Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:

Storlek: px
Starta visningen från sidan:

Download "Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:"

Transkript

1 Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A, B,, D, E krävs, 9,, rspktiv 9 poäng Gamlakursr: För btyg,, krävs, rspktiv 9 poäng Komplttring: poäng på tntamn gr rätt till komplttring btyg F Vm som har rätt till komplttring framgår av btygt F på MINA SIDOR Komplttring skr c:a två vckor ftr att tntamn är rättad Om komplttring är godkänd rapportras btyg E, annars rapportras F Börja varj ny uppgift på tt nytt blad, ta gör att rättningn blir säkrar Skriv ndast på n sida av papprt Skriv namn och prsonnummr på varj blad Inlämnad uppgiftr skall markras md kryss på omslagt Dnna tntamnslapp får j bhållas ftr tntamnstillfällt utan lämnas in tillsammans md läsningar Uppgift r r r r a För vilka värdn på k är vktorrna a kb och b c vinklräta p då a r,,, b r,, och c r,,? b Bräkna aran av triangln AB då p A,,, B,, och,, c Bstäm vktorprojktion av vktorn a r,, p på linjn md riktningsvktor b r,, Uppgift a Lös matriskvationn md avsnd på X p XA B då A, B och b Lös följand kvation md avsnd på komplt tal z p z z

2 Uppgift Bräkna följand intgralr: a d p b cos d c d p Uppgift För vilka värdn på paramtrn a har systmt md avsnd på, y och z y z y z y az a akt n lösning p b ingn lösning p c oändligt många lösningar p? p Uppgift Bstäm vntulla snda asymptotr till funktionn Uppgift Lös matriskvationn AYB md avsnd på Y då A [ ] och B [ ] Uppgift 7 Bräkna gränsvär 7 t lim sin π y p p p Uppgift En ljusstrål går gnom punktn P,, och har riktningn p v r,, Stråln rflktras mot plant Π : y z Bstäm kvationr på paramtrform för dn rflktrad stråln P n r rflktrad strål Π Uppgift 9 Bstäm största vär av funktionn f arcsin 9 på intrvallt / / p Lycka till!

3 FAIT Uppgift r r r r a För vilka värdn på k är vktorrna a kb och b c vinklräta p då a r,,, b r,, och c r,,? b Bräkna aran av triangln AB då p A,,, B,, och,, c Bstäm vktorprojktion av vktorn a r,, på linjn md riktningsvktor b r,, a r r r r a kb o b c, k, k o,, k k Svar a k p baran av triangln AB är lika md AB A Eftrsom r r r i j k AB r r r A i j k, får vi : Aran AB A aranhtr Svar b aranhtr c Vktorprojktion av a r,, på b r,, är lika md r r a o b r r r b,, b o b 9 Svar c,, 9

4 Uppgift a Lös matriskvationn md avsnd på X p XA B då A, B och b Lös följand kvation md avsnd på komplt tal z p z z a Matrisn A är invrtrbar ftrsom Invrs matris: A A XA B XA B Vi multiplicrar kvationn från högr md A - och får XA A - B A - X B A - X Svar a X b z z z z z z 9 z ± 9 z ± i z ± i z i z i Svar b z i, z i 9 Uppgift Bräkna följand intgralr: a d p b cos d c d a p

5 d d dla i part bråk d ln ln Svar a ln ln b d cos substitution d d t sin sin cos t t Svar b sin c d Partialintgration g f g f d Svar c Uppgift För vilka värdn på paramtrn a har systmt md avsnd på, y och z az y z y z y a akt n lösning p b ingn lösning p c oändligt många lösningar p? Kofficintmatrisn a A gr a A DtA för alla värdn på paramtrn a mdför att fallt akt n lösning INTE kan förkomma

