3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

Storlek: px
Starta visningen från sidan:

Download "3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden."

Transkript

1 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum: 4 januari 0 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN4 består av fem stycken om varannat slumpmässigt ordnade uppgifter som vardera kan ge maximalt 4 poäng. För godkänd-betygen, 4, och 5 krävs erhållna poängsummor om minst 9, respektive 7 poäng. Om den erhållna poängen benämns S 4, och den vid tentamen TEN erhållna S, bestäms graden av sammanfattningsbetyg på en slutförd kurs enligt S, S 4 9 och S + S 4 4 S, S 4 9 och 4 S + S S + S Betygen 4 eller 5 tilldelas även den som vid sitt ordinarie kurstillfälle och vid sina motsvarande ordinarie tentamina uppnått resultatet 9 S + S 4 50 respektive S + S 4 5, och som på examinationsmomentet INL uppnått betyget vg. Lösningar förutsätts innefatta ordentliga motiveringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sorterade i den ordning som uppgifterna är givna i.. Bestäm på parameterfri form ekvationen för det plan π som är vinkelrätt mot såväl planet π : (x, y, z) = (r + s, s, r) som planet π : x y + z 4 = 0, och som innehåller punkten Q : (,, ). (HON-system). Vektorerna f, f och f är definierade enligt f = u + u + u, f = u + ωu + u, f = u + 4u + ωu, där uppsättningen vektorer u är linjärt oberoende. För vilka ω utgör uppsättningen vektorer f, f, f en bas i rummet?. Lös ekvationen + z = iz och ge i det komplexa talplanet en illustration av lösningsmängden. 4. Punkten P : (,, ) speglas i linjen λ : (x, y, z) = (4 t, t, 5 + 4t). Bestäm koordinaterna för spegelbilden av P. (ON-system) 5. Beräkna determinanten

2

3

4 MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra BEDÖMNINGSPRINCIPER med POÄNGSPANN Läsår: 0/ Tentamen TEN : x 0y 8z Scenario för övriga tre poäng p: Korrekt på parameterform formulerat ekvationen för planet p: Korrekt eliminerat en av parametrarna från två av ekv:na p: Korrekt eliminerat den andra parametern från en av ekv:na, och korrekt renskrivit ekvationen för planet. Vektorerna f, f, f är en bas om och endast om ( ) ( 5). z ( i) 5, dvs en cirkel med medelpunkten i och radien 5 POÄNGSPANN (maxpoäng) för olika delmoment i uppgifter p: Korrekt funnit att t.ex. e e e är en normalvektor n till planet, och att t.ex. e e e är en normalvektor n till planet Scenario för övriga tre poäng p: Korrekt genom ett visst determinanvillkor formulerat ekvationen för planet p: Korrekt utvecklat determinanten p: Korrekt renskrivit ekvationen för planet Scenario för övriga tre poäng p: Korrekt noterat att vektorprodukten av (de icke-parallella) vektorerna n och n är en normalvektor till planet, och sedan korrekt utvecklat nämnda vektorprodukt p: Korrekt som en skalärprodukt formulerat ekvationen för planet p: Korrekt utvecklat skalärprodukten och renskrivit ekvationen för planet p: Korrekt formulerat en testekvation för huruvida de tre vektorerna f, f, f är linjärt beroende eller ej, korrekt grupperat termerna vektor för vektor av de tre linjärt oberoende vektorerna u, och korrekt dragit slutsatsen att var och en av koefficienterna till de tre linjärt oberoende vektorerna u måste vara lika noll eftersom u är linjärt oberoende p: Korrekt successivt eliminerat i det uppkomna ekvationssystemet p: Korrekt från det uppkomna ekvationssystemet, efter successiv eliminering (eller determinantberäkning), dragit slutsatsen att endast om ( ) ( 5) så är de tre vektorerna f, f, f linjärt oberoende och därmed en bas i rummet p: Korrekt ansatt z som x iy, där x, y R, och sedan korrekt tolkat ekvationen som ekvivalent med ekvationen ( x) y ( y) ( x p: Korrekt omskrivit ekvationen till en mer tolkningsbar form, dvs till ( x ) ( y ) ( 5) z ( i) 5 p: Korrekt deltolkning: En cirkel med radien 5 p: Korrekt deltolkning: Medelpunkten i, samt skiss ) ()

