ln f Alltså g llr g Svar b: g lim sin Svar : gr os { LH} lim h artan ln Svar d: h h Rättningsmall, a,b,,d: Rätt llr fl Uppgift p Låt f p Bstäm samtliga asmptotr lodräta/vågräta/snda p Bstäm samtliga stationära punktr oh dras karaktär min-/ma-/trrasspunkt

4 p Rita grafn till funktionn Lösning: Asmptotr till funktionn f Vågrät: lim f n vågrät asmptot ± Lodräta: Nämnarn är alltid positiv oh funktionn saknar lodräta asmptotr Eftrsom dt finns n vågrät asmptot då går mot ± så saknas snda asmptotr Stationära punktr: f f oh Tknstudi gr f f MIN MAX Minimivärdt f, maimivärdt f Grafn till funktionn f : Rättningsmall: Asmptotr: Rätt llr Fl

5 Rätt stationära punktr p Rstn är rätt gr ttrligar p Fl stationära punktr p Rätt llr Fl Uppgift p Bstäm Talorpolnomt av trdj ordningn kring punktn till funktionn f f givn Eftrsom f, f, f, Talorpolnomt av trdj ordningn kring punktn a är P f a f a a f a a f a a!! I vårt fall: P,!! Notra att! oh! Svar:, Notra att! oh! Rättningsmall: Utlämnad trdjgradstrm gr p om allt annat är rätt Avdrag p pr räknfl Om man skrivr!,! iställt för, gr j avdrag Uppgift p Bstäm vntulla lokala trmvärdn oh tp min/ma till funktionn f, ln Lösning: Vi notrar först att polnomt, som är argumnt till logaritmn, alltid är positivt: > Om dtta int had gällt påvrkas dfinitionsmängdn Partilla drivator bräknas: f, f, f, f f i Stationära punktr får vi gnom att lösa sstmt f dvs f ärmd är S, n stationär punkt ii Vi bräknar A f,, B f,, C f, oh därftr AC B > Eftrsom AC B > oh A> har funktionn lokalt minimum i punktn, Funktionns minimivärd är f,

6 Svar: Funktionn har lokalt minimum f min i punktn, Rättningsmall: Korrkta partilla drivator av första ordningn oh rätt stationär punkt S, gr p Allt korrkt mtod, partilla drivator, AC B, f min grp Uppgift p Bräkna följand intgralr: a p ln d b p d Lösning: a Partialintgrra: ln d ln d C ln d C ln C b: p Partialbråksuppdla kvotn intgrandn : A B multiplira md A B llr A B A Härav A B oh A som gr A / oh B / ärför / / d d ln ln C SVAR a ln C b ln ln C Rättningsmall: p avdrag för utlämnad intgrationskonstant C i båda dlar a oh b a-dln: Hlt rätt p Avdrag för räknfl: n trm fl, övriga tr rätt kl C gr p, annars p b-dln: Hlt rätt p p för korrkt partialbråksuppdlning

7 Uppgift p Bräkna volmn av kroppn som uppstår då områdt,, rotrar kring -aln Lösning: v d d d f V b a Intgraln är gnralisrad, så man får bräkna gränsvärdt av intgraln då dn övr gränsn går mot oändlightn Svar: v Rättningsmall: Korrkt till gr p Allt korrktp Uppgift 7 p Bräkna volmn av kroppn som dfiniras av z,, Lösning: Volmn bräknas md n dubblintgral: dd V där dfiniras av, Mtod d d V 9 d d Mtod d d V 9 d d Svar: 9 v

8 Rättningsmall: p för korrkt bräkning till uttrkt d llr till uttrkt d i mtod Allt korrktp Uppgift p Bstäm tngdpunktn för ndanstånd områd som i polära koordinatr dfiniras av r, θ s figurn / Lösning: Formlr för tngdpunktskoordinatr fås från formlblad: Aran dd oh Aran dd Områdts ara: Aran dd bt till polära koordinatr, dd rdrdθ 9 θ r rdrd θ θ θ θ d d d Tngdpunktskoordinatr bräknas md polära koordinatr: dd bt till polära koordinatr, r osθ, dd rdrdθ Aran r r osθ rdrdθ osθ dθ osθ osθ dθ osθ θ sinθ sin d

9 Aran dd bt till polära koordinatr, rsinθ, dd rdrdθ r rsinθ rdrdθ sinθ dθ sinθ sinθ dθ sinθ θ osθ os os d Svar: 9 oh 9 Rättningsmall: p för aran p för korrkt intgral dd p för korrkt intgral Allt korrktp dd 9 9