6 Vi användr Gausslimination och får y z y z y z y z z z / y az a 9 z a 9 z y z y z z / z / a 9 a Alltså är systmt saknar lösning om a Oändligt många lösningar om a Två ldand variablr och z, mn y varirar fritt Svar: a Fallt Eakt n lösning förkommr INTE b Ingn lösning om a c Oändligt många lösningar om a Uppgift Bstäm vntulla snda asymptotr till funktionn y p Polynomdivision llr nkl omskrivning av täljar i här fallt gr y Svar: Funktionn har n snd asymptot y Uppgift Lös matriskvationn AYB md avsnd på Y då A [ ] och B [ ] Matrisn A är int kvadratisk och därför A saknar invrsmatris!!! Eftrsom typ A, typ B, vi sr att för matrisn Y måst gälla typy Därför gör vi ansats a b Y c d som vi substiturar i kvationn AYB a b [ ] [ ] c d kv: a c kv : b d Härav a c, och b d där c och d är goyckliga tal p

7 Lösningar är alla matrisr Y som kan skrivas på följand sätt c d Y c d där c och d kan väljas fritt Svar: Y c c d d, c och d varirar fritt Uppgift 7 Bräkna gränsvär 7 t lim sin π 7 t " " lim sin π lim Svar: 7 t sin π π lim d d, och vi kan använda l Hospitals rgl: 7 t 7 7 lim d π cos π π cos π sin π d p π π Uppgift En ljusstrål går gnom punktn P,, och har riktningn p v r,, Stråln rflktras mot plant Π : y z Bstäm kvationr på paramtrform för dn rflktrad stråln P n r Q R M P B Linjn L gnom punktn P har kvationn:, y, z t, t, t Skärningspunktn B mllan linjn L och plant Π : y z fås ur t t t t B,,

8 Nu bstämmr vi projktionn Q av punktn P på normallinjn gnom B s bildn Eftrsom BP -,-, och n r,, har vi r BPo n r BQ proj r n BP r r n,,,, n o n Från B,, BQ,, har vi Q,, Låt punktn R vara spglbild av punktn P i normallinj gnom B Då gällr PR PQ,,,, Eftrsom P,, och PR,, har vi R,,- Dn rflktrand stråln går gnom B och R och därför har riktningsvktorn BR,, Ekvationn för linjn L:, y, z t, t, t llr t, y t, z t Svar: t, y t, z t Uppgift 9 Bstäm största vär av funktionn f arcsin 9 på intrvallt / / Ändpunktr: π f / arcsin π / arcsin π f Stationära punktr f punktn liggr i intrvallt / / Eftrsom > då / < < / f är då / < då / < < / har funktionn maimum i punktn / Största vär är π f / arcsin/ / Svar: f ma π p

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

Matematisk statistik

Matematisk statistik Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U. MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:

Läs mer

(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,

(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy, MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:

Läs mer

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom Epipoärgomtri dn fundamntaa matrisn Låt vara n punkt i kamracntrum rsp Låt Punktn bägg kamracntrum pipoarpant ti bägg avbidningarna ti vara dss avbidning i två bidr gnom samt d -dimnsiona motsvarightrna

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a)

vara en given funktion som är definierad i punkten a. i punkten a och betecknas f (a) Drivaans iniion DERIVATANS DEFINITION Dfiniion Lå y f vara n givn funkion som är inirad i punkn a f a f Om gränsvärd israr som rll al sägr vi a funkionn är drivrbar i punkn a Gränsvärd kallas drivaan av

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2

Läs mer

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

Föreläsning 10 Kärnfysiken: del 2

Föreläsning 10 Kärnfysiken: del 2 Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04 TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...

Läs mer

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...

Läs mer

där a och b är koefficienter som är större än noll. Här betecknar i t

där a och b är koefficienter som är större än noll. Här betecknar i t REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt

Läs mer

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska

Läs mer

Del 1 Teoridel utan hjälpmedel

Del 1 Teoridel utan hjälpmedel inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst

Läs mer

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs

Läs mer

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk

Läs mer

247 Hemsjukvårdsinsats för boende i annan kommun

247 Hemsjukvårdsinsats för boende i annan kommun PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr

Läs mer

Uppskatta ordersärkostnader för inköpsartiklar

Uppskatta ordersärkostnader för inköpsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,

Läs mer

Uppskatta lagerhållningssärkostnader

Uppskatta lagerhållningssärkostnader B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,