5 ~ 8 4. P : (,, ), där P ~ är spegelbilden av P p: Korrekt bestämt en vektor u som kan representeras av den riktade sträckan P 0 P där P 0 är en punkt på linjen, och korrekt identifierat en vektor v som är parallell med linjen, allt med syfte att bestämma den ortogonala projektionen av u på v p: Korrekt bestämt den ortogonala projektionen av u på v p: Korrekt bestämt den vektor som kan representeras av den riktade sträckan P P ~ p: Korrekt bestämt koordinaterna för spegelbilden till P Ett möjligt scenario p: Korrekt omskrivit determinanten så att raderna -5 har en varsin nolla i kolonn p: Korrekt omskrivit determinanten så att raderna -5 har nollor i kolonnerna - p: Korrekt omskrivit determinanten så att raderna 4-5 har nollor i kolonnerna - p: Korrekt omskrivit determinanten så att rad 5 har nollor i kolonnerna -4 (och därmed slutligen att determinanten har nollor på alla positioner under diagonalen), och därefter korrekt utvecklat determinanten som produkten av diagonalelementen Övriga scenarier Poängsättning i övriga lösningsscenarier görs genom att i görligaste mån identifiera de poängkriterier som svarar mot de i ovanstående lista. ()

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Linjär Algebra, Föreläsning 8

Linjär Algebra, Föreläsning 8 Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 17 januari 2013

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 17 januari 2013 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA3 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 7 januari 03 Examinator: Karl Lundengård Skrivtid:

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2

2 = 3 = 1. ekvationssystem är beskriven som de vektorer X = 2 0 1 2. 1 1 0 2 . Tisdagen 35 Igår visade vi att lösningsmängden W R 5 till ekvationssystemet 3x + x 2 + 3x 3 + 2x 4 x 5 = (..) 2x 2 + x 3 + 4x 4 + 2x 5 = 3x 3x 2 + x 3 6x 4 5x 5 = har bas u och u 2 och u 3 där 5 2 6

Läs mer

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga

reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga . Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del I

Mat-1.1510 Grundkurs i matematik 1, del I Mängder Det enklaste sättet att beskriva en mängd är att räkna upp de elementen i mängden, tex Mat-11510 Grundkurs i matematik 1, del I G Gripenberg TKK 8 oktober 2009 G Gripenberg (TKK Mat-11510 Grundkurs

Läs mer

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1)

MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) NATUR OCH KULTURS PROV VÅRTERMINEN 1997 MATEMATIK FÖR KURS B (NV/AB-boken och B-boken version 1) Provets omfattning: t o m kapitel 5.6 i Matematik 2000 NV kurs AB. Provets omfattning: t o m kapitel 3.5

Läs mer

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem

Linjära ekvationssystem. Avsnitt 1. Vi ska lära oss en metod som på ett systematiskt sätt löser alla linjära ekvationssystem. Linjära ekvationssystem Avsnitt Linjära ekvationssystem Elementära radoperationer Gausseliminering Exempel Räkneschema Exempel med exakt en lösning Exempel med parameterlösning Exempel utan lösning Slutschema Avläsa lösningen

Läs mer

Tentamen i Programmeringsteknik I, ES, 2010-03-18

Tentamen i Programmeringsteknik I, ES, 2010-03-18 Tentamen i Programmeringsteknik I, ES, 2010-03-18 Skriv tid: 14-17. Hjälpmedel: 1. Kurslitteratur, en av följande: Lewis & Loftus, Java Software Solutions Skansholm, Java Direkt Guzdial & Ericson, Intrododuction

Läs mer

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN

PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Institutionen för beteendevetenskapliga mätningar PBMaE 5-5 Umeå universitet Provtid PROV I MATEMATIK KURS E FRÅN NATIONELLA PROVBANKEN Del I: Uppgift -9 Del II: Uppgift -7 Anvisningar Totalt 4 minuter

Läs mer

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.

