(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,

Storlek: px
Starta visningen från sidan:

Download "(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,"

Transkript

1 MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum: 6 augusti 0 Skrivtid: 5 timmar Hjälpmdl: Pnna, linjal och radrmdl Dnna tntamn bstår av åtta om varannat slumpmässigt ordnad uppgiftr som vardra kan g maximalt 5 poäng. Dn maximalt möjliga poängsumman är sålds 40. För btygn, 4, 5 krävs minst 8, 6 rspktiv 4 poäng. Lösningar förutsätts innfatta ordntliga motivringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sortrad i dn ordning som uppgiftrna är givna i. Vktorrna,, utgör i förkommand fall n HON-bas.. Bräkna (x y) x y da, D där D är dn trianglskiva som har sina hörn i punktrna (0, 0), (0, ) och (, 0).. Bräkna kurvintgraln γ arctan(y/x) x dx + y y dy, där γ är dn i mdurs ld gnomlupna randn till {(x, y) : x + y, 0 y x}.. Bstäm konvrgnsintrvallt till potnssrin n= x n n ln( + /n). 4. Bräkna ytintgraln ) ((xy 5z ) + (x y + z) + (x y + z ) ˆn ds, Y där ytstyckt Y utgörs av unionn { (x, y, z) : x + y = z x y } { (x, y, z) : x + y z = x y } och där nhtsvktorn ˆn är utåtriktad. 5. Bräkna γ y z xyz dx + xyz xyz dy + ( + xy z) xyz dz, där γ är spiralkurvan r = cos(t) + sin(t) + t, 0 t π, orintrad i dn riktning som svarar mot växand t. 6. Visa att srin n= ( ) n (ln(7)) n n n! är konvrgnt och bstäm summan av dn. 7. En partikl rör sig i rummt nligt kvationn r = t +ln( cos(t)) +, där t btcknar tidn. Ang i punktn P : ( π,, ) acclrationsvktorns koordinatr i dn mdföljand basn T(t), N(t), T(t) N(t). Spcificra ävn dn snar basn uttryckt i basn,,. 8. Bräkna K y dv, där K är kroppn som mllan cylindrarna x + y = och x + y = 8 prcis fyllr upp utrymmt mllan plann z = 0 och z = 4 + x + y.

2

3

4

5 MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMENN I MATEMATIK MMA8 Diffrntial- ochh intgralkalkyl III Datum: 6 augusti 0 BEDÖMNINGSPRINCIPERR md POÄNGSPANN Tntamn [sinh( )]. ln( ) 8 BEDÖMNINGSPRINCIPER md POÄNGSPANN (maxpoäng) för olika dlmomnt i uppgiftrna p: Korrkt valt intgrationsvariablr som är lämpliga för intgraln p: Korrkt bräknat dn aktulla funktionaldtrminantn p: Korrkt itrrat intgraln (+)p: Korrkt bräknat intgralrna i itrationnn p: Korrkt tillämpat Grns forml (tckn och intgrand) i p: Korrkt utvcklat intgrandn Qx P y i dubblintgralnn p: Korrkt bstämt funktionaldtrminantn i ttt byt till polära koordinatr, samt korrkt angivit gränsrna för radin p: Korrkt angivit gränsrna för vinkln i d polära koord:na p: Korrkt slutfört intgrationn. Konvrgnsintrvallt = (, ) p: Korrkt notrat att limn (ln( n ) p: Korrkt konstatrat gnom t.x. kvotkritrit att srin är absolut konvrgnt för x p: Korrkt konstatrat gnom t.x. kvotkritrit att srin är divrgnt för x (+)p: Korrkt konstatrat gnom divrgnskritrit att srin är divrgnt för x ( 5 Bvis ) Summan av srin är lika md p: Korrkt konstatrat att dn d angivnaa ytan är lika md hla randn till kroppn x y z x y, och korrkt md Gauss sats omskrivit intgraln p: Korrkt funktionaldtrminant i ttt byt till rymdpolära koord. (+)p: Korrkt valt gränsr i och r -intgralrna p: Korrkt slutfört intgrationn p: Korrkt bräknat F till att varaa lika md nollvktorn p: Korrkt konstatrat att F 0 påå varj nklt samman- hängand öppt områd, och att fältt därmdd är konsrvativt p: Korrkt dragit följdslutsatsn att kurvintgraln är obrond av vägn från startpunktn till slutpunktn p: Korrkt valt n altrnativ (intgrationsmässigtt nklar) väg p: Korrkt slutfört intgrationn p: Korrkt md x:vis kvotkritrit visat att srin är konvrgnt p: Korrkt idntifirat srin som n (bortstt från n första trm) Maclaurinutvckling avv xponntialfunktionn i n viss punkt p: Korrkt tolkat trmfaktorn () n n n x [ln( 7)] som x i p: Korrkt dragit slutsatsn att srin är absolut konvrgnt och att dn har summan ()