Läs mer

11. Egenvärden och egenvektorer

11. Egenvärden och egenvektorer 11 Egnvärdn och gnvktorr 82 Egnvktor och gnvärd: dfinition 83 Egnvktorr och gnvärdn för projktionr, spglingar och rotationr i 2 och 3 dimnsionr 84 Karaktäristiskt polynom, karaktäristisk kvation och gnvärdn

Läs mer

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning. A=kB. A= k (för ett tal k) Armn Hallovc: EXTRA ÖVNINGAR Tllämpnngar av dffrnalkvaonr TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följand uryck används ofa olka problm som ldr ll dffrnalkvaonr: Tx A är proporonll mo B A är omvän proporonll

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

LINJÄRA SYSTEM repetitions- och tentamensfrågor. Matrisräkning (rep.)

LINJÄRA SYSTEM repetitions- och tentamensfrågor. Matrisräkning (rep.) LINJÄRA SYSTEM rptitions- och tntamnsfrågor Försökr hålla mig till ndanstånd frågställningar när jag sättr ihop tntamn. Hjälpmdl vid tntamn: Dt utdlad Fourir/Laplac-transformbladt kommr att bifogas. Miniräknar

Läs mer

Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000

Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV RESEKOSTNADER OCH REPRESENTATION Bngt Sbring Sptmbr 2000 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING 1. Inldning... 2 2. Rsultat av granskningn...

Läs mer

Företag - Skatteverkets kontroll på webben

Företag - Skatteverkets kontroll på webben Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.

Läs mer

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917 BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp

Läs mer

VALLENTUNA KOMMUN Sammanträdesprotokoll 9 (19)

VALLENTUNA KOMMUN Sammanträdesprotokoll 9 (19) VALLENTUNA KOMMUN Sammanträdsprotokoll 9 (19) Socialnämndns arbtsutskott 2015-05-11 56 Intrnplan socialnämndn 2015 (SN 2015.006) Bslut Arbtsutskottt bslutar att förslå att: Socialnämndn bslutar att lägga

Läs mer

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int

Läs mer

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret. Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa

Läs mer

Enkätsvar Sommarpraktik - Grundskola 2016

Enkätsvar Sommarpraktik - Grundskola 2016 Enkätsvar Sommarpraktik - Grundskola 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr och 5

Läs mer

Enkätsvar Sommarpraktik Gymnasiet 2016

Enkätsvar Sommarpraktik Gymnasiet 2016 Enkätsvar Sommarpraktik Gymnasit 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr int och 5

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

Bengt Sebring OKTOBER 2001 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2001

Bengt Sebring OKTOBER 2001 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2001 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV JÄVSFÖRHÅLLAN- DEN VID UPPHANDLING Bngt Sbring OKTOBER 2001 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING SAMMANFATTNING OCH SLUTSATSER... 3 1 BAKGRUND

Läs mer

Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget

Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du

Läs mer

Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv.

Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv. Knagg Knaggarna kan t.x. användas vid förbindning mllan ar och ar. I kombination md fäst är bärförmågan stor vid vältand och lyftand kraftr. Knaggarna tillvrkas av 2,0 ± 0,13 mm galvanisrad stålplåt och

Läs mer

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.

Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret. Cykln Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Min cykl Sidan

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15

Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 25 augusti 2016 Skrivtid 8:15 12:15 Kurs: HF9 Matematik Moment TN Linjär lgebra Datum: 5 augusti 6 Skrivtid 8:5 :5 aminator: rmin Halilovic Undervisande lärare: lias Said För godkänt betg krävs av ma poäng. Betgsgränser: För betg B C D krävs

Läs mer

REDOVISNING AV UPPDRAG SOM GOD MAN FÖR ENSAMKOMMANDE BARN OCH BEGÄRAN OM ARVODE (ASYLPERIOD)

REDOVISNING AV UPPDRAG SOM GOD MAN FÖR ENSAMKOMMANDE BARN OCH BEGÄRAN OM ARVODE (ASYLPERIOD) 1(5) REDOVISIG AV UPPDRAG SOM GOD MA FÖR ESAMKOMMADE BAR OCH BEGÄRA OM ARVODE (ASYLPERIOD) Asylpriod priod då barnt int har prmannt upphållstillstånd God mannn har rätt till tt skäligt arvod för uppdragt