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid: Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,

(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy, MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U. MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:

Läs mer

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15 Kurs: HF9 Matematik Moment TN Linjär lgebra Datum: 5 augusti 6 Skrivtid 8:5 :5 aminator: rmin Halilovic Undervisande lärare: lias Said För godkänt betg krävs av ma poäng. Betgsgränser: För betg B C D krävs

Läs mer

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

Del 1 Teoridel utan hjälpmedel

Del 1 Teoridel utan hjälpmedel inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst

Läs mer

VALLENTUNA KOMMUN Sammanträdesprotokoll 9 (19)

VALLENTUNA KOMMUN Sammanträdesprotokoll 9 (19) VALLENTUNA KOMMUN Sammanträdsprotokoll 9 (19) Socialnämndns arbtsutskott 2015-05-11 56 Intrnplan socialnämndn 2015 (SN 2015.006) Bslut Arbtsutskottt bslutar att förslå att: Socialnämndn bslutar att lägga

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Matematisk statistik

Matematisk statistik Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd

Läs mer

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför

Läs mer

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a)

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a) Drivaans iniion DERIVATANS DEFINITION Dfiniion Lå y f vara n givn funkion som är inirad i punkn a f a f Om gränsvärd israr som rll al sägr vi a funkionn är drivrbar i punkn a Gränsvärd kallas drivaan av

Läs mer

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...

Läs mer

Företag - Skatteverkets kontroll på webben

Företag - Skatteverkets kontroll på webben Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning

Läs mer

Föreläsning 6: Kapitel 10 Beräkning av egenskaper hos reglersystem. Sådana egenskaper är Stabilitet Statisk noggrannhet Snabbhet mm

Föreläsning 6: Kapitel 10 Beräkning av egenskaper hos reglersystem. Sådana egenskaper är Stabilitet Statisk noggrannhet Snabbhet mm Förläning 6: Kapitl 0 Bräkning av gnkapr ho rglrytm Sådana gnkapr är Stabilitt Statik noggrannht Snabbht mm Stabilitt Kan avgöra md Nyqvitkritrit Polbtämning Routh mtod 2 Nyqvitkritrit tt grafikt tabilittkritrium

Läs mer

Offentlig sammanfattning av riskhanteringsplanen (RMP) Saxenda (liraglutide)

Offentlig sammanfattning av riskhanteringsplanen (RMP) Saxenda (liraglutide) Offntlig sammanfattning av riskhantringsplann (RMP) Saxnda (liraglutid) Dtta är n sammanfattning av riskhantringsplann (RMP) för Saxnda som bskrivr d åtgärdr som ska vidtas för att säkrställa att Saxnda

Läs mer

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom Epipoärgomtri dn fundamntaa matrisn Låt vara n punkt i kamracntrum rsp Låt Punktn bägg kamracntrum pipoarpant ti bägg avbidningarna ti vara dss avbidning i två bidr gnom samt d -dimnsiona motsvarightrna

Läs mer

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...

Läs mer

REDOVISNING AV UPPDRAG SOM GOD MAN FÖR ENSAMKOMMANDE BARN OCH BEGÄRAN OM ARVODE (ASYLPERIOD)

REDOVISNING AV UPPDRAG SOM GOD MAN FÖR ENSAMKOMMANDE BARN OCH BEGÄRAN OM ARVODE (ASYLPERIOD) 1(5) REDOVISIG AV UPPDRAG SOM GOD MA FÖR ESAMKOMMADE BAR OCH BEGÄRA OM ARVODE (ASYLPERIOD) Asylpriod priod då barnt int har prmannt upphållstillstånd God mannn har rätt till tt skäligt arvod för uppdragt

Läs mer

Uppskatta ordersärkostnader för inköpsartiklar

Uppskatta ordersärkostnader för inköpsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,

Läs mer

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk

Läs mer

Företag - Skatteverkets kontroll på webben

Företag - Skatteverkets kontroll på webben Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.

Läs mer

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int

Läs mer

Ekosteg. En simulering om energi och klimat

Ekosteg. En simulering om energi och klimat Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr

Läs mer

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns

Bestäm ekvationen för det plan som går genom punkten (1,1, 2 ) på kurvan och som spänns UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Q Flervariabelanalys 8--1 Skrivtid: 8-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Tentand

Läs mer

Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000

Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV RESEKOSTNADER OCH REPRESENTATION Bngt Sbring Sptmbr 2000 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING 1. Inldning... 2 2. Rsultat av granskningn...