6 7. Forts. Tntamn a( ) T( ) N( ) där T( t N( t P P ) ) och T( t P ) N( ) BEDÖMNINGSPRINCIPER md POÄNGSPANN (maxpoäng) för olika dlmomnt i uppgiftrna p: Korrkt bräknat T ( t P ) p: Korrkt bräknat N ( t P ) p: Korrkt bstämt dn tangntilla koordinatn för acclrationn p: Korrkt bstämt normalkoordinatn för acclrationn p: Korrkt konstatrat att acclrationn (pr dfinition) int har någon komposant som är vinklrät mot dt plan som spänns upp av vktorrna T (t) och N (t) (där N ( t) 0 antags), samt korrkt angivit att T( t P ) N( ) 8. 5 p: Korrkt hantrat z-intgrationn (+)p: Korrkt rsonrat bort dt som av symmtriskäl är lika md noll (llr korrkt utfört motsvarand intgrring) p: Korrkt symmtrisrat nligt y da ( x y ) da där D D D {( x, y) : x y 8} (llr korrkt utfört motsvarand intgrring) p: Korrkt slutfört intgrationn ()

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.

spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U. MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00 TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg

Läs mer

Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)

Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p) Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:

Läs mer

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt

Läs mer

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1 Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,

Läs mer

where β R. Find the numbers β for which the operator är diagonalizable, and state a basis of eigenvectors for each of these β.

where β R. Find the numbers β for which the operator är diagonalizable, and state a basis of eigenvectors for each of these β. MÄLARDALEN UNIVERSITY School of Education, Cultur and Communication Dpartmnt of Applid Mathmatics Examinr: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA53 Linar Algbra Dat: 206-06-08 Writ tim: 5 hours

Läs mer

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt: Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga

Läs mer

24 poäng. betyget Fx. framgår av. av papperet. varje blad.

24 poäng. betyget Fx. framgår av. av papperet. varje blad. Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:

Läs mer

(4x 3 + y)y + x(x 3 + 2y) dy dx = 0

(4x 3 + y)y + x(x 3 + 2y) dy dx = 0 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:

Läs mer

2 + i 2 z = 1 + i, 2. I xy-planet är Ω det begränsade område som precis innesluts av kurvorna. och sin(x) = 6 3

2 + i 2 z = 1 + i, 2. I xy-planet är Ω det begränsade område som precis innesluts av kurvorna. och sin(x) = 6 3 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA Matematisk grundkurs TEN Datum: 05-0-5

Läs mer

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12 KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn

Läs mer

(5 + 4x)(5 2y) = (2x y) 2 + (x 2y) ,

(5 + 4x)(5 2y) = (2x y) 2 + (x 2y) , MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-06-01

Läs mer

Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!

Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till! Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight

Läs mer

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 015-01-09

Läs mer

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder

Läs mer

2. Vilka taltripler (x, y, z) satisfierar ekvationssystemet x + 2y 13z = 4 4x y + 17z = 5

2. Vilka taltripler (x, y, z) satisfierar ekvationssystemet x + 2y 13z = 4 4x y + 17z = 5 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Grundläggande vektoralgebra TEN3 Datum:

Läs mer

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN6 alt.

Läs mer

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form.

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Grundläggande vektoralgebra Datum: 7

Läs mer

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

1. Beräkna determinanten

1. Beräkna determinanten MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga

Läs mer

Bestäm den matris B som löser ekvationen = 1 2

Bestäm den matris B som löser ekvationen = 1 2 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer

= x 2 y, med y(e) = e/2. Ange även existens-

= x 2 y, med y(e) = e/2. Ange även existens- MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:

Läs mer

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA1 Grundläggande vektoralgebra, TEN5 alt.

Läs mer

log(6). 405 så mycket som möjligt. 675

log(6). 405 så mycket som möjligt. 675 MMA Matematisk grundkurs TEN Datum: 8 augusti Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid: Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,

Läs mer

7. Ange och förklara definitionsmängden och värdemängden för funktionen f definierad enligt. f(x) = ln(x) 1.

7. Ange och förklara definitionsmängden och värdemängden för funktionen f definierad enligt. f(x) = ln(x) 1. MMA11 Matematisk grundkurs TEN Datum: 1 januari 01 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera

Läs mer

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2 Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen.