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2016

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2016 Institutionn för tillämpad mkanik, Chalmrs tkniska högskola TENTAMEN I FINIT EEMENTMETOD MHA AUGUSTI Tid och plats: 8 i M hust Hjälpmdl: Ordöckr, lxikon och typgodkänd räknar. ösningar ärar: Ptr Möllr,

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av samhällsbyggnadsnämndens och tillsynsnämndens styrning och ledning. Iréne Dahl, Ernst & Young

Revisionsrapport 2010. Hylte kommun. Granskning av samhällsbyggnadsnämndens och tillsynsnämndens styrning och ledning. Iréne Dahl, Ernst & Young Rvisionsrapport 2010 Hylt kommun Granskning av samhällsbyggnadsnämndns och tillsynsnämndns styrning och ldning Irén Dahl, Ernst & Young Augusti 2010 Hylt kommun Rvisorrna Innhållsförtckning SAMMANFATTNING...

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armi alilovi: EXTRA ÖVNINGAR omoga lijära diffrtialkvatior OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Lijär diffrtialkvatio (DE) md kostata koffiitr är kvatio av följad tp ( ) (

Läs mer

Fasta tillståndets fysik.

Fasta tillståndets fysik. Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.

Läs mer

Sommarpraktik - Grundskola 2017

Sommarpraktik - Grundskola 2017 Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur

Läs mer

Bilaga 1 Kravspecifikation

Bilaga 1 Kravspecifikation Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016

SF1625 Envariabelanalys Tentamen Måndagen den 11 januari 2016 SF625 Envariabelanalys Tentamen Måndagen den januari 206 Skrivtid: 08:00-3:00 Tillåtna hjälpmedel: inga Examinator: Lars Filipsson Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

.. ANKOM SODERTALJE KOMMUN ~ \-1:/' -., Dnr... :'.IbY..R.~... ~:.~~~mmunstyrelsen. ~cuildningsnämnden Kommundelsnämnderna

.. ANKOM SODERTALJE KOMMUN ~ \-1:/' -., Dnr... :'.IbY..R.~... ~:.~~~mmunstyrelsen. ~cuildningsnämnden Kommundelsnämnderna Södrtälj kommun TJÄNSTESKRIVELSE 2017-09-05 Utbildningskontort.. ANKOM SODERTALJE KOMMUN 2017-09~. 1 9 \-1:/' -., Dnr... :'.IbY..R.~... ~:.~~~mmunstyrlsn. ~cuildningsnämndn Kommundlsnämndrna 1 (3) Rvidring

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

Lösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista

Lösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista Lösta xmpl oc gamla tntor i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Lösa xmpl oc gamla tantr i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Innållsförtckning

Läs mer

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9:

Matematiska Institutionen L osningar till v arens lektionsproblem. Uppgifter till lektion 9: Uppsala Universitet Matematiska Institutionen Inger Sigstam Envariabelanalys, hp --6 Uppgifter till lektion 9: Lösningar till vårens lektionsproblem.. Ett fönster har formen av en halvcirkel ovanpå en

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Tanken och handlingen. ett spel om sexuell hälsa och ordassociationer

Tanken och handlingen. ett spel om sexuell hälsa och ordassociationer Tankn och handlingn tt spl om sxull hälsa och ordassociationr 2 / 13 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad

Läs mer

Ekosteg. En simulering om energi och klimat

Ekosteg. En simulering om energi och klimat Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr

Läs mer

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot

Läs mer

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid

www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid www.librhrmods.s Kurskatalog 2008 Libr Hrmods för n lysand framtid 1898 n a d s lärand t l b i x s fl d o m r H Libr Välkommn till Libr Hrmods! hos oss når du dina mål Från och md januari 2008 bdrivr Libr

Läs mer

Förra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer.

