Basbyte (variabelbyte)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Basbyte (variabelbyte)"

Transkript

1 Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer e x och e y som har längden och som pekar till höger resp. uppåt ja. Men, omt.ex.e x pekar uppåt och e y till vänster, så v (2, ). Med ett annat val av basvektorer kan v få koord. (, ) ja, koordinatvektorn kan se ut hur som helst! Precis som saker och ting heteer olika på olika språk, har vektorer olika koordinater beroende på valet av bas. Kom ihåg: v (5, 2) är ett förkortat skrivsätt för v 5e x +2e y, där e x, e y är någon underförstådd bas Icke-geometriska vektorer (talmultiplar) kan också betraktas som koordinater relativt ett koord.- system av någon koordinatsystemoberoende storhet. Säg att vi utför en sociologisk undersökning och för olika grupper av människor antecknar antalet män resp. antalet kvinnor som ingår. Då har vi för varje grupp v ett par av tal (v x,v y ): v x antalet män i v, v y antalet kvinnor i v. Inga pilar syns på långa vägar ändå kan vi tänka oss att (v x,v y ) är koordinater m.a.p. en viss bas: I stället för antal män/kvinnor kunde vi antecknat t.ex. (vi hade då haft precis lika mycket information!) bv x v x + v y totala antalet människor bv y v x v y överskottet av män På matrisform kan detta skrivas µ µ b bv y µ v y och motsvarar bv S V i högerspalten. Wahde använder termen komponenter, men koordinater går också bra. Samband mellan koordinater relativt olika baser Ibland vill man byta från en gammal bas e x, e y till en ny bas be x, be y. Vad är sambandet mellan de olika koordinaterna av v, (v x,v y ) resp. (bv x, bv y )? Alltså: v v x e x + v y e y v bv x be x + bv y be y Låt oss uttrycka alla vektorer med koordinater med avseende på e x, e y och skriva dem som kolonnmatriser. Då är v v x e x + v y e y µ µ v v x + v y µ v y v bv x be x + bv y be y µ µ # % v bv x + bv # y % µ µ # % b # % bv y varvid # och % symboliserar be x :sresp. be y :skoordinater med avseende på den gamla basen. Alltså µ µ µ # % b v y # % bv y µ # % eller kortare V ScV med S # % Den s.k. transformationsmatrisen 2 (basbytesmatrisen) S har som kolonner koordinaterna av de nya basvektorerna med avseende på de gamla. Vill vi ha de nya koordinaterna som funktioner av de gamla i stället får vi multiplicera med S : bv S V (Inversen måste finnas, annars skulle be x, be y vara parallella och inte utgöra någon bas!) Ett viktigt specialfall: när båda baserna är ortonormerade, är S ortogonal, d.v.s. S T S I SS T vilket är ekvivalent med S S T. Övertyga dig om att S T S I Kolonnerna i S bildar ON-system SS T I Raderna i S bildar ON-system 2 I Wahde, kap.5, heter denna matris P. 9

2 Linjära avbildningar: Avbildningsmatrisen beror på basvalet! Precis som vektorernas koordinater, är matrisrepresentationen av en linjär avbildninig avhängig av basvalet. Ex. Matrisen för spegling i planet med ekvationen ger x + Projektionsformeln, d.v.s att ortogonala projektionen av en vektor u på en vektor n är u n n 2 n y y 2 y 3 x x ( ) x En helt annan (och betydligt enklare!) matris hade vi fått, om vi valt koordinatsystemet så att det speglande planet sammanfaller med, säg, xy-planet! Då hade nämligen avbildningsmatrisen varit (2) (Vi kan antingen skriva upp sambanden mellan bildens och urbildens koordinater direkt: y x y 2 y 3 eller resonera så här: Spegling är en linjär avbildning. Det räcker då att bestämma bilderna av basvektorerna och sätta ihop dessa som kolonner i en matris. De två första basvektorerna (,, ) och (,, ) liggerkvarpå sin plats medan den tredje (,, ) avbildas på (,, ). Ger samma matris som ovan!) Hur avbildningsmatrisen transformeras vid basbyten Om man gör ett basbyte, vad blir sambandet mellan den gamla avbildningsmatrisen A och den nya A? (Vi inskränker oss här till avbildningar mellan ett och samma rum, och därmed kvadratiska avbildningsmatriser.) Låt S beteckna transformationsmatrisen som ovan. Vi har då Y AX, X S bx, Y SY b och söker ba sådan att by ba bx En rättfram räkning ger by S Y S AX S AS bx således A b S AS Ex.: Speglingsmatrisen (3) kunde vi fått med följande räkning (inte enklare dock!): Gör ett basbyte, så att de två första basvektorerna är parallella med speglingsplanet och den tredje är vinkelrät mot det, t.ex. alltså S be 3 (,, ) / 3 be (,, ) / 2 be 2 be 3 be (,, 2) / 6 / 2 / 6 / 3 / 2 / 6 / 3 2/ 6 / 3 Med avseende på denna nya bas ges avbildningsmatrisen av (2), d.v.s. S AS och därmed A S S som ger (3) (S är ortogonal till följd av konstruktionen, så S S T ).

