spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.

Storlek: px
Starta visningen från sidan:

Download "spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U."

Transkript

1 MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid: 5 timmar Hjälpmdl: Linjal Dnna tntamn bstår av åtta om varannat slumpmässigt ordnad uppgiftr som vardra kan g maximalt 5 poäng. Dn maximalt möjliga poängsumman är sålds 40. För btygn 3, 4 och 5 krävs minst 8, 6 rspktiv 34 poäng. Lösningar förutsätts innfatta ordntliga motivringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sortrad i dn ordning som uppgiftrna är givna i. Undvik spcillt att skriva på baksidor av lösningsblad.. Dn linjära opratorn F : R 3 R 3 dfiniras av att dn vridr vktorr kring, och md bibhålln vinkl till, vktorn (,, ) på så vis att vktorn (, 0, 0) avbildas på (0,, 0). Bstäm F :s matris i standardbasn.. Bstäm längdn av dn ortogonala projktionn av vktorn på vktorn 3 i dt uklidiska rum E för vilkt skalärproduktn är fixrad till u v = 3x y + x y + x y + 4x y 4x y 3 4x 3 y + 7x 3 y 3, där (x, x, x 3 ) och (y, y, y 3 ) är koordinatrna för u rspktiv v i basn,, Dn linjära avbildningn F : R 3 R 4 har i standardbasn matrisn Bstäm F :s nollrum och F :s värdrum, och fastställ (md motivring) huruvida avbildningn är injktiv llr j? 4. Visa att kvationn xy = + z bskrivr n tvåmantlad hyprboloid. Bstäm ävn avståndt mllan mantlytorna givt att (x, y, z) btcknar n punkts koordinatr i tt ON-systm. 5. Ett tänkt basbyt från,, 3 till ẽ, ẽ, ẽ 3 bskrivs gnom sambandn x = x x + 3 x 3, x = 3 x + x x 3, x 3 = x + x x 3, mllan koordinatrna (x, x, x 3 ) för n vktor u innan bytt och d ( x, x, x 3 ) ftr bytt. Visa att ẽ, ẽ, ẽ 3 vrklign är n bas, och ang koordinatrna för vktorn i dnna nya bas. 6. Dn linjära opratorn F : R 3 R 3 har i basn,, 3 matrisn a där a R. Bstäm d värdn på a för vilka opratorn är diagonalisrbar. Ang ävn för rspktiv av dssa värdn n bas av gnvktorr till F. 7. Bstäm n ON-bas i undrrummt {p P : p( ) = p()} till dt linjära rummt P av (rllvärda) polynomfunktionr av grad högst, och utrustat md skalärproduktn p q = p(x)q(x) dx. 8. D fyra vktorrna (,, 3, 5), (, 5, 8, 8), (, 0,, ) och (,,, 3) spännr upp tt undrrum U till R 4. Bstäm alla par av tal (r, s) för vilka vktorn (r 3, r, 3, 3r + s) tillhör U. Bstäm ävn n bas i U.

2

3

4

5

6

7 MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson Tntamn TENTAMEN I MATEMATIK MMA9 Linjär algbra BEDÖMNINGSPRINCIPER md POÄNGSPANN Läsår: 03/4 POÄNGSPANN (maxpoäng) för olika dlmomnt i uppgiftr. 0 0 p: I analogi md dt givna korrkt notrat att vktorn 0 0 ( 0,,0) avbildas på ( 0,0,), och att vktorn ( 0,0,) avbildas på (,0,0) 0 0 p: Korrkt fastställt dn första kolonnn i F:s matris p: Korrkt fastställt dn andra kolonnn i F:s matris p: Korrkt fastställt dn trdj kolonnn i F:s matris. ( 3) 5 p: Korrkt skrivit nd uttryckt för dn ortogonala projk- 3 tionn av 3 på 3 p: Korrkt tolkat hur dn givna skalärproduktn tillämpas p: Korrkt bstämt skalärproduktn av vktorrna 3 och 3 p: Korrkt bstämt längdn av vktorn 3 p: Korrkt bstämt längdn av dn ortogonala projktionn 3. F:s nollrum är lika md mängdn ( 0,0,0) F:s värdrum är lika md dt linjära höljt [ (,3,8, 5), ( 4,4,3, ), ( 7,5,0, 0) ] F är injktiv ftrsom nollrummt ndast innhållr nollvktorn p: Korrkt funnit n trappstgsmatris som är radkvivalnt md dn linjära opratorns avbildningsmatris p: Korrkt bstämt F:s värdrum p: Korrkt bstämt F:s nollrum p: Korrkt förklarat varför är F injktiv 4. Dn kvadratiska formn i högrldt av kvationn xy z har signaturn (,, ) vilkt btydr att kvationn bskrivr n tvåmantlad hyprboloid. Avståndt mllan d två mantlytorna är lika md l.. p: Korrkt funnit dn kvadratiska formn xy z har signaturn (,, ) och därmd att kvationn gomtriskt btydr n tvåmantlad hyprboloid p: Korrkt bstämt n ortogonal basbytsmatris som diago- nalisrar dn kvadratiska formn xy z till x z y, där ( x, y, z ) btcknar n punkts koordinatr i tt nytt ON-systm p: Korrkt bstämt avståndt mllan d två mantlytorna ()