Förra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer. örläsning 5 örra gångn: fördlningar Omfattand systm md många partiklar kan praktiskt bara bskrivas i statistiska trmr. Antal partiklar inom nrgiintrvall E till E +de gs av dn = D (E ) N (E ) de där D (E

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014

UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014 UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:

Läs mer

Offentlig sammanfattning av riskhanteringsplanen (RMP) Saxenda (liraglutide)

Offentlig sammanfattning av riskhanteringsplanen (RMP) Saxenda (liraglutide) Offntlig sammanfattning av riskhantringsplann (RMP) Saxnda (liraglutid) Dtta är n sammanfattning av riskhantringsplann (RMP) för Saxnda som bskrivr d åtgärdr som ska vidtas för att säkrställa att Saxnda

Läs mer

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1

10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1 TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls

Läs mer

Moment Viktiga exempel Övningsuppgifter I

Moment Viktiga exempel Övningsuppgifter I Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter

Läs mer

Per Sandström och Mats Wedin

Per Sandström och Mats Wedin Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786

Läs mer

Lösning : Substitution

Lösning : Substitution INTEGRALER AV RATIONELLA FUNKTIONER Viktiga grundeempel: Eempel. (aa 0) aaaabb aaaabb = tt = aa aa = aa llll tt CC llll aaaa bb CC aaaa bb = tt aaaaaa = = aa Eempel. (aaaabb) nn (nn, 0) (aaaa bb) nn =

Läs mer

Tid 09:00-15:00, fredag 3 mars Hjälpmedel: formelsamling, räknare, physics handbook

Tid 09:00-15:00, fredag 3 mars Hjälpmedel: formelsamling, räknare, physics handbook STOCKHOLS UIVERSITET FYSIKU Tntamn Kvantfysik 6p för Fyun Tid 9:-15:, frdag 3 mars 6. Hjälpmdl: formlsamling, räknar, physis handbook 1 a Ang d partiklslag som har färg. För varj partikl ang tt möjligt

Läs mer

BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - en kategoridataanalys med logistisk regression

BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - en kategoridataanalys med logistisk regression Statistiska Institutionn BAKÅTVÄND ELLER FRAMÅTVÄND BILBARNSTOL FÖR DEM MELLAN ETT OCH FEM ÅR - n katgoridataanalys md logistisk rgrssion Ylva Brg och Christina Brummr Uppsats i statistik poäng Nivå 4-6

Läs mer

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22

Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Studietips infö r kömmande tentamen TEN1 inöm kursen TNIU22 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

Tentamen i Elektronik grundkurs ETA007 för E1,D1 och Media

Tentamen i Elektronik grundkurs ETA007 för E1,D1 och Media Tntamn i Elktrnik grundkurs ET7 för E,D ch Mdia 6-- Tntamn mfattar päng. 3 päng pr uppgift. päng gr gdkänd tntamn. Tillått hälpmdl är räkndsa. För full päng krävs på var uppgift fullständiga lösngar utgånd

Läs mer

H m24 Prislista. webb reklam. media sweden

H m24 Prislista. webb reklam. media sweden H m24 Prislista w rw wbb rklam mdia swdn 20% RABATT gällr för nytcknad abonnmang ABONNEMANG Paktprisr gällr t.o.m -12-31 KATEGORIER BASIC STANDARD PREMIUM PREMIUM PLUS 1 2 3 4 5 6 7 8 9 10 Halvår Hlår

Läs mer

Namn Klass Personnummer (ej fyra sista)

Namn Klass Personnummer (ej fyra sista) Prövning matematik 4 april 06 (prövningstillfälle 6) Namn Klass Personnummer (ej fyra sista) Mobiltelefonnummer e-post SKRIV TYDLIGT! Alla papper ska förses med namn och återlämnas Skriv tydligt. Oläsliga

Läs mer

6.14 Triangelelement (CST Constant Strain Triangle)

6.14 Triangelelement (CST Constant Strain Triangle) Övning 4 riangmnt ickard Shn -- FEM för Ingnjörstiämpningar, SE rshn@kth.s 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E-modu E Poissons ta På tunn påt md fria tor kan man göra antagand om

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag 0.0.05 08.0 0.0 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna

Läs mer

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning

Läs mer

Uppskatta ordersärkostnader för tillverkningsartiklar

Uppskatta ordersärkostnader för tillverkningsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad

Läs mer

Företag - Skatteverkets kontroll på webben

Företag - Skatteverkets kontroll på webben Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.