3 Diagonalmatriser lättast att analysera Ovan har vi bestämt avbildningsmatriser för givna linjära avbildningar. Ofta förekommer det omvända problemet (om än i diverse förklädnader): Givet en matris, lista ut vad avbildningen, som den motsvarar, gör! Då vore det ju bra om vi kunde göra ett basbyte så att avbildningsmatrisen blir så enkel som möjligt en diagonalmatris (tänk hur enkelt det är att multiplicera diagonalmatriser!). Säg att en avbildning har, relativt en viss bas e, e 2, e 3, matrisen λ λ 2 λ 3 Detta innebär att avbildas på avbildas på λ λ 2 e λ e 2 λ 2 λ e λ 2 e 2 Egenvärden och egenvektorer Vektorer som avbildas (av en linjär avbildning) på sig själva, så när som på multiplikation med en konstant Av λv, v 6 kallas egenvektorer till avbildningen och motsvarande λ kallas egenvärden. (Utesluter fallet v, som ointressant.) Diagonalisering Att göra ett basbyte så att en given avbildning blir representerad av en diagonalmatris, kallas att diagonalisera avbildningen. Tyvärr kan inte alla avbildningar diagonaliseras egenvektorerna räcker inte alltid till för att bilda en bas. Men det finns en stor och viktig klass av avbildningar som alltid går att diagonalisera de symmetriska, d.v.s. de som representeras av symmetriska matriser. Avbildningar kontra matriser I och med att linjära avbildningar representeras med matriser, brukar man tala om egenvektorer/egenvärden/diagonalisering till/av en matris, men det är bättre att tänka i termer av avbildningar egenvektorer och egenvärden är något som alltid finns, men hur tydligt de syns beror på vårt val av bas. etc. D.v.s. avbildningen kan på sin höjd sträcka ut (λ > ), pressa ihop ( λ < ) och ev. kasta om riktningen på en basvektor (λ < ), men inte vrida den, vilket förenklar analysen betydligt! Allmänt råd för matrisproblem Ofta är svårigheten den att matrisens element utanför diagonalen är 6, vilket gör att variabler är kopplade till varandra. Undersök om man inte kan genomföra ett basbyte/variabelbyte så att den urspr. matrisen ersätts av en diagonalmatris!