8 5. Vktorrna,, 3 är n bas, dtta ty matrisn S i matrisrlationn X SX S är invrtrbar. koord,, ( 3) (,8,3) 3 6. Avbildningn är diagonalisrbar ndast för a 3, 7. En bas av gnvktorr är för dssa a t.x. ( 3 a,,3 a), ( 0,, 0), ( 0,,7 a) p: Korrkt utifrån d givna sambandn på formn X SX idntifirat matrisn S, och sdan notrat att, om d givna sambandn vrklign motsvarar koordinatr för n vktor i två olika basr, matrisn S i så fall är lika md basbytsmatrisn i tt basbyt från,, 3 till,, 3 (dt som påmatrisform skrivs som S) p: Korrkt vrifirat att matrisn S uppfyllr kravt på att vara n basbytsmatris p: Korrkt notrat att koordinatrna för 3 i basn,, 3 gs av koordinatmatrisn S X, där X är T lika md koordinatmatrisn ( ) p: Korrkt bstämt invrsn S till basbytsmatrisn S p: Korrkt funnit koordinatrna för 3 i basn,, 3 p: Korrkt avgjort vad som gällr i fallt a 3 p: Korrkt avgjort vad som gällr i fallt a 7 p: Korrkt avgjort vad som gällr i fallt a 3, 7 p: Korrkt i fallt a 3, 7 funnit n bas av gnvktorr 7. En ON-bas i undrrummt är t.x p, 5 3p p ) 0 8 ( 0 där n p 0 ( x) och pn ( x) x, n Z 8. Vktorn ( r 3, r, 3, 3r s) tillhör undrrummt U om och ndast om ( r, s) (,3). En bas i U är t.x. (,,3, 5), (, 5, 8,8) p: Korrkt funnit att undrrummt spänns upp av polynomfunktionrna p 0 och p, här som följr btcknad md u rsp. u p: Korrkt normrat u till p: Korrkt formulrat n polynomfunktion f som a) tillhör undrrummt, som b) int är lika md nollfunktionn och som c) är ortogonal mot u, dvs formulrat polynomfunktionn u u, samt korrkt bstämt skalärproduktn u p: Korrkt bstämt skalärproduktn u, och korrkt sammanställt f p: Korrkt normrat f till, och korrkt angivit, som n ON-bas i dt aktulla undrrummt p: Korrkt tillsammans md dn fmt vktorn iscnsatt n undrsökning av vktorrna i spannt för undrummt U, och korrkt funnit dn till vktorrnas (utökad) kofficintmatris radkvivalnta trappstgsmatris p: Korrkt från trappstgsmatrisn idntifirat dimnsionn på U och n bas i U p: Korrkt från trappstgsmatrisn idntifirat vilka värdn på r och s som gör att dn fmt vktorn liggr i undrrummt U ()

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,

(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy, MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:

Läs mer

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 7 januari 04 Skrivtid:

Läs mer

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare

Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant

Läs mer

Tentamen i Linjär algebra 2010 05 21, 8 13.

Tentamen i Linjär algebra 2010 05 21, 8 13. LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten

Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2

Läs mer

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom

Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom Epipoärgomtri dn fundamntaa matrisn Låt vara n punkt i kamracntrum rsp Låt Punktn bägg kamracntrum pipoarpant ti bägg avbidningarna ti vara dss avbidning i två bidr gnom samt d -dimnsiona motsvarightrna

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00

TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00 TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:

Läs mer

S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com

S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com AVM 960 AVM 961 AVM 971 S D K N O F I.hirlpool.com 1 S INNAN APPARATN MONTRAS INSTALLATION KONTROLLRA ATT ugnsutrymmt är tomt för installationn. KONTROLLRA att apparatn int är skadad innan dn montras i

Läs mer

Krav på en projektledare.