Läs mer

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV UTBETALNINGSRUTINER. Bengt Sebring September 2003 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2003

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV UTBETALNINGSRUTINER. Bengt Sebring September 2003 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2003 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV UTBETALNINGSRUTINER Bngt Sbring Sptmbr 2003 Sida: 1 Kommunrvisionn 1. Inldning Dnna rapport utgör n dlrapport i vårt arbt md att granska dn intrna kontrolln

Läs mer

Tentamen Matematisk grundkurs, MAGA60

Tentamen Matematisk grundkurs, MAGA60 MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform.

601. (A) Bestäm MacLaurinutvecklingarna av ordning 2 till följande uttryck. Resttermen ges på ordoform. Kap 4.8 4.9. Taylors formel, Lagranges restterm, stort ordo, entydigheten, approimationer, uppskattning av felet, Maclaurins formel, l'hospitals regel. 60. (A) Bestäm MacLaurinutvecklingarna av ordning

Läs mer

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor:

Uppgift 1. a) Bestäm alla lösningar till ekvationen. b) Lös olikheten. Rita följande andragradskurvor: Tentamen i MATEMATIK, HF 700 9 nov 007 Tid :5-7:5 KLASS: BP 07 Lärare: Armin Halilovic Hjälpmedel: Miniräknare av vilken tp som helst, en formelsamling och ett bifogat formelblad. Tentamen består av 8

Läs mer

Krav på en projektledare.

Krav på en projektledare. Crtifiring av projktldar. PIE. EKI. LiU. Run Olsson vrsion 20050901 sid 1 av 5 Krav på n projktldar. Intrnationlla organisationr som IPMA och PMI har formulrat vilka krav som ska ställas på n projktldar.

Läs mer

Lösningar kapitel 10

Lösningar kapitel 10 Lösningar kapitel 0 Endimensionell analys Fabian Ågren, π Lösta uppgifter 0............................................... 0............................................... 0.6..............................................

Läs mer

Delårsrapport 2014-08-31

Delårsrapport 2014-08-31 TRELLEBORGS KOMMUN Srvlcriämndn 2014-09-22 Dlårsrapprt 2014-08-31 Sammanfattning Nämndsttal (tkr) Dlår 140831 Årsbudgt 2014 Prgns 2014 Avvikls Vrksamhtns intäktr 260 267 386 016 385 016-1 000 Vrksamhtns

Läs mer

EKOTRANSPORT 2030. Vägen till en fossiloberoende fordonsflotta. #eko2030

EKOTRANSPORT 2030. Vägen till en fossiloberoende fordonsflotta. #eko2030 FOTO: CHINAFACE #ko2030 mmmnn m m o k o ä k l V Vä ssnn oom n n r r f ttiillll kkoonf hållbaarraa ns ffrraam mtid tt occhh rröörrlliigghh rtrr ort trtraannssppo EKOTRANSPORT 2030 Vägn till n fossilobrond

Läs mer

Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M

Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M Yrks-SM tur och rtur E n l ä r a r h a n d l d n i n g k r i n g Y r k s - S M Yrks-SM 2010 Dt prfkta studibsökt Dn 19-21 maj 2010 arrangras nästa svnska mästrskap i yrksskicklight. Platsn är Götborg och

Läs mer

Föreläsning 6: Kapitel 10 Beräkning av egenskaper hos reglersystem. Sådana egenskaper är Stabilitet Statisk noggrannhet Snabbhet mm

Föreläsning 6: Kapitel 10 Beräkning av egenskaper hos reglersystem. Sådana egenskaper är Stabilitet Statisk noggrannhet Snabbhet mm Förläning 6: Kapitl 0 Bräkning av gnkapr ho rglrytm Sådana gnkapr är Stabilitt Statik noggrannht Snabbht mm Stabilitt Kan avgöra md Nyqvitkritrit Polbtämning Routh mtod 2 Nyqvitkritrit tt grafikt tabilittkritrium

Läs mer

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx

cos( x ) I 1 = x 2 ln xdx I 2 = x + 1 (x 1)(x 2 2x + 2) dx TM-Matematik Mikael Forsberg DistansAnalys Envariabelanalys Distans ma4a ot-nummer Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej

Läs mer