4 Analys av en linjär avbildning Vad gör den linjära avbildningen y y y x? Försök att diagonalisera! Mankanräknafram skasenaresehur att i) Alla vektorer av typen t (,, ),t6, 3 är egenvektorer med egenvärdet. (Innebörden av detta är att vilket lätt kontrolleras stämma.) ii) Alla vektorer 6, som är vinkelräta mot (, 3, ) 4, är egenvektorer med egenvärdet, t.ex. är (3, 2, 3) (, 3, ) och Vi kan då bilda en bas av egenvektorer: be (,, ) be 2 (,, ) be 3 (3,, ) (Jag tar som be 2 och be 3 två icke-parallella vektorer, vars skalärprodukt med (, 3, ) är.) I denna nya bas har avbildningen matrisen Men detta är ju ingenting annat än en sned projektion: på det plan som spänns upp av be 2, och be 3 (d.v.s. x 3y + z ), parallellt med be. (Projektioner behöver inte alltid vara vinkelräta!) System av linjära differentialekvationer Vi klarar av differentialekvationer av typen y (t) ky(t), Alla lösningar är av formen k given konstant, y(t) obekant funktion y(t) Ce kt, C konstant ( y ()) Ofta ställs man inför ett system av sådana: y (t) y (t)+y 2 (t) y 2(t) 3y (t) y 2 (t) Om man nu dels tar 3 ekv.()+ekv.(2), dels subtraherar ekvationerna, så fås 3y + y 2 2(3y + y 2 ) y y2 2(y y 2 ) Om vi alltså gör variabelbytet ½ by 3y + y 2 by 2 y y 2 (4) så får vi två frikopplade ekvationer som löses snabbt: by 2by by 2 2by 2 by C e 2t by 2 C 2 e 2t Sedan är det bara att lösa ut y (t) och y 2 (t) ur (4): y 4 (by + by 2 ) C e 2t + C 2 e 2t 4 y 2 4 (by 3by 2 ) C e 2t 3C 2 e 2t 4 C och C 2 godtyckliga konstanter Men hur komma på radoperationerna ovan? 3 D.v.s. alla vektorer 6, som är parallella med (,, ), vilket jag ibland förkortar med k (,, ) 4 Förkortas: (, 3, ) 2

5 Variabelbyte är detsamma som basbyte! Våra ekvationer kan på matrisform skrivas: µ Y AY, A 3 Försök med variabelbyte Y S by, då blir Y S by Y AY SY b ASY b by S AS by Att ekvationerna by S AS by blir frikopplade som ovan är ekvivalent med att S AS är diagonal. Försök därför att hitta en bas av egenvektorer till A! Man kan räkna fram att i) egenvärden är 2 och 2 (Koefficienterna i de frikopplade ekvationerna!) ii) Motsv. egenvektorer är t (, ) resp. t (, 3),t6. S µ 3, by S Y 4 µ 3 Y System av linjära differensekvationer (linjära rekursionsekvationer) som y (n +)y (n)+y 2 (n) y 2 (n +)3y (n) y 2 (n),n,, 2,... kan behandlas på samma sätt. I och med att en enkel rekursionsekvation som y(n +)ky(n), k given konstant har den allmänna lösningen y(n) Ck n,ckonstant ( y ()) så blir den enda skillnaden jämfört med behandlingen av differentialekvationerna att e λt ersätts av λ n vilket är detsamma som ovan bortsett från den konstanta faktorn 4. Till slut går vi tillbaka till µ y (t) Y S by y 2 (t) µ µ C e 2t 3 C 2 e 2t µ µ C e 2t + C 2 3 e 2t vilket är precis det vi fick förut! Här kan vi se en anledning till varför egenvärdena ensamma kan vara viktiga. Det är mycket stor skillnad om vi har en term e 2t eller e 2t det förstnämnda, den andra växer explosionsartat! (Vad konstanterna C och C 2 är, brukar, däremot, vara av underordnad betydelse.) Antag att våra ekvationer och funktionerna y (t) och y 2 (t) skall beskriva något fysikaliskt förlopp. Skulle något egenvärde vara >, har vi en katastrof att vänta!). Linjära system av differential ekvationer går också att klara av med Laplacetransformation. Testapåsystemetovan! Det är något bökigare att Laplacetransformera, om man inte har fixa begynnelsevärden, så testa för specialfallet då y () 3, y 2 (), vilket svarar mot C 2,C Linjära system av differensekvationer går också att klara av med z-transformation. Testa på systemet ovan, förslagsvis i spec.fallet y () 3, y 2 (). 3

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Vektorer i planet och i rummet III Innehåll

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

LINJÄRA AVBILDNINGAR

LINJÄRA AVBILDNINGAR LINJÄRA AVBILDNINGAR Xantcha november 05 Linjära avbildningar Definition Definition En avbildning T : R Ñ R (eller R Ñ R ) är linjär om T pau ` bvq at puq ` bt pvq för alla vektorer u, v P R (eller u,

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algebra Datum: 7 januari 04 Skrivtid:

Läs mer

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3.