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

a5 bc 3 5 a4 b 2 c 4 a3 bc 3 a2 b 4 c

a5 bc 3 5 a4 b 2 c 4 a3 bc 3 a2 b 4 c MMA11 Matematisk grundkurs TEN Datum: 15 augusti 01 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera

Läs mer

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3, MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA151 Envariabelkalkyl, TEN1 Datum: 014-1-04

Läs mer

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen. MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

re (potensform eller exponentialform)

re (potensform eller exponentialform) Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r

Läs mer

n 3 (2x 4) n 6 n? 3. Bestäm volymen av den kropp som ligger innanför ellipsoiden 5x 2 + 5y 2 + z 2 = 16 och ovanför konen z = 3x 2 + 3y 2.

n 3 (2x 4) n 6 n? 3. Bestäm volymen av den kropp som ligger innanför ellipsoiden 5x 2 + 5y 2 + z 2 = 16 och ovanför konen z = 3x 2 + 3y 2. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA128 Differential- och integralkalkyl III

Läs mer

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2016

TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2016 Institutionn för tillämpad mkanik, Calmrs ENAMEN I FINI EEMENMEOD MHA 9 APRI 6 id oc plats: 4 8, Eklandagatan 86 Hjälpmdl: Ordböckr, likon oc typgodkänd räknar. ösningar ärar: Ptr Möllr, tl (77 55. Bsökr

Läs mer

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4. TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar

Läs mer

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 =

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 = MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Eaminator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA134 Differentialekvationer och transformmetoder

Läs mer

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1). Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns

Läs mer

där γ är den i medurs led genomlupna tjocka halvcirkeln (x 1) 12 + (y 1) 12 = 1, x 1, från punkten A : (1, 0) till punkten B : (1, 2).

där γ är den i medurs led genomlupna tjocka halvcirkeln (x 1) 12 + (y 1) 12 = 1, x 1, från punkten A : (1, 0) till punkten B : (1, 2). MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA18 Differential- och integralkalkyl III

Läs mer

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska

Läs mer

x 2 4 (4 x)(x + 4) 0 uppfylld?

x 2 4 (4 x)(x + 4) 0 uppfylld? MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Örjan Dillner TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN1 Datum: 7 september

Läs mer

Tentamen 2008_03_10. Tentamen Del 1

Tentamen 2008_03_10. Tentamen Del 1 Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2 Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,

Läs mer

2. Skissa minst en period av funktionskurvan y 1 = 2 sin(4x/3). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

2. Skissa minst en period av funktionskurvan y 1 = 2 sin(4x/3). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan. MMA11 Matematisk grundkurs TEN Datum: 14 januari 11 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera

Läs mer

2. Förklara vad ekvationen 4x(x + 1) = 8y + 11 beskriver, och gör en skiss av detta.

2. Förklara vad ekvationen 4x(x + 1) = 8y + 11 beskriver, och gör en skiss av detta. MMA Matematisk grundkurs TEN Datum: 4 mars 00 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Räkneövning i Termodynamik och statistisk fysik

Räkneövning i Termodynamik och statistisk fysik Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn

Läs mer

5. Förklara och ange definitionsmängden och värdemängden för funktionen f definierad enligt. f(x) = x 2

5. Förklara och ange definitionsmängden och värdemängden för funktionen f definierad enligt. f(x) = x 2 MMA Matematisk grundkurs TEN Datum: 5 november 00 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:

Läs mer

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00 Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2018

TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2018 Mkanik och maritima vtnskapr, Chalmrs Tid och plats: Hjälpmdl: TENTAMEN I FINIT ELEMENTMETOD MHA 2 8 JANUARI 28 8 i M hust Typgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (772 55. Bsökr sal ca. 5 samt

Läs mer

lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.

lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2. Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 213-8-22 DEL A 1. Betrakta funktionen f(x, y) ln(x 2 + xy 2 4). a) Bestäm tangentplanet till funktionsytan z f(x, y) i den punkt på ytan där x 1

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018 Mkanik och maritima vtnskapr, Chalmrs tkniska högskola ENAMEN I FINI ELEMENMEOD MHA 9 AUGUSI 8 id och plats: 4 8 i M hust Hjälpmdl: ypgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (77) 55. Bsökr sal ca.

Läs mer

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 3 juni 2010 kl

Tentamen i FEM för ingenjörstillämpningar (SE1025) den 3 juni 2010 kl Tntamn i FEM för ingnjörstillämpningar (SE) dn juni kl. 8-. Rsultat kommr att finnas tillgängligt snast dn juni. Klagomål på rättningn skall vara framförda snast n månad ftr. OBS! Tntand är skldig att

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand

Läs mer

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2

f(x, y) = ln(x 2 + y 2 + 1). 3. Hitta maximala arean för en rektangel inskriven i en ellips på formen x 2 a 2 + y2 TM-Matematik Mikael Forsberg Matematik med datalogi, mfl. Flervariabelanalys mk12b Övningstenta vt213 nr1 Skrivtid: 5 timmar. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler

Läs mer

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017

SF1626 Flervariabelanalys Tentamen Onsdagen den 15 mars 2017 Institutionen för matematik SF66 Flervariabelanalys Tentamen Onsdagen den 5 mars 7 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

Institutionen för Matematik, KTH Torbjörn Kolsrud

Institutionen för Matematik, KTH Torbjörn Kolsrud Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).

Läs mer

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1, MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA5 Single Variable Calculus, TEN Date: 06--0

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2017

TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2017 Institutionn för tillämpad mkanik, Chalmrs id och plats: Hjälpmdl: ENAMEN I FINI EEMENMEOD MHA 2 9 JANUARI 27 4 8 i M hust ypgodkänd räknar. ösningar ärar: Ptr Möllr, tl (772) 55. Bsökr sal ca. 5 samt

Läs mer

Bilaga 1 Kravspecifikation

Bilaga 1 Kravspecifikation Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.

Läs mer

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1.

Tentamen i tmv036c och tmv035c, Analys och linjär algebra C för K, Kf och Bt A =, = det(a λi) = e 2t + c 2. x(t) = c 1. = c 1. Institutionen för matematiska vetenskaper Chalmers tekniska högskola Niklas Eriksen Tentamen i tmv6c och tmv5c, Analys och linjär algebra C för K, Kf och Bt Lösningar 9--6. Lös initialvärdesproblemet x

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017

SF1626 Flervariabelanalys Tentamen Tisdagen den 10 januari 2017 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den januari 27 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger maximalt

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A

Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära

Läs mer

Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem

Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem Institutionn för Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-845 ntamn i 4 Mani II, 845 Hjälpmdl: Pappr, pnna, linjal. Lca till! Problm ) B l r Ett sänghjul md

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...

Läs mer

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D

Läs mer

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning. TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:

Läs mer

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1)

u av funktionen u = u(x, y, z) = xyz i punkten M o = (x o, y o, z o ) = (1, 1, 1) i riktningen mot punkten M 1 = (x 1, y 1, z 1 ) = (2, 3, 1) ATM-Matematik Mikael Forsberg 734 41 3 31 Flervariabelanalys mag31 1669 Skrivtid: 9:-14:. Inga hjälpmedel förutom bifogad formelsamling. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:

Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen: Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans

Läs mer

6. Räkna ut integralen. z dx dy dz,

6. Räkna ut integralen. z dx dy dz, Institutionen för Matematik, TH Flervariabelanalys SF626. Tentamen den 23 november 29 kl. 8-3 Tillåtet hjälpmedel är Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga

Läs mer

S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com

S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com AVM 960 AVM 961 AVM 971 S D K N O F I.hirlpool.com 1 S INNAN APPARATN MONTRAS INSTALLATION KONTROLLRA ATT ugnsutrymmt är tomt för installationn. KONTROLLRA att apparatn int är skadad innan dn montras i

Läs mer

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2017

TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2017 Institutionn för tillämpad mkanik, Chalmrs tkniska högskola ENAMEN I FINI EEMENMEOD MHA 3 AUGUSI 7 id plats: 4 8 i M hust Hjälpmdl: Ordböckr, lxikon typgodkänd räknar. ärar: Ptr Möllr, tl (77 55. Bsökr

Läs mer

TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel

TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,

Läs mer

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning

Läs mer

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016

SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016 Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3 MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA151 Single Variable Calculus, TEN2 Date:

Läs mer

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

Kontrollskrivning 1A

Kontrollskrivning 1A Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen

Läs mer

Lösningsförslag: Tentamen i Modern Fysik, 5A1246,

Lösningsförslag: Tentamen i Modern Fysik, 5A1246, Lösningsförslag: Tntamn i Modrn Fysik, 5A146, 6-6- Hjälpmdl: 1 A4-blad md gna antkningar (på båda sidor), Bta oh fikkalkylator samt institutionns tabllblad utdlat undr tntamn. Examinatorr: Vlad Kornivski

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015

SF1626 Flervariabelanalys Tentamen Torsdagen den 20 augusti 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Torsdagen den 2 augusti 215 Skrivtid: 8:-1: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:

Läs mer