Krav på en projektledare. Crtifiring av projktldar. PIE. EKI. LiU. Run Olsson vrsion 20050901 sid 1 av 5 Krav på n projktldar. Intrnationlla organisationr som IPMA och PMI har formulrat vilka krav som ska ställas på n projktldar.

Läs mer

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna

Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning

Läs mer

om de är minst 8 år gamla

om de är minst 8 år gamla VIKTIGA SÄKERHETSINSTRUKTIONER LÄS NOGGRANT OCH SPARA FÖR FRAMTIDA REFERENS VÄRM INTE UPP OCH ANVÄND INTE BRANDFARLIGA MATERIAL i llr nära ugnn. Ångor kan skapa n risk för brand llr xplosion. ANVÄND INTE

Läs mer

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said

Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,

Läs mer

Bilaga 1 Kravspecifikation

Bilaga 1 Kravspecifikation Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid: Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,

Läs mer

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege

DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför

Läs mer

247 Hemsjukvårdsinsats för boende i annan kommun

247 Hemsjukvårdsinsats för boende i annan kommun PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll

Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...

Läs mer

ERCO Hi-trac strömskena

ERCO Hi-trac strömskena 72 2000 0q (RAL9002) Längd 2000mm Produktbskrivning Panl-profil: aluminium, pulvrlackrad. Ovansidan: tomprofil, för fastsättning av övrkoppling llr täckprofilr. Undrsidan: strömskna. 4 isolrad kopparldar

Läs mer

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form.

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Grundläggande vektoralgebra Datum: 7

Läs mer

där a och b är koefficienter som är större än noll. Här betecknar i t

där a och b är koefficienter som är större än noll. Här betecknar i t REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt

Läs mer

Per Sandström och Mats Wedin

Per Sandström och Mats Wedin Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786

Läs mer

Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget

Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du

Läs mer

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD

GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int

Läs mer

Uppskatta ordersärkostnader för tillverkningsartiklar

Uppskatta ordersärkostnader för tillverkningsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad

Läs mer

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag

Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag A Distributions ktör på DISTRIBUTIONSFÖRARE 1(5) Arbtsplatsförlagd dl av tstmodul, validring llr utbildning När du dokumntrar dn arbtsplatsförlagda dln i ndanstånd chcklista gör då ävn bdömning inom säkrhts-,

Läs mer

INTRODUKTION. Akut? RING: 031-51 20 12

INTRODUKTION. Akut? RING: 031-51 20 12 INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och

Läs mer

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner

Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...

Läs mer

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04

TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04 TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...

Läs mer

Ekosteg. En simulering om energi och klimat

Ekosteg. En simulering om energi och klimat Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr

Läs mer

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917

OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917 BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp

Läs mer

Laboration 1a: En Trie-modul

Laboration 1a: En Trie-modul Lbortion 1: En Tri-modul 1 Syft Progrmmring md rfrnsr, vlusning, tstning, kt m.m. Vi hr trolign int hunnit gå ignom llt, viss skr får ni br cctr så läng. S ävn kodxml å kurssidn. 2 Bkgrund Vi skll undr

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

Offentlig sammanfattning av riskhanteringsplanen (RMP) Saxenda (liraglutide)

Offentlig sammanfattning av riskhanteringsplanen (RMP) Saxenda (liraglutide) Offntlig sammanfattning av riskhantringsplann (RMP) Saxnda (liraglutid) Dtta är n sammanfattning av riskhantringsplann (RMP) för Saxnda som bskrivr d åtgärdr som ska vidtas för att säkrställa att Saxnda

Läs mer

(4x 3 + y)y + x(x 3 + 2y) dy dx = 0

(4x 3 + y)y + x(x 3 + 2y) dy dx = 0 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:

Läs mer

REDOVISNING AV UPPDRAG SOM GOD MAN FÖR ENSAMKOMMANDE BARN OCH BEGÄRAN OM ARVODE (ASYLPERIOD)

REDOVISNING AV UPPDRAG SOM GOD MAN FÖR ENSAMKOMMANDE BARN OCH BEGÄRAN OM ARVODE (ASYLPERIOD) 1(5) REDOVISIG AV UPPDRAG SOM GOD MA FÖR ESAMKOMMADE BAR OCH BEGÄRA OM ARVODE (ASYLPERIOD) Asylpriod priod då barnt int har prmannt upphållstillstånd God mannn har rätt till tt skäligt arvod för uppdragt