MATEMATIK Datum: 2015-08-19 Tid: eftermiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel. MATEMATIK Datum: 0-08-9 Tid: eftermiddag Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Tim Cardilin Tel.: 0703-088304 Lösningar till tenta i TMV036 Analys och linjär algebra

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

Information om vidare studier

Information om vidare studier Information om vidare studier Behörighet För att uppfylla kraven för grundläggande behörighet ska Eleven ha ett slutbetyg från ett fullständigt program. Ha lägst betyget Godkänt i minst 2 250 gymnasiepoäng.

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

DIGITAL KOMMUNIKATION

DIGITAL KOMMUNIKATION EN KOR SAMMANFANING AV EORIN INOM DIGIAL KOMMUNIKAION Linjär kod En binär linjär kod kännetecknas av att summan av två kodord också är ett kodord. Ett specialfall är summan av ett kodord med sig själv

Läs mer

Tentamen, EDAA20/EDA501 Programmering

Tentamen, EDAA20/EDA501 Programmering LUNDS TEKNISKA HÖGSKOLA 1(4) Institutionen för datavetenskap Tentamen, EDAA20/EDA501 Programmering 2013 08 22, 8.00 13.00 Anvisningar: Denna tentamen består av fyra uppgifter. Preliminärt ger uppgifterna

Läs mer

Högskolan i Gävle Avdelningen för utbildningsstöd. Tentamensföreskrifter vid Högskolan i Gävle

Högskolan i Gävle Avdelningen för utbildningsstöd. Tentamensföreskrifter vid Högskolan i Gävle Tentamensföreskrifter vid Högskolan i Gävle HIG-STYR 2014/117 2014-09-16 Förvaltningschefsbeslut 2014/17 Innehåll 1. Ansvaret för tentamenssamordning vid Högskolan i Gävle... 1 2. Anmälan till tentamen...

Läs mer

Tentamensinstruktioner. Vid skrivningens slut

Tentamensinstruktioner. Vid skrivningens slut Matematiska institutionen Optimeringslära TENTAMEN TAOP14/TEN1 OPTIMERINGSLÄRA GRUNDKURS för I och Ii Datum: 13:e januari 2011 Tid: 8.00 13.00 Hjälpmedel: Kurslitteratur av Lundgren m fl: Optimeringslära

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del Nationellt prov i Matematik kurs A vt 1998 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 1997. Tidsbunden del Np MaA vt 1997 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av april 1998.

Läs mer

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I

Nationellt kursprov i MATEMATIK KURS A Våren 2005. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med 10 juni 2005. Nationellt kursprov i MATEMATIK

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS,

TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, Avd. Matematisk statistik TENTAMEN I SF1906 (f d 5B1506) MATEMATISK STATISTIK GRUNDKURS, TORSDAGEN DEN 7 JUNI 2012 KL 14.00 19.00 Examinator:Gunnar Englund, 073 3213745 Tillåtna hjälpmedel: Formel- och

Läs mer

CHALMERS TEKNISKA HÖGSKOLA IMA 044 Avdelningen för Industriell marknadsföring INDUSTRIELL MARKNADSFÖRING IMA 044

CHALMERS TEKNISKA HÖGSKOLA IMA 044 Avdelningen för Industriell marknadsföring INDUSTRIELL MARKNADSFÖRING IMA 044 CHALMERS TEKNISKA HÖGSKOLA IMA 044 Avdelningen för Industriell marknadsföring TENTAMEN: INDUSTRIELL MARKNADSFÖRING IMA 044 Måndag 16/12 2013 Tid: 14.00-18.00 HJÄLPMEDEL: INSTRUKTIONER: Inga Före rättning

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng Miniräknare ej tillåten Del B1 Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng (0/1). Provtid: 80 minuter för Del B1 och Del B2 tillsammans.