Läs mer

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04 TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...

Läs mer

Per Sandström och Mats Wedin

Per Sandström och Mats Wedin Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002

Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002 ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

Uppskatta lagerhållningssärkostnader

Uppskatta lagerhållningssärkostnader B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,

Läs mer

Bilaga 1 Kravspecifikation

Bilaga 1 Kravspecifikation Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.

Läs mer

där a och b är koefficienter som är större än noll. Här betecknar i t

där a och b är koefficienter som är större än noll. Här betecknar i t REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt

Läs mer

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)

När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde) GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )

Läs mer

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i.

Skrivtid: Lösningar ska åtföljas av förklarande text. Hjälpmedel: formelsamling och manuella skrivdon. 1. Lös ekvationen z 4 = 16i. UPPSALA UNIVERSITET Matematiska institutionen Fredrik Strömberg och Leo Larsson Prov i matematik Fristående kurs Matematik MN 00-0-0 Skrivtid: 9.00 4.00 Lösningar ska åtföljas av förklarande text. Hjälpmedel:

Läs mer

Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget

Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du

Läs mer

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som

Denna tentamen består av två delar. Först sex enklare uppgifter, som vardera ger maximalt 2 poäng. Andra delen består av tre uppgifter, som Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Jan Eriksson sin( + ) sin + + n 6 LÖSNINGAR TILL TENTAMEN I MATEMATIK MAA1 och MMA1 Basutbildning II i matematik

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2016

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2016 Institutionn för tillämpad mkanik, Chalmrs tkniska högskola TENTAMEN I FINIT EEMENTMETOD MHA AUGUSTI Tid och plats: 8 i M hust Hjälpmdl: Ordöckr, lxikon och typgodkänd räknar. ösningar ärar: Ptr Möllr,

Läs mer

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod...

SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod... Rvisionsrapport 2010 Malmö stad Granskning av policy och riktlinjr samt intrn kontroll mot mutor tc. Jakob Smith och Josabth Alfsdottr dcmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1. INLEDNING...

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.

Läs mer

Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M

Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M Yrks-SM tur och rtur E n l ä r a r h a n d l d n i n g k r i n g Y r k s - S M Yrks-SM 2010 Dt prfkta studibsökt Dn 19-21 maj 2010 arrangras nästa svnska mästrskap i yrksskicklight. Platsn är Götborg och

Läs mer

Krav på en projektledare.

Krav på en projektledare. Crtifiring av projktldar. PIE. EKI. LiU. Run Olsson vrsion 20050901 sid 1 av 5 Krav på n projktldar. Intrnationlla organisationr som IPMA och PMI har formulrat vilka krav som ska ställas på n projktldar.

Läs mer

Laboration 1 Svartkroppsstrålning Wiens lag

Laboration 1 Svartkroppsstrålning Wiens lag Ivar Gustavsson/ Jan Södrstn Matmatiska vtnskapr Götborg 8 novmbr 009 Linjär Algbra och Numrisk Analys TMA 671, 010 Laboration 1 Svartkroppsstrålning Wins lag Strålningsflödt vid svartkroppsstrålning till

Läs mer

INTRODUKTION. Akut? RING: 031-51 20 12

INTRODUKTION. Akut? RING: 031-51 20 12 INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid www.librhrmods.s Kurskatalog 2008 Libr Hrmods för n lysand framtid 1898 n a d s lärand t l b i x s fl d o m r H Libr Välkommn till Libr Hrmods! hos oss når du dina mål Från och md januari 2008 bdrivr Libr

Läs mer

Fasta tillståndets fysik.

Fasta tillståndets fysik. Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k) Armn Hallovc: EXTRA ÖVNINGAR Tllämpnngar av dffrnalkvaonr TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följand uryck används ofa olka problm som ldr ll dffrnalkvaonr: Tx A är proporonll mo B A är omvän proporonll

Läs mer

Uppskatta ordersärkostnader för tillverkningsartiklar

Uppskatta ordersärkostnader för tillverkningsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad

Läs mer

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor: Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 2016 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Tisdagen den 7 juni 216 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917 BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp

Läs mer

ERCO Hi-trac strömskena

ERCO Hi-trac strömskena 72 2000 0q (RAL9002) Längd 2000mm Produktbskrivning Panl-profil: aluminium, pulvrlackrad. Ovansidan: tomprofil, för fastsättning av övrkoppling llr täckprofilr. Undrsidan: strömskna. 4 isolrad kopparldar