Läs mer

VALLENTUNA KOMMUN Sammanträdesprotokoll 9 (19)

VALLENTUNA KOMMUN Sammanträdesprotokoll 9 (19) VALLENTUNA KOMMUN Sammanträdsprotokoll 9 (19) Socialnämndns arbtsutskott 2015-05-11 56 Intrnplan socialnämndn 2015 (SN 2015.006) Bslut Arbtsutskottt bslutar att förslå att: Socialnämndn bslutar att lägga

Läs mer

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning

Läs mer

6.14 Triangelelement (CST Constant Strain Triangle)

6.14 Triangelelement (CST Constant Strain Triangle) Övning 4 riangmnt ickard Shn -- FEM för Ingnjörstiämpningar, SE rshn@kth.s 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E-modu E Poissons ta På tunn påt md fria tor kan man göra antagand om

Läs mer

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar

Revisionsrapport 2010. Hylte kommun. Granskning av upphandlingar Rvisionsrapport 2010 Hylt kommun Granskning av upphandlingar Jakob Smith fbruari 2011 Innhållsförtckning SAMMANFATTNING... 3 1 UPPDRAGET... 4 1.1 Bakgrund och syft... 4 1.2 Mtod och avgränsning... 4 2

Läs mer

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

Tanken och handlingen. ett spel om sexuell hälsa och ordassociationer

Tanken och handlingen. ett spel om sexuell hälsa och ordassociationer Tankn och handlingn tt spl om sxull hälsa och ordassociationr 2 / 13 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad

Läs mer

JT 379 www.whirlpool.com

JT 379 www.whirlpool.com JT 379.hirlpool.com SE 1 INSTALLATION INNAN MIKROVÅGSUGNEN ANSLUTS KONTROLLERA ATT SPÄNNINGEN på typskyltn övrnsstämmr md spänningn i ditt hm. TA INTE BORT SKYDDSPLATTORNA som sittr på ugnsutrymmts sidovägg.

Läs mer

Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002

Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002 ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e

Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska

Läs mer

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013 TILLÄMPAD LINJÄR ALGEBRA, DN123 1 DN123 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 213 Skrivtid: 8-13 Tillåtna hjälpmedel: inga Examinator: Anna-Karin Tornberg Betygsgränser: Betyg A B C D E

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

= x 2 y, med y(e) = e/2. Ange även existens-

= x 2 y, med y(e) = e/2. Ange även existens- MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA0 Differentialekvationer för lärare Datum:

Läs mer

Bestäm den matris B som löser ekvationen = 1 2

Bestäm den matris B som löser ekvationen = 1 2 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra, TEN5 alt.

Läs mer

2 + i 2 z = 1 + i, 2. I xy-planet är Ω det begränsade område som precis innesluts av kurvorna. och sin(x) = 6 3

2 + i 2 z = 1 + i, 2. I xy-planet är Ω det begränsade område som precis innesluts av kurvorna. och sin(x) = 6 3 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA Matematisk grundkurs TEN Datum: 05-0-5

Läs mer

Företag - Skatteverkets kontroll på webben

Företag - Skatteverkets kontroll på webben Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.

Läs mer

Arkitekturell systemförvaltning

Arkitekturell systemförvaltning Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm

Läs mer

Basbyte (variabelbyte)

Basbyte (variabelbyte) Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer

Läs mer

Fasta tillståndets fysik.

Fasta tillståndets fysik. Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.

Läs mer

Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000

Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV RESEKOSTNADER OCH REPRESENTATION Bngt Sbring Sptmbr 2000 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING 1. Inldning... 2 2. Rsultat av granskningn...

Läs mer

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003

Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO Bngt Sbring Fbruari 2004 Sida: 1 Kommunrvisionn Innhållsförtckning Sammanfattning... 3 1. Inldning... 4 1.1 Uppdrag... 4 1.2 Avgränsning... 4 1.3

Läs mer

Semesterstugor. Stugorna är tillgängliga för Kommunal Skånes medlemmar året om

Semesterstugor. Stugorna är tillgängliga för Kommunal Skånes medlemmar året om Smstrstugor Stugorna är tigängiga för Kommuna Skåns mdmmar årt om Fbruari 2012 (rv 2013-09-12) Layout: Kajsa Hydgaard Innhåsförtckning Sid 4 Sid 5 Sid 6 Sid 7 Sid 8 Sid 9 Sid 10 Sid 11 Sid 12 Sid 13 Sid

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:

Läs mer

Bengt Sebring OKTOBER 2001 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2001

Bengt Sebring OKTOBER 2001 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2001 Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV JÄVSFÖRHÅLLAN- DEN VID UPPHANDLING Bngt Sbring OKTOBER 2001 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING SAMMANFATTNING OCH SLUTSATSER... 3 1 BAKGRUND

Läs mer

4. så många platser för fjäderfän, slaktsvin eller suggor att platserna tillsammans motsvarar mer än 200 djurenheter definierade som i 1.20.