Läs mer

Utskickad av Högskolan i Halmstad för att användas under perioden 11 mars till 17 mars 2013.

Utskickad av Högskolan i Halmstad för att användas under perioden 11 mars till 17 mars 2013. Svenska Mästerskapen i Ekonomi 2013 Instruktion lokal deltävlingstentamen Utskickad av Högskolan i Halmstad för att användas under perioden 11 mars till 17 mars 2013. Tentamen är anonym. Fullständiga namn,

Läs mer

Mål Likformighet, Funktioner och Algebra år 9

Mål Likformighet, Funktioner och Algebra år 9 Mål Likformighet, Funktioner och Algebra år 9 Provet omfattar s. 102-135 (kap 4) och s.183-186, 189, 191, 193, 200-215. Repetition: Repetitionsuppgifter 4, läa 13-16 (s. 255 260) samt andra övningsuppgifter

Läs mer

Bedömningsexempel. Matematik kurs 1c

Bedömningsexempel. Matematik kurs 1c Bedömningsexempel Matematik kurs 1c Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

FriendlyReader. Språkteknologi för sammanfattningar och ökad läsbarhet. Målgruppsegmentering. Arbetsgång

FriendlyReader. Språkteknologi för sammanfattningar och ökad läsbarhet. Målgruppsegmentering. Arbetsgång FriendlyReader Språkteknologi för sammanfattningar och ökad läsbarhet Mål:! Öka den digitala delaktigheten genom att underlätta för personer med lässvårigheter att tillgodogöra sig textuellt baserad information

Läs mer

Försättsblad till skriftlig tentamen vid Linköpings Universitet

Försättsblad till skriftlig tentamen vid Linköpings Universitet Försättsblad till skriftlig tentamen vid Linköpings Universitet Datum för tentamen 2014-08-20 Sal (1) Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in vilken sal som

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 Prov som ska återanvändas omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen (009:400). Avsikten är att detta prov ska kunna återanvändas t.o.m. 017-06-0. Vid sekretessbedömning ska

Läs mer

Dagens föreläsning (F15)

Dagens föreläsning (F15) Dagens föreläsning (F15) Problemlösning med datorer Carl-Mikael Zetterling bellman@kth.se KP2+EKM http://www.ict.kth.se/courses/2b1116/ 1 Innehåll Programmering i Matlab kap 5 EKM Mer om labben bla Deluppgift

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 24 Augusti 2015 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje

Läs mer

Programmering B PHP. Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408.

Programmering B PHP. Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408. Programmering B PHP DTR1208 - Programmering B 50 poäng Specialiseringen mot PHP medför att kursens kod i betygshanteringen heter PPHP1408. Mål Mål för kursen (Skolverket) Kursen skall ge fördjupade teoretiska

Läs mer

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16

CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg. TME055 Strömningsmekanik 2015-01-16 CHALMERS TEKNISKA HÖGSKOLA Tillämpad mekanik 412 96 Göteborg TME055 Strömningsmekanik 2015-01-16 Tentamen fredagen den 16 januari 2015 kl 14:00-18:00 Ansvarig lärare: Henrik Ström Ansvarig lärare besöker

Läs mer

TNK047 OPTIMERING OCH SYSTEMANALYS

TNK047 OPTIMERING OCH SYSTEMANALYS TNK047 OPTIMERING OCH SYSTEMANALYS Datum: 18 december 2006 Tid: 14 18 Hjälpmedel: Ett A4-blad med egna anteckningar (båda sidor) samt miniräknare. Antal uppgifter: ; Vardera uppgift kan ge p. Poängkrav:

Läs mer

Programschema för Innovation, produktion och logistik högskoleingenjörsprogram, 180 hp

Programschema för Innovation, produktion och logistik högskoleingenjörsprogram, 180 hp Programschema för Innovation, produktion och logistik högskoleingenjörsprogram, 180 hp Programkod: Gäller för läsåret 2015/2016 Programschemat är beslutat av utbildningsledare Annika Björklund vid akademin

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del I Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. NATIONELLT KURSPROV

Läs mer

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS

TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS TNK047 [TEN1] OPTIMERING OCH SYSTEMANALYS Datum: 22 maj 2012 Tid: 8 12, TP56 Hjälpmedel: Ett A4-blad med text/anteckningar (båda sidor) samt miniräknare. Antal uppgifter: 5; Vardera uppgift kan ge 5p.

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

IF1611 Ingenjörsmetodik (Engineering Fundamentals)

IF1611 Ingenjörsmetodik (Engineering Fundamentals) IF1611 Ingenjörsmetodik (Engineering Fundamentals) 7.5 hp HT 2007 KursPM Kursens hemsida http://www.kth.se/student/program-kurser/kurshemsidor/ict/map/if1611/ HT07-1 Mål, Krav, Innehåll och Schemaunderlag

Läs mer

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2

Algebra & Ekvationer. Svar: Sammanfattning Matematik 2 Algebra & Ekvationer Algebra & Ekvationer Parenteser En parentes När man multiplicerar en term med en parentes måste man multiplicera båda talen i parentesen. Förenkla uttrycket 42 9. 42 9 4 2 4 9 8 36

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans.

Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Del B Del C Provtid Hjälpmedel Uppgift 1-6. Endast svar krävs. Uppgift 7-15. Fullständiga lösningar krävs. 150 minuter för Del B och Del C tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Utgivare Datum Ersätter X intranät/utbildning _ intranät/forskn. o fo.utb Patrik Cannmo / EcGu 2014-10-30 2014-08-13 _ intranät/anställd

Utgivare Datum Ersätter X intranät/utbildning _ intranät/forskn. o fo.utb Patrik Cannmo / EcGu 2014-10-30 2014-08-13 _ intranät/anställd HÖGSKOLAN i JÖNKÖPING INSTRUKTION I-JTH-10-025I _ webb/student 1 (6) Examination 1. Regelbakgrund HJ-gemensamma regler Denna instruktion gäller för Tekniska Högskolans olika former av examination och bygger

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Programschemat är beslutat avutbildningsledare Kristina Lundqvist vid akademin för innovation, design och teknik 2012-02-07.

Programschemat är beslutat avutbildningsledare Kristina Lundqvist vid akademin för innovation, design och teknik 2012-02-07. Programschema för liga programmet, 180 hp Programkod: Gäller för läsåret 2012/2013 Programschemat är beslutat avutbildningsledare Kristina Lundqvist vid akademin för innovation, design och teknik 2012-02-07.

Läs mer

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H.

2 Tillämpad Matematik I, Övning 1 HH/ITE/BN. De objekt som finns G men inte i H. HH/ITE/BN Tillämpad Matematik I, Övning 0 3 Tillämpad Matematik I Övning Allmänt 0 Övningsuppgifterna, speciellt Typuppgifter i första hand, är exempel på uppgifter du kommer att möta på tentamen. På denna

Läs mer

INSTITUTIONEN FÖR SVENSKA SPRÅKET

INSTITUTIONEN FÖR SVENSKA SPRÅKET INSTITUTIONEN FÖR SVENSKA SPRÅKET SV1133 Retorik, grundkurs, 30 högskolepoäng Rhetoric, Introductory Course, 30 higher education credits Fastställande Kursplanen är fastställd av Humanistiska fakultetsnämnden

Läs mer

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset.