Läs mer

Lösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista

Lösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista Lösta xmpl oc gamla tntor i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Lösa xmpl oc gamla tantr i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Innållsförtckning

Läs mer

BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - en kategoridataanalys med logistisk regression

BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - en kategoridataanalys med logistisk regression Statistiska Institutionn BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - n katgoridataanalys md logistisk rgrssion Ylva Brg och Christina Brummr Uppsats i statistik poäng Nivå 4-6

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armi alilovi: EXTRA ÖVNINGAR omoga lijära diffrtialkvatior OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Lijär diffrtialkvatio (DE) md kostata koffiitr är kvatio av följad tp ( ) (

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar

Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar Rvisionsrapport 2010 Hylt kommun Granskning av upphandlingar Jakob Smith fbruari 2011 Innhållsförtckning SAMMANFATTNING... 3 1 UPPDRAGET... 4 1.1 Bakgrund och syft... 4 1.2 Mtod och avgränsning... 4 2

Läs mer

4. så många platser för fjäderfän, slaktsvin eller suggor att platserna tillsammans motsvarar mer än 200 djurenheter definierade som i 1.20.

4. så många platser för fjäderfän, slaktsvin eller suggor att platserna tillsammans motsvarar mer än 200 djurenheter definierade som i 1.20. Sidan 1 av 41 AVDELNING 1 Miljöfarlig vrksamht för vilkn tillstånds- llr anmälningsplikt gällr nligt 5 llr 21 förordningn (1998:899) om miljöfarlig vrksamht och hälsoskydd samt viss annan vrksamht, s k

Läs mer

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5

Läs mer

247 Hemsjukvårdsinsats för boende i annan kommun

247 Hemsjukvårdsinsats för boende i annan kommun PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr

Läs mer

Tentamen i Matematik 1 DD-DP08

Tentamen i Matematik 1 DD-DP08 Tentamen i Matematik DD-DP08 (Kursnummer HF90) 2009-03-2, kl. 3:5-7:00 Hjälpmedel: endast bifogat formelblad. Till samtliga inlämnade uppgifter fordras fullständiga lösningar. Svaren ska alltid förkortas

Läs mer

Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag

Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag A Distributions ktör på DISTRIBUTIONSFÖRARE 1(5) Arbtsplatsförlagd dl av tstmodul, validring llr utbildning När du dokumntrar dn arbtsplatsförlagda dln i ndanstånd chcklista gör då ävn bdömning inom säkrhts-,

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

Bengt Sebring OKTOBER 2001 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2001

Bengt Sebring OKTOBER 2001 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2001 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV JÄVSFÖRHÅLLAN- DEN VID UPPHANDLING Bngt Sbring OKTOBER 2001 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING SAMMANFATTNING OCH SLUTSATSER... 3 1 BAKGRUND

Läs mer

Produktblad. Mechlift Pro E

Produktblad. Mechlift Pro E Produktblad Mchlift Pro E Mångsidig momntupptagand manipulator Flxibl lyftnht Elktrisk Mchlift Pro är n rgonomiskt utformad momnt upptagand lyftnht som nklt anpassas till många typr av hantrings lösningar.

Läs mer

S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com

S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com AVM 960 AVM 961 AVM 971 S D K N O F I.hirlpool.com 1 S INNAN APPARATN MONTRAS INSTALLATION KONTROLLRA ATT ugnsutrymmt är tomt för installationn. KONTROLLRA att apparatn int är skadad innan dn montras i

Läs mer

Laboration 1a: En Trie-modul

Laboration 1a: En Trie-modul Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr

Läs mer

Förra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer.

Förra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer. örläsning 5 örra gångn: fördlningar Omfattand systm md många partiklar kan praktiskt bara bskrivas i statistiska trmr. Antal partiklar inom nrgiintrvall E till E +de gs av dn = D (E ) N (E ) de där D (E

Läs mer

om de är minst 8 år gamla

om de är minst 8 år gamla VIKTIGA SÄKERHETSINSTRUKTIONER LÄS NOGGRANT OCH SPARA FÖR FRAMTIDA REFERENS VÄRM INTE UPP OCH ANVÄND INTE BRANDFARLIGA MATERIAL i llr nära ugnn. Ångor kan skapa n risk för brand llr xplosion. ANVÄND INTE

Läs mer

Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv.

Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv. Knagg Knaggarna kan t.x. användas vid förbindning mllan ar och ar. I kombination md fäst är bärförmågan stor vid vältand och lyftand kraftr. Knaggarna tillvrkas av 2,0 ± 0,13 mm galvanisrad stålplåt och

Läs mer

H m24 Prislista. webb reklam. media sweden

H m24 Prislista. webb reklam. media sweden H m24 Prislista w rw wbb rklam mdia swdn 20% RABATT gällr för nytcknad abonnmang ABONNEMANG Paktprisr gällr t.o.m -12-31 KATEGORIER BASIC STANDARD PREMIUM PREMIUM PLUS 1 2 3 4 5 6 7 8 9 10 Halvår Hlår

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6

Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 6 freeleaks NpMaE vt00 lämpliga för Ma4 1(9) Innehåll Förord 1 Kursprov i matematik, kurs E vt 00 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 6 Förord Kom ihåg Matematik är att

Läs mer

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO Bngt Sbring Fbruari 2004 Sida: 1 Kommunrvisionn Innhållsförtckning Sammanfattning... 3 1. Inldning... 4 1.1 Uppdrag... 4 1.2 Avgränsning... 4 1.3

Läs mer

Studietips info r kommande tentamen TEN1 inom kursen TNIU22

Studietips info r kommande tentamen TEN1 inom kursen TNIU22 Studietips info r kommande tentamen TEN1 inom kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Ett sekel av samarbete

Ett sekel av samarbete johanns jansson / nordn. org Första nordiska mött för hushållsvtar hölls i Sorø i Danmark år 1909, dt sista i finländska Åbo år 2009. Ett skl av samarbt Ett skl. Så läng sdan är dt danskan Magdalna Lauridsn

Läs mer

Matchresultat rond 6 Elitserien Allsvenskan 2012/13

Matchresultat rond 6 Elitserien Allsvenskan 2012/13 Sida 1 av 2 Viking Från: Til: Kopia: Skickat: Bifoga: Ämn: "Niklas Sidmat' "niklas.sidmar~schack.s;: "viking.ab~tlia.com;: "tk~schack.s;: dn 27 fbruari 201311:19 Prsonbvis_David_Brczs_2013 _02_25. pdf

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7

x 2 + x 2 b.) lim x 15 8x + x 2 c.) lim x 2 5x + 6 x 3 + y 3 xy = 7 TM-Matematik Mikael Forsberg 0734-41331 Pär Hemström 06-64896 För ingenjörs och distansstudenter Envariabelanalys ma034a 01 10 01 Skrivtid: 09:00-14:00. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Föreningen Sveriges Habiliteringschefer Rikstäckande nätverk för habiliteringen i Sverige. Grundad 1994

Föreningen Sveriges Habiliteringschefer Rikstäckande nätverk för habiliteringen i Sverige. Grundad 1994 Förningn Svrigs Habilitringschfr Rikstäckand nätvrk för habilitringn i Svrig. Grundad 1994 Minnsantckningar styrlsmöt 2012-01-19 och 2012-01-20 Plats: Stockholm, Villa Brvik Tid: 13.00 Närvarand: Lna,

Läs mer

Arkitekturell systemförvaltning

Arkitekturell systemförvaltning Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm

Läs mer

Månadsrapport för januari-mars 2015 för Landstingsfastigheter Stockholm. Anmälan av månadsrapport för Landstingsfastigheter januari-mars 2015.

Månadsrapport för januari-mars 2015 för Landstingsfastigheter Stockholm. Anmälan av månadsrapport för Landstingsfastigheter januari-mars 2015. locum. VÄRD FR VÅRD 2015-05-07 2015-05-28 - ÄRD 12 AMÄLA r.oc 1501-0234 1 (1) Styrlsn för Locum AB Månadsrapport för januari-mars 2015 för Landstingsfastightr Stockholm Ärndt Anmälan av månadsrapport för

Läs mer

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13 Kurskod: 9G0 Provkod: STN Tentamen 9G0 Matematik för lärare årskurs -, del, 5 hp delmoment Geometri,5 hp, 0-0-08, kl 8- Tillåtna hjälpmedel : Passare, linjal För varje uppgift ska fullständig lösning med

Läs mer

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls

Läs mer

Föreläsning 11: Grafer, isomorfi, konnektivitet

Föreläsning 11: Grafer, isomorfi, konnektivitet Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS D HÖSTEN Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. sekretesslagen. För detta material gäller sekretessen till och med utgången av april 999. NATIONELLT KURSPROV

Läs mer