4. så många platser för fjäderfän, slaktsvin eller suggor att platserna tillsammans motsvarar mer än 200 djurenheter definierade som i 1.20. Sidan 1 av 41 AVDELNING 1 Miljöfarlig vrksamht för vilkn tillstånds- llr anmälningsplikt gällr nligt 5 llr 21 förordningn (1998:899) om miljöfarlig vrksamht och hälsoskydd samt viss annan vrksamht, s k

Läs mer

Dagens ämnen. Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former. Andragradskurvor

Dagens ämnen. Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former. Andragradskurvor Seminarium 25 Dagens ämnen Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former Matrisform Diagonalisering av kvadratiska former Andragradskurvor De olika kurvtyperna Rita graferna

Läs mer

Lösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista

Lösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista Lösta xmpl oc gamla tntor i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Lösa xmpl oc gamla tantr i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Innållsförtckning

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

Företag - Skatteverkets kontroll på webben

Företag - Skatteverkets kontroll på webben Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

där γ är den i medurs led genomlupna tjocka halvcirkeln (x 1) 12 + (y 1) 12 = 1, x 1, från punkten A : (1, 0) till punkten B : (1, 2).

där γ är den i medurs led genomlupna tjocka halvcirkeln (x 1) 12 + (y 1) 12 = 1, x 1, från punkten A : (1, 0) till punkten B : (1, 2). MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA18 Differential- och integralkalkyl III

Läs mer

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 734-4 3 3 För studenter på distans och campus Linjär algebra maa Skrivtid: 9:-:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk

Läs mer

Föreläsning 10 Kärnfysiken: del 2

Föreläsning 10 Kärnfysiken: del 2 Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt

Läs mer

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

TSRT62 Modellbygge & Simulering

TSRT62 Modellbygge & Simulering TSRT62 Modllbygg & Simulring Förläsning 8 Christian Lyzll Avdlningn ör Rglrtknik Institutionn ör Systmtknik Linköpings Univrsitt C Lyzll (LiTH) TSRT62 Modllbygg & Simulring 2013 1 / 22 Sammanattning: Förläsning

Läs mer

Modersmål - på skoj eller på riktigt

Modersmål - på skoj eller på riktigt Lärarhögskolan i Stockholm Institutionn för samhäll, kultur och lärand Vårtrminn 2006 C- uppsats, 15 poäng Modrsmål - på skoj llr på riktigt En studi av modrsmålsundrvisningns utvckling, dss potntial och

Läs mer

n 3 (2x 4) n 6 n? 3. Bestäm volymen av den kropp som ligger innanför ellipsoiden 5x 2 + 5y 2 + z 2 = 16 och ovanför konen z = 3x 2 + 3y 2.

n 3 (2x 4) n 6 n? 3. Bestäm volymen av den kropp som ligger innanför ellipsoiden 5x 2 + 5y 2 + z 2 = 16 och ovanför konen z = 3x 2 + 3y 2. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA128 Differential- och integralkalkyl III

Läs mer

Dessa projekt har fotboll som en aktivitet:

Dessa projekt har fotboll som en aktivitet: Dssa projkt har fotboll s n aktivitt: Län. Kmun. By llr råd. Typ av aktivitt (kryssa för Aktivittrna n llr flra). bskrivna md ord:. Dalarna Hdmora Hdmor a Dalarna Vansbro Nås Fotboll allt in fotboll, utbildning,

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Våra värderingar visar vilka vi är resultat från omröstningen

Våra värderingar visar vilka vi är resultat från omröstningen Nummr 1 2014 Anglica är vår nya intrnrvisor Våra värdringar visar vilka vi är rsultat från omröstningn NKI och mdarbtarundrsökning båd ris och ros Ldarn Ansvarstagand Ett åtrkommand tma i dt här numrt

Läs mer

Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M

Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M Yrks-SM tur och rtur E n l ä r a r h a n d l d n i n g k r i n g Y r k s - S M Yrks-SM 2010 Dt prfkta studibsökt Dn 19-21 maj 2010 arrangras nästa svnska mästrskap i yrksskicklight. Platsn är Götborg och

Läs mer

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3, MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA151 Envariabelkalkyl, TEN1 Datum: 014-1-04

Läs mer

1. Beräkna determinanten

1. Beräkna determinanten MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA3 Grundläggande vektoralgebra, TEN6 alt.

Läs mer

Ideologiska skiljelinjer

Ideologiska skiljelinjer Idologiska skiljlinjr Maria Oskarson Statsvtnskapliga institutionn Götborgs univrsitt Prsntation vid Arbtarrörlsns forskarnätvrks konfrns 7/12 21 om socialdmokratin, samhällsutvcklingn och mdborgarnas

Läs mer

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen.

a3 bc 5 a 5 b 7 c 3 3 a2 b 4 c 4. Förklara vad ekvationen (2y + 3x) = 16(x + 1)(x 1) beskriver, och skissa grafen. MMA Matematisk grundkurs TEN Datum: 4 juni Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

LINJÄR ALGEBRA II LEKTION 6

LINJÄR ALGEBRA II LEKTION 6 LINJÄR ALGEBRA II LEKTION 6 JOHAN ASPLUND INNEHÅLL 1 Inre produktrum 1 2 Cauchy-Schwarz olikhet 3 3 Ortogonala projektioner och Gram-Schmidts process 3 4 Uppgifter 4 61:13(a) 4 61:23(a) 4 61:29 5 62:7

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

energibyggare EnergiTing Sydost 2015-11-12 Co-funded by the Intelligent Energy Europe Programme of the European Union

energibyggare EnergiTing Sydost 2015-11-12 Co-funded by the Intelligent Energy Europe Programme of the European Union EnrgiTing Sydost 2015-11-12 Intraktiv utbildning för byggnadsarbtar och installatörr Ldand branschaktörr står bakom En utbildningskampanj md syft att öka byggnadsarbtar och installatörrs komptns för lågnrgibyggand

Läs mer

Delårsrapport 2014-08-31

Delårsrapport 2014-08-31 TRELLEBORGS KOMMUN Srvlcriämndn 2014-09-22 Dlårsrapprt 2014-08-31 Sammanfattning Nämndsttal (tkr) Dlår 140831 Årsbudgt 2014 Prgns 2014 Avvikls Vrksamhtns intäktr 260 267 386 016 385 016-1 000 Vrksamhtns

Läs mer

Databaser om olyckor och risker

Databaser om olyckor och risker - -OU rapport Databasr om olyckor och riskr RADDNIMGS VERKET - -OU rapport Databasr om olyckor och riskr RADDMINGS VERKET 1999 Räddningsvrkt, Karlstad Risk- och miljöavdlningn Bställningsnummr P2 1-273199

Läs mer

MWN 400 MWN 410 MWN 440

MWN 400 MWN 410 MWN 440 MWN 400 MWN 410 MWN 440 1 INSTALLATION MONTERING AV MIKROVÅGSUGNEN FÖLJ MEDFÖLJANDE sparata montringsanvisningar för att installra ugnn. INNAN MIKROVÅGSUGNEN ANSLUTS KONTROLLERA ATT SPÄNNINGENPÅ TYPSKYLTEN

Läs mer

Hem24 Annonsblad. media sweden. webb reklam. T e k n i s k a s p e c. - A n n o n s f o r m a t e n & P r i s e r

Hem24 Annonsblad. media sweden. webb reklam. T e k n i s k a s p e c. - A n n o n s f o r m a t e n & P r i s e r Hm24 Annonsblad T k n i s k a s p c. A n n o n s f o r m a t n & P r i s r w rw wbb rklam mdia swdn h m24 ALLT FÖR DITT HUS & HEM MODULPRISLISTA. MODULFORMAT FÖR ANNONSYTA Halvsida V A2 Hlsida A1 125 x

Läs mer

log(6). 405 så mycket som möjligt. 675

log(6). 405 så mycket som möjligt. 675 MMA Matematisk grundkurs TEN Datum: 8 augusti Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera kan

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

JT 366 www.whirlpool.com

JT 366 www.whirlpool.com JT 366.hirlpool.com SE 1 INSTALLATION INNAN MIKROVÅGSUGNEN ANSLUTS KONTROLLERA ATT SPÄNNINGEN på typskyltn övrnsstämmr md spänningn i ditt hm. AVLÄGSNA ALDRIG MIKROVÅGSINTAGENS SKYDDSPLATTOR som sittr

Läs mer