Tentamensgenomgång och återlämning: Måndagen 9/6 kl12.00 i B413. Därefter kan skrivningarna hämtas på studentexpeditionen, plan 7 i B-huset. Statistiska institutionen Nicklas Pettersson Skriftlig tentamen i Finansiell Statistik Grundnivå 7.5hp, VT2014 2014-05-26 Skrivtid: 9.00-14.00 Hjälpmedel: Godkänd miniräknare utan lagrade formler eller

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

Krafter och moment. mm F G (1.1)

Krafter och moment. mm F G (1.1) 1 Krafter och moment 1.1 Inledning örståelsen för hur olika typer av krafter påverkar strukturer i vår omgivning är grundläggande för ingenjörsvetenskapen inom byggnadskonsten. Gravitationskraften är en

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2005 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till och med den 10 juni 2005. Anvisningar NATIONELLT

Läs mer

Sortering. Om du följt dessa steg korrekt så ska böckerna nu vara sorterade.

Sortering. Om du följt dessa steg korrekt så ska böckerna nu vara sorterade. Sortering Den sorteringsalgoritm som vi använder oss kallas selection sort (urvalssortering) och är en av många existerande sorteringsalgoritmer. Dess funktionssätt beskrivs kanske bäst genom ett konkret

Läs mer

TNSL011 Kvantitativ Logistik

TNSL011 Kvantitativ Logistik TENTAMEN TNSL011 Kvantitativ Logistik Datum: 24 augusti 2010 Tid: 08-12 Hjälpmedel: Hjälpmedel av alla slag, förutom kommunikationsutrustning (telefoner, datorer, och andra saker som kan ta emot signaler

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14

Tentamen för kursen. Linjära statistiska modeller. 20 mars 2015 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 20 mars 2015 9 14 Examinator: Anders Björkström, bjorks@math.su.se Återlämning: Fredag 27/3 kl 12.00, Hus 5,

Läs mer

Bedömningsexempel. Matematik kurs 1b

Bedömningsexempel. Matematik kurs 1b Bedömningsexempel Matematik kurs 1b Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 9 Exempel

Läs mer

Bedömningsexempel. Matematik kurs 2b och 2c

Bedömningsexempel. Matematik kurs 2b och 2c Bedömningsexempel Matematik kurs b och c Innehåll Inledning... Allmänna riktlinjer för bedömning... Bedömningsanvisningar... 3 Bedömning av skriftlig kommunikativ förmåga... 3 Provsammanställning... 4

Läs mer

Kursplanering för Mikrodatorteknik 4p/5p

Kursplanering för Mikrodatorteknik 4p/5p Kursplanering för Mikrodatorteknik 4p/5p Kursansvarig: Benny Thörnberg Tel: 060-148917 E-post: benny.thornberg@miun.se Kurslitteratur: Rune Körnefors, Mikrodatorer bit för bit, ISBN 91-44-30862-0 Introduktion

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Kursledaren: Serguei Shimorin. Övningsledarna: Daniel Zavala Svensson, Shiva Samieinia, Nils Dalarsson.

Kursledaren: Serguei Shimorin. Övningsledarna: Daniel Zavala Svensson, Shiva Samieinia, Nils Dalarsson. Kursanalys av SF1624 för CINTE, vårtermin 2015 1 Kvantitativa data Moment TEN1 Poäng på moment 7.5hp Antal registrerade 83 Antal godkända på moment 33 Prestationsgrad 40% Antal med slutbetyg 33 Examinationsgrad

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

TATA65-Diskret matematik

TATA65-Diskret matematik 1 (6) TATA65-Diskret matematik Sändlista Inger Erlander Klein Tea Nygren Siv Söderlund Fredrik Wiklund Carl Johan Casselgren Göran Forsling Kurskod TATA65 Examinator Carl Johan Casselgren Kursen gavs Årskurs

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10

NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10 JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är

Läs mer

Matematik- Geometri och taluppfattning

Matematik- Geometri och taluppfattning Matematik- Geometri och taluppfattning Skolprogram att utföra på egen hand eller tillsammans med handledare från Aeroseum. Lärarhandledning På de nästföljande sidorna finns ett antal uppdrag eller uppgifter

Läs mer

Webbdesign med multimedia, 5p Kurskod Kurstillfälle Hösten 2007 Kursansvarig lärare Ulf Larsson, Rum 3047 ulf.larsson@sh.