Linjära avbildningar. Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om. EX. Speglingar, rotationer, projektioner i R 3. Linjära avbildningar Definition 1 En avbildning mellan två vektorrum, F : V U, kallas linjär om F (v +v ) = F (v)+f (v ) och F (cv) = cf (v) för alla v, v V och alla skalärer c. EX. Speglingar, rotationer,

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

1 som går genom punkten (1, 3) och är parallell med vektorn.

1 som går genom punkten (1, 3) och är parallell med vektorn. KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med

Läs mer

Dagens ämnen. Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former. Andragradskurvor

Dagens ämnen. Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former. Andragradskurvor Seminarium 25 Dagens ämnen Repetition basbyten och linjära avbildningar Diagonalisering Kvadratiska former Matrisform Diagonalisering av kvadratiska former Andragradskurvor De olika kurvtyperna Rita graferna

Läs mer

Inför tentamen i Linjär algebra TNA002.

Inför tentamen i Linjär algebra TNA002. Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av

Läs mer

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014

SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 2014 SF1624 Algebra och geometri Tentamen Onsdagen 29 oktober, 214 Skrivtid: 14.-19. Tillåtna hjälpmedel: inga Examinator: Roy Skjelnes Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng.

Läs mer

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Självkoll: Ser du att de två uttrycken är ekvivalenta? ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:

Läs mer

Linjär algebra kurs TNA002

Linjär algebra kurs TNA002 Linjär algebra kurs TNA002 Lektionsanteckningar klass ED1 I detta dokument finns ett utdrag av de tavelanteckningar som uppkommit under lektionstid under kursen TNA002. Alltså kan detta dokument långt

Läs mer

Stöd inför omtentamen i Linjär algebra TNA002.

Stöd inför omtentamen i Linjär algebra TNA002. LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3

17. Övningar ÖVNINGAR Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av. x 1 x 2 2x 2 + 3x 3 2x 1 x 3 192 17 ÖVNINGAR 17. Övningar 17.1. Låt F och G vara avbildningar på rummet, som i basen e = {e 1,e 2,e 3 } ges av F(eX) = ey = e x 1 x 2 2x 2 + 3x 3 2x 1 x 3, G(eX) = e x 1 x 2 x 2 2 x 2 + x 3 Undersök

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Lite Linjär Algebra 2017

Lite Linjär Algebra 2017 Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund

Läs mer

Egenvektorer och egenvärden

Egenvektorer och egenvärden Egenvektorer och egenvärden Diagonalmatriser Tidigare (Sparr, kap.8) har vi bestämt avbildningsmatriser för givna linjära avbildningar. Ofta förekommer det omvända problemet (om än i diverse förklädnader):

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA II PER ALEXANDERSSON Sammanfattning. Detta är en samling kompletterande uppgifter till Linjär Algebra II för lärare. Exemplen är av varierande svårighetsgrad och

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1

1. (a) Bestäm alla värden på c som gör att matrisen A(c) saknar invers: 1 0 1. 1 c 1 ATM-Matematik Mikael Forsberg 734-4 3 3 För ingenjörs- och distansstudenter Linjär Algebra ma4a 5 4 Skrivtid: :-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Isometrier och ortogonala matriser

Isometrier och ortogonala matriser Isometrier och ortogonala matriser (Delvis resultat som kunde kommit tidigare i kursen) För att slippa parenteser, betecknas linära avbildningar med A och bilden av x under en lin avbildn med Ax i stället

Läs mer

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =

6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = 62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader

Läs mer

Föreläsningsanteckningar i linjär algebra

Föreläsningsanteckningar i linjär algebra 1 Föreläsningsanteckningar i linjär algebra Per Jönsson och Stefan Gustafsson Malmö 2013 2 Innehåll 1 Linjära ekvationssystem 5 2 Vektorer 11 3 Linjer och plan 21 4 Skalärprodukt 27 5 Vektorprodukt 41

Läs mer

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31

För studenter på distans och campus Linjär algebra ma014a 2014 02 10. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 734-4 3 3 För studenter på distans och campus Linjär algebra maa Skrivtid: 9:-:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

AB2.1: Grundläggande begrepp av vektoranalys

AB2.1: Grundläggande begrepp av vektoranalys AB2.1: Grundläggande begrepp av vektoranalys En vektor är en storhet som dels har icke-negativ storlek dels har riktning i rummet. Två vektorer a och b är lika, a = b, om de har samma storlek och samma

Läs mer

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.

0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar

Läs mer

Här är ett antal uppgifter, en del tagna från gamla tentamina, som handlar om basbyte. respektive B = uttryckta i basen A

Här är ett antal uppgifter, en del tagna från gamla tentamina, som handlar om basbyte. respektive B = uttryckta i basen A Problem om asbyte Mikael Forsberg, 8 februari 0 Här är ett antal uppgifter, en del tagna från gamla tentamina, som handlar om basbyte.. Vi har baserna A och, givna som kolonnerna till matriserna T-00 A

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.

Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31

För ingenjörs- och distansstudenter Linjär Algebra ma014a 2015 02 26. ATM-Matematik Mikael Forsberg 0734-41 23 31 ATM-Matematik Mikael Forsberg 074-4 För ingenjörs- och distansstudenter Linjär Algebra ma04a 0 0 Skrivtid: 09:00-4:00. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Tisdagen den 15 december, 2009 DEL A 1 a Bestäm de komplexa koefficienterna a, b och c så att polynomet Pz z 3 + az 2 + bz + c har nollställena

Läs mer

Uppgifter, 2015 Tillämpad linjär algebra

Uppgifter, 2015 Tillämpad linjär algebra Geometri. Uppgifter, 25 Tillämpad linjär algebra. Uppgift. Låt (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av linjära

Läs mer

16.7. Nollrum, värderum och dimensionssatsen

16.7. Nollrum, värderum och dimensionssatsen 86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,

Läs mer

16. Linjära avbildningar

16. Linjära avbildningar 66 6 LINJÄRA AVBILDNINGAR 6. Linjära avbildningar 6.. Linjär avbildning Exempel 6.. Betrakta funktionen f : R R, sådan att där a är en konstant. Då gäller att. f(x + y) =a(x + y) =ax + ay = f(x)+f(y)..

Läs mer

16. Linjära avbildningar

16. Linjära avbildningar 6. Linjära avbildningar 6.. Linjär avbildning Exempel 6.. Betrakta funktionen f : R R, sådan att där a är en konstant. Då gäller att. f(x + y) = a(x + y) = ax + ay = f(x) + f(y). 2. f(λx) = a(λx) = aλx

Läs mer

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan

November 17, 2015 (1) en enda lsg. Obs det A = 1 0. (2) k-parameter lsg. Obs det A = 0. k-kolonner efter sista ledande ettan Fö 9: November 7, 5 Determinanter och ekvationssystem Betrakta ett linjärt ekvssystem A X = B, där A är en kvadratisk n n)-matris och X, B n )-matriser. Låt C = [A B] utökad matris ). Gausselimination

Läs mer

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2

e 3 e 2 e 1 Kapitel 3 Vektorer i planet och i rummet precis ett sätt skrivas v = x 1 e 1 + x 2 e 2 Kapitel 3 Vektorer i planet och i rummet B e 3 e 2 A e 1 C Figur 3.16 Vi har ritat de riktade sträckor som representerar e 1, e 2, e 3 och v och som har utgångspunkten A. Vidare har vi skuggat planet Π

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Extraövningar, linjär algebra

Extraövningar, linjär algebra Extraövningar, linjär algebra Uppgifter markerade med * kan innehålla något moment som är kursivt, medan uppgifter markerade med ** kan vara av det svårare slaget och innehålla något moment som inte ingår

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

Dagens ämnen. Kvadratiska former. Andragradskurvor. Matrisform Diagonalisering av kvadratiska former Max/min Teckenkaraktär

Dagens ämnen. Kvadratiska former. Andragradskurvor. Matrisform Diagonalisering av kvadratiska former Max/min Teckenkaraktär Dagens ämnen Kvadratiska former Matrisform Diagonalisering av kvadratiska former Max/min Teckenkaraktär Andragradskurvor De olika kurvtyperna Rita graferna i rätt bas Kvadratiska former a 1 x 1 + a x +

Läs mer

Exempel :: Spegling i godtycklig linje.

Exempel :: Spegling i godtycklig linje. INNEHÅLL Exempel :: Spegling i godtycklig linje. c Mikael Forsberg :: 6 augusti 05 Sammanfattning:: I detta dokument så är vårt uppdrag att beräkna matrisen för spegling i en godtycklig linje y = kx som

Läs mer

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m.

x 1 x 2 x 3 x 4 mera allmänt, om A är en (m n)-matris, då ger matrismultiplikationen en avbildning T A : R n R m. Fredagen 006 Avbildningar Låt A vara matrisen () = 0 0 Till varje vektor X i R får vi vid matrismultiplikationen AX en vektor i R Mera explicit, om X = x x x x är en given punkt i R, då får vi punkten

Läs mer

5.7. Ortogonaliseringsmetoder

5.7. Ortogonaliseringsmetoder 5.7. Ortogonaliseringsmetoder Om man har problem med systemets kondition (vilket ofta är fallet), lönar det sig att undvika normalekvationerna vid lösning av minsta kvadratproblemet. En härtill lämplig

Läs mer

Uppgifter, 2014 Tillämpad linjär algebra

Uppgifter, 2014 Tillämpad linjär algebra Geometri. Uppgifter, 24 Tillämpad linjär algebra. Uppgift. Låt A = (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av

Läs mer

Begrepp :: Determinanten

Begrepp :: Determinanten c Mikael Forsberg 2008 1 Begrepp :: Determinanten Rekursiv definition :: Kofaktorutveckling Låt oss börja definiera determinanten för en 1 1 matris A = (a). En sådan matris är naturligtvis bara ett vanligt

Läs mer

ANALYTISK GEOMETRI. Xantcha

ANALYTISK GEOMETRI. Xantcha ANALYTISK GEOMETRI Xantcha 4 april 06 Innehåll Linjer och plan Linjens och planets ekvationer Linjens ekvation Planets ekvation Incidens 4 Incidens mellan plan 4 Incidens mellan linje och plan 5 3 Incidens

Läs mer

y z 3 = 0 z 5 16 1 i )

y z 3 = 0 z 5 16 1 i ) ATM-Matematik Mikael Forsberg 734-433 Sören Hector 7-46686 Rolf Källström 7-6939 Ingenjörer, Lantmätare och Distansstuderande, mfl. Linjär Algebra ma4a 4 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna

Läs mer

Linjär algebra. Lars-Åke Lindahl

Linjär algebra. Lars-Åke Lindahl Linjär algebra Lars-Åke Lindahl 2009 Fjärde upplagan c 2009 Lars-Åke Lindahl, Matematiska institutionen, Uppsala universitet Innehåll Förord................................. v 1 Linjära ekvationssystem

Läs mer

LINJÄR ALGEBRA II LEKTION 8+9

LINJÄR ALGEBRA II LEKTION 8+9 LINJÄR ALGEBRA II LEKTION 8+9 JOHAN ASPLUND Innehåll. Kvadratiska former. Allmänna linjära avbildningar Matriser för allmänna linjära avbildningar. Uppgifter Extrauppgift från tenta Extrauppgift från tenta

Läs mer

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011

SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 SF1624 Algebra och geometri Lösningsförslag med bedömningskriterier till kontrollskrivning 2 Fredagen den 28 januari, 2011 UPPGIFT (1) Låt V vara mängden av vektorer (x 1, x 2, x 3 ) i R 3 som uppfyller

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON

EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON EXEMPEL OCH LÖSNINGAR I LINJÄR ALGEBRA PER ALEXANDERSSON Sammanfattning. Detta kompendie är främst avsett som ett komplement till Tengstrands Linjär algebra med vektorgeometri, [Ten05]. Materialet innehåller

Läs mer

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.

ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning. UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna

Läs mer

14. Minsta kvadratmetoden

14. Minsta kvadratmetoden 58 MINSTA KVADRATMETODEN. Minsta kvadratmetoden Eempel.. Det är inte så svårt att komma åt en trasig lampa på golvet för att byta den. Det är bara att gå fram till den. Hur är det om lampan hänger i taket?

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

1 Grundläggande kalkyler med vektorer och matriser

1 Grundläggande kalkyler med vektorer och matriser Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just

Läs mer

1 Kvadratisk optimering under linjära likhetsbivillkor

1 Kvadratisk optimering under linjära likhetsbivillkor Krister Svanberg, april 0 Kvadratisk optimering under linjära likhetsbivillkor I detta kapitel behandlas följande kvadratiska optimeringsproblem under linjära likhetsbivillkor: xt Hx + c T x + c 0 då Ax

Läs mer

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013

DN1230 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 2013 TILLÄMPAD LINJÄR ALGEBRA, DN123 1 DN123 Tillämpad linjär algebra Tentamen Onsdagen den 29 maj 213 Skrivtid: 8-13 Tillåtna hjälpmedel: inga Examinator: Anna-Karin Tornberg Betygsgränser: Betyg A B C D E

Läs mer

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA.

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA. Övningsuppgifter i anslutning till Kapitel. Skriv följande vektorsummor som en vektor a AB + BC b BC + CD + DA..2 Sök i nedanstående figur de vektorer som har samma längd och samma riktning som vektorn

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Linjär Algebra, Föreläsning 20

Linjär Algebra, Föreläsning 20 Linjär Algebra, Föreläsning 20 Tomas Sjödin Linköpings Universitet Symmetriska avbildningar, repetition F : E E sägs vara symmetrisk om (F (u) v) = (u F (v)) gäller för all u, v i det Euklidiksa rummet

Läs mer

Geometriska vektorer

Geometriska vektorer Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

Enklare uppgifter, avsedda för skolstadiet.

Enklare uppgifter, avsedda för skolstadiet. Årgång 11, 1927 Första häftet 265. Lös ekvationssystemet { x 3 5x + 2y = 0 y 3 + 2x 5y = 0 266. Visa att uttrycket na n+1 (n + 1)a n + 1 där a och n äro positiva hela tal och a > 2, alltid innehåller en

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar.

2 1 1 s s. M(s) = (b) Beräkna inversen för det minsta positiva heltalsvärdet på s som gör matrisen inverterbar. TM-Matematik Mikael Forsberg 7 Linjär algebra/matematik för ingenjörer maa, maa 5 6 Skrivtid: 9:-:. Inga hjälpmedel förutom pennor, sudd, linjal, gradskiva. Lösningarna skall vara fullständiga och lätta

Läs mer

VEKTORRUMMET R n. 1. Introduktion

VEKTORRUMMET R n. 1. Introduktion VEKTORRUMMET R n RYSZARD RUBINSZTEIN 28--8. Introdktion Låt n vara ett heltal. Med R n kommer vi att beteckna mängden vars element är alla n-tipplar av reella tal (a, a 2,..., a n ), R n = { (a, a 2,...,

Läs mer

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016.

Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016. LINKÖPINGS UNIVERSITET Matematiska Institutionen Vladimir Tkatjev Kursprogram kursen ETE325 Linjär Algebra, 8 hp, vt 2016. Kursperiod: 18 januari 18 maj Examinator och föreläsare: Vladimir Tkatjev: B-huset,

Läs mer

Linjär Algebra M/TD Läsvecka 1

Linjär Algebra M/TD Läsvecka 1 Linjär Algebra M/TD Läsvecka 1 Omfattning: Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll: Olika aspekter av linjära ekvationssystem: skärning mellan geometriska objekt, linjärkombination

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken

Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken Linjär Algebra 764G01: Kommentarer och läsanvisningar till kursboken Här följer kommentarer om sånt i boken som kan behövas förtydligas samt anvisningar om vad som ska läsas, eller snarare vilka delar

Läs mer

En vektor är mängden av alla sträckor med samma längd och riktning.

En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver

Läs mer

LINJÄR ALGEBRA & GEOMETRI

LINJÄR ALGEBRA & GEOMETRI LINJÄR ALGEBRA & GEOMETRI Seriöst, de här e fan allting. DE HÄR ÄR ALLT SKIT DU BEHÖVER, SKIT I ALLT ANNAT. STÅR DE INTE HÄR ÄR DE ONÖDIGT Contents Räkneregler för Vektorer... 2 Multiplikation mellan skalär

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

x 1 x 2 T (X) = T ( x 3 x 4 x 5

x 1 x 2 T (X) = T ( x 3 x 4 x 5 Lördagen 6 Nu vill vi fokusera på linjära avbildningar från vektorrum W Om T : R n R n är en linjär avbildning, och W R n ett vektorrum, då har vi en inducerad avbildning T W : W R m Och denna avbildning

Läs mer