Webbdesign med multimedia, 5p Kurskod Kurstillfälle Hösten 2007 Kursansvarig lärare Ulf Larsson, Rum 3047 ulf.larsson@sh. Delkursbeskrivning: Webbdesign med multimedia, 5 poäng (Interactive Multimedia for the Web, 7.5 ECTS Credits) Kurs Webbdesign med multimedia, 5p Kurskod Kurstillfälle Kursansvarig lärare Ulf Larsson, Rum

Läs mer

TENTAMEN I PROGRAMMERING. På tentamen ges graderade betyg:. 3:a 24 poäng, 4:a 36 poäng och 5:a 48 poäng

TENTAMEN I PROGRAMMERING. På tentamen ges graderade betyg:. 3:a 24 poäng, 4:a 36 poäng och 5:a 48 poäng TENTAMEN I PROGRAMMERING Ansvarig: Jan Skansholm, tel 7721012 Betygsgränser: Hjälpmedel: Sammanlagt maximalt 60 poäng. På tentamen ges graderade betyg:. 3:a 24 poäng, 4:a 36 poäng och 5:a 48 poäng Skansholm,

Läs mer

Vad kan 90 gram räknare göra?

Vad kan 90 gram räknare göra? NR 1-2015 21:a årgången Den nya ClassWizserien. Casio lanserar de nya tekniska räknarna FX-82EX, FX-85EX och FX-991EX ur den nya ClassWiz-serien. De erbjuder olika nyheter: högupplösta displayer, snabbbare

Läs mer

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1

Introduktion till algoritmer - Lektion 1 Matematikgymnasiet, Läsåret 2014-2015. Lektion 1 Kattis Lektion 1 I kursen används onlinedomaren Kattis (från http://kattis.com) för att automatiskt rätta programmeringsproblem. För att få ett konto på Kattis anmäler du dig på Programmeringsolympiadens

Läs mer

Viktigt! Glöm inte att skriva namn på alla blad du lämnar in. 2015-03-19. Namn: (Ifylles av student) Personnummer: (Ifylles av student)

Viktigt! Glöm inte att skriva namn på alla blad du lämnar in. 2015-03-19. Namn: (Ifylles av student) Personnummer: (Ifylles av student) Installationsteknik Provmoment: Ladokkod: Tentamen ges för: Tentamen 41B18I Byggnadsingenjör, åk 2 BI2 7,5 högskolepoäng Namn: (Ifylles av student) Personnummer: (Ifylles av student) Tentamensdatum: 2015-03-19

Läs mer

Betygssystemets antaganden och historia

Betygssystemets antaganden och historia Betygssystemets antaganden och historia Vi skiljer påp sakerna i vår v r världv En stol har vissa (avgörande) egenskaper Ett bord har andra (avgörande) egenskaper Vi skiljer påp eleverna i vår v r skola

Läs mer

TIDSPLAN. Måndagen 30 januari söndagen 12 februari kl 24.00 www.studieval.spyken.lund.se Kvittenser in senast den 14/2 till mentorn.

TIDSPLAN. Måndagen 30 januari söndagen 12 februari kl 24.00 www.studieval.spyken.lund.se Kvittenser in senast den 14/2 till mentorn. VAL INFORMATION TIDSPLAN V 3-4 Klassinformation 26/1 Föräldramöte V 5 & 6 Webbval Måndagen 30 januari söndagen 12 februari kl 24.00 www.studieval.spyken.lund.se Kvittenser in senast den 14/2 till mentorn.

Läs mer

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008.

SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. SF1646, Analys i era variabler, 6 hp, för I1, läsåret 2007.2008. Anders Karlsson, Inst för Matematik, KTH January 22, 2008 Kursinnehåll: Grundläggande kurs i di erential- och integralkalkyl i era variabler.

Läs mer

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof.

Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V. Examinator: Bitr. Prof. Tentamen i Kemisk reaktionsteknik för Kf3, K3 (KKR 100) Onsdag den 22 augusti 2012 kl 8:30-13:30 i V Examinator: Bitr. Prof. Louise Olsson Louise Olsson (031-722 4390) kommer att besöka tentamenslokalen

Läs mer

Handläggningsordning för skriftlig salstentamen och tentamen on line vid Högskolan Dalarna

Handläggningsordning för skriftlig salstentamen och tentamen on line vid Högskolan Dalarna Handläggningsordning för skriftlig salstentamen och tentamen on line vid Högskolan Dalarna Beslut: Rektor 2014-06-16 Reviderad: - Dnr: DUC 2014/1040/10 Ersätter: Handläggningsordning för skriftlig salstentamen,

Läs mer

Matematik 1B. Taluppfattning, aritmetik och algebra

Matematik 1B. Taluppfattning, aritmetik och algebra Matematik 1a Centralt innehåll Metoder för beräkningar med reella tal skrivna på olika former inom vardagslivet och karaktärsämnena, inklusive överslagsräkning, huvudräkning och uppskattning samt strategier

Läs mer

Bedömningsexempel. Matematik kurs 1a

Bedömningsexempel. Matematik kurs 1a Bedömningsexempel Matematik kurs 1a Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter som är representativa för Del I... 5 Exempeluppgifter som är representativa för Del II och Del III... 10 Exempel

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009

NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 Anvisningar Provtid Hjälpmedel Provmaterialet Provet Poäng och betygsgränser NATIONELLT KURSPROV I MATEMATIK KURS C HÖSTEN 2009 240 minuter för Del I och Del II tillsammans. Vi rekommenderar att du använder

Läs mer

Bristande samsyn mellan handledare och examinator vid examensarbete inom läkarprogrammet

Bristande samsyn mellan handledare och examinator vid examensarbete inom läkarprogrammet BESLUT 1(7) Avdelning Juridiska avdelningen Handläggare Mikael Herjevik 08-563 087 27 mikael.herjevik@uk-ambetet.se Karolinska institutet Rektor Bristande samsyn mellan handledare och examinator vid examensarbete

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

MATEMATIK. Ämnets syfte. Kurser i ämnet

MATEMATIK. Ämnets syfte. Kurser i ämnet MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

TNIU66: Statistik och sannolikhetslära

TNIU66: Statistik och sannolikhetslära Institutionen för teknik och naturvetenskap Michael Hörnquist, 1 februari 2013 TNIU66: Statistik och sannolikhetslära Kursinformation 2013 Mål och innehåll Kursens mål och förväntade läranderesultat enligt

Läs mer

PRÖVNINGSANVISNINGAR

PRÖVNINGSANVISNINGAR Prövning i Företagsekonomi 2 PRÖVNINGSANVISNINGAR Kurskod FÖRFÖR2 Gymnasiepoäng 100 Läromedel Prövning Skriftlig del Muntlig del Kontakt med examinator Bifogas E2000 Classic Företagsekonomi 2, Faktabok

Läs mer

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material Tentamen i lördagen den 13 mars 2004 Tillåtna hjälpmedel: Allt upptänkligt material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2000. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2010. Anvisningar Provtid

Läs mer

Betyg och studieresultat i gymnasieskolan 2006/07

Betyg och studieresultat i gymnasieskolan 2006/07 PM Enheten för utbildningsstatistik 2007-12-19 Dnr (71-2007:01035) 1 (7) Betyg och studieresultat i gymnasieskolan 2006/07 Kommunala skolor har, för jämförbara utbildningar, bättre studieresultat än fristående

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 13 Mars 2014 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje blad.

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer