Digital Signalbehandling i multimedia

Storlek: px
Starta visningen från sidan:

Download "Digital Signalbehandling i multimedia"

Transkript

1 Digil siglhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy Digil siglhdlig, Is ör lkro- och iormioskik örläsig Exmpl: Ekok Digil Siglhdlig i mulimdi EI65 Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr Lågpssilr Rkosrukio 3 x AD x y DA y mikroo Dly D Dly D höglr Dly D 3 Hur lår d? Vi sr på lorior Ml och DSP. Smplk: 8 khz. Digil Sigl Procssig: Pricipls, Algorihms, d Applicios. Joh G. Prokis, Dimiris G. Molkis örläsigr: Bg Mdrsso Digil siglhdlig, Isiuio ör lkro- och iormioskik Exmpl på rvr kok Digil siglhdlig, Isiuio ör lkro- och iormioskik Exmpl på krsr Alog krs, RC-krs y y x Digil krs x krs y y y x Kod s körs vr gåg y värd is rå ADvdlr.9, xadipu; y-.9*yold x; yoldy; DAoupuy; 3 4

2 Digil siglhdlig, Isiuio ör lkro- och iormioskik Ihåll LP4 EI65 3 Digil siglhdlig, Isiuio ör lkro- och iormioskik Exmpl. MP3 kodig v musik Joh G. Prokis, Dimiris G. Molkis, Digil Sigl Procssig: Pricipls, Algorihms, d Applicios', ourh Ediio, Chprs -. Prso Pric Hll, ISB ISB Chpr : Chpr : Chpr 3: Chpr 4: Chpr 5: Chpr 6: Chpr 7: Chpr 8: Chpr 9: Iroducio. Discr-im Sigls d Sysms. h z-rsorm d is Applicio o h Alysis o LI Sysms. rqucy Alysis o Sigls. rqucy-di Alysis o LI Sysms. Smplig d Rcosrucio o Sigls. h Discr ourir rsorm: Is propris d Applicios. Eici Cpuio o h D: s rsorm Algorihms igår. Implmio o Discr-im Sysms. örläsig: 4 immr pr vck Övig: 4 immr pr vck Lorio: immrvck udr 3 vckor Ilämigsuppgir i kiio md dugg Amäligslisor ill lorior på hmsid. 5 6 Digil siglhdlig, Isiuio ör lkro- och iormioskik Vd är idsdiskr sigl? Digil siglhdlig, Isiuio ör lkro- och iormioskik Exmpl på idsdiskr krs Exmpl på idsdiskr siglr mprurkurv x krs y x{ }. y 5 x 5 x- 5 x- 5 x-3 5 x-4 Krs räkr mdlvärd v d m ss isiglvärd. y 5 x - 5 x- 5 x- - 5 x-3 5 x-4 Siussigl x si { } Vd gör ovsåd krsr kvior? D örsärkr låg rkvsr s D dr örsärkr hög rkvsr disk M hur? D vill vi ku räk i d kurs. y.9 y- x. y.5 y- x Målsäig i kurs: örså smd mll krsr lig ov och dss gskpr, spcill rkvsgskpr. 7 8

3 Digil siglhdlig, Isiuio ör lkro- och iormioskik Siusoids koiurlig x { cos 44 {.4 { A mpliud rkvs 443 s Ω viklrkvs Digil siglhdlig, Is ör lkro- och iormioskik Syisk lud, ågr xmpl övrs: vågorm, udrs: rkvsihåll, hisogrm övr rkvsihåll Sius x si { Hz Priodid Ω x.4 { cos 44 { 44 rkvs A mpliud Ω viklrkvs id ördröig Addiiv sys summ v siussiglr ro x si k { k k Hz rigorisk smd: Eulrs ormlr: cos Ω si Ω Ω Ω Ω Ω Clri 9 Digil siglhdlig, Is ör lkro- och iormioskik Syisk lud, ågr xmpl övrs: vågorm, udrs: rkvsihåll Digil siglhdlig, Isiuio ör lkro- och iormioskik Priodisk siglr, siglr uppyggd v hrmoisk dlor AM-sys x.8 si { si 3 { Hz 66 Hz Siglr s är priodisk, dvs smm vågorm upprps md priod, k skrivs s summ v siussiglr md hrmoisk dlor. Siglr sår v rkvskpor hrmoisk dlor,, 3, 4 osv där klls grudo Sigl k llså skrivs x A Asi φ A si φ A si 3 φ osv Exmpl 3 3 M-sys Ymh x si{ { 3 si { } Hz Hz Övrs : Vågorm, drs: rkvsihåll

4 3 Digil siglhdlig, Isiuio ör lkro- och iormioskik Smplig sid Digil siglhdlig, Isiuio ör lkro- och iormioskik idsdiskr sius sid 3 x cos 44 {.4 vläs md rkvs llr x x. s Hz mll vläsigr 44 cos.4 s 44 dvs. 44 Bckigr: Ω rkvs rspkiv viklrkvs ör idskoiurlig siglr. rkvs rspkiv viklrkvs ör idsdiskr siglr. s x cos cos hll, 8.5 <.5 gr mis smplpriod Hur ri rkvsihåll? Spkrum X priod 3 4 Digil siglhdlig, Isiuio ör lkro- och iormioskik idsdiskr sius md s x cos φ φ φ φ φ Digil siglhdlig, Isiuio ör lkro- och iormioskik Spl upp digil sigl Lyss på sigl g spl upp d g DA-vdlr Vi välr u priod < < Spkrum X Hur mrkr s i rkvsihåll? s också övigr Spkrum X priod φ φ φ φ priod φ φ och splr upp md s Hz -5 < < 5 vrklig rkvs y cos 8 cos 5 Mr smplig och uppsplig i kpil 6 Vi rir här i d kplx mpliud i igur. 5 6

5 Digil siglhdlig, Isiuio ör lkro- och iormioskik Kpil Discr-im Sigls sid 4-43 Bckigr: x i viss öckr väds x[] x 4, {... ör övrig 4...} { 4 } Digil siglhdlig, Isiuio ör lkro- och iormioskik Exmpl på krsr sid 57, 58 A B ördröig ski x z - örs ordigs krs yx- Impuls: δ ör övrig {......} x.5 z - y Sg: u < {......} x u x cos C Adr ordigs krs x y.5 y- x- z z - y Diiio: Kusl sigl sigl s är ör giv idx Här hövr vi hälp v Z-rsorm, kp 3. Md hälp v impuls k vi skriv x { 4 } δ 4 δ δ x k δ k k Mr srukurr i kpil Digil siglhdlig, Isiuio ör lkro- och iormioskik Ergi, k sid 44, 45 rgi: k: E P x E< klls rgy sigl <P< klls powr sigl x Digil siglhdlig, Isiuio ör lkro- och iormioskik Discr-im Sysms LI sysms Diiior IR,IIR IR: Krs md ädlig mi x. y x x IIR: Krs md oädlig mi x. y.5 y x Jäm, udd äm v x x udd odd x x spglig v x oldig, rlcio krig origo gr y x Liri x α x β x gr y α y β y Ski ivri x y mdör x y 9

6 Digil siglhdlig, Isiuio ör lkro- och iormioskik Mmik i kurs Kplx l: < > rc rc, r där r z cos rsi r r Eulrs ormlr: si cos Omskrivig md Eulrs ormlr: si cos cos,, Vlig vä rigorisk smd cos cos.5 cos cos llr cos.5 cos cos cos Digil siglhdlig, Isiuio ör lkro- och iormioskik Grisk summ: S oädlig summ S ädlig summ Bvis ör grisk summ:... Bild... g u dirs D gr summ D oädlig summ... < 3 Digil siglhdlig, Isiuio ör lkro- och iormioskik Om år vi si si Jämör igrl: si d 4 Digil siglhdlig, Isiuio ör lkro- och iormioskik Quiz örläsig lös hmm. Bsäm igrl d. Bsäm igrl cos d 3. Bsäm A och θ ör θ A 4. Bsäm A

Digital Signalbehandling i multimedia

Digital Signalbehandling i multimedia Digil siglbhdlig, Isiuio ör lkro- och iormioskik LH, Lud Uivrsiy örläsig Digil Siglbhdlig i mulimdi EI65 Digil siglbhdlig, Isiuio ör lkro- och iormioskik Digil Siglbhdlig Smplig AD Digil sig. bhdl. Digil

Läs mer

Digital Signalbehandling i multimedia

Digital Signalbehandling i multimedia LH, Lud Uivrsi örläsig Digil Siglhdlig i mulimdi EI65 Digil Siglhdlig Smplig AD Digil sig. hdl. Digil krs DA Lågpssilr Lågpssilr Rkosrukio Digil Sigl Procssig: Pricipls, Algorihms, d Applicios. Joh G.

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör ltro- och iormtiosti LH, Lud Uivrsity örläsig : Siglbhdlig ESS4 Siglbhdlig siglbhdlig A/D sig. bhdl. ESS4 Smplig Rostrutio ISB -3-873-5, ISB -3-87374- Sigl Procssig: Pricipls, Algorithms,

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity Förläsig : Digital Sigalbhadlig ESS4 Digital sigalbhadlig ESS4 3 ISBN -3-873-5 ISBN -3-87374- Digital Sigal Procssig: Pricipls, Algorithms, ad Applicatios.

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity örläsig : Sigalbhadlig ESS4 Sigalbhadlig sigalbhadlig A/D sig. bhadl. D/A Lågpassiltr Lågpassiltr ESS4 9 Samplig krts Rkostruktio Sigal Procssig:

Läs mer

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2 Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

TENTAMEN Datum: 18 aug 11 TEN2: TRANSFORMMETODER

TENTAMEN Datum: 18 aug 11 TEN2: TRANSFORMMETODER TENTAMEN Daum: aug TEN: TRANSFORMMETODER Program:. Daa/ lkro och. Gamla udr Mdicikkik Kur: MATEMATIK Kurkod HF, H Skrivid::5-:5 Hjälpmdl: Formlblad dla u låmpl och miiräkar av vilk p om hl. Lärar: Armi

Läs mer

TENTAMEN Datum: 4 feb 12

TENTAMEN Datum: 4 feb 12 TENTAMEN Daum: b Tid: 8:5-:5 TEN: TRANSFORMMETODER Program: Daa/ lkro och Gamla udr Mdicikkik Kur: MATEMATIK Kurkod HF, 6H Skrivid:8:5-:5 Hjälpmdl: Formlblad dla u låmpl och miiräkar av vilk p om hl Lärar:

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

Föreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 9. Digital signalbehandling. Kapitel 6. Sampling. LTH 2014 Nedelko Grbic (mtrl. från Bengt Mandersson) Digitl siglbhdlig E040 örläsig 9 Digitl siglbhdlig E040 Kpitl 6 mplig LH 04 Ndlko Grbic (mtrl. frå Bgt Mdrsso Dprtmt of Elctricl d Iformtio chology Lud Uivrsity 6 Kpitl 6 mplig Vi tittr u ärmr på smplig

Läs mer

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig

Läs mer

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt

Läs mer

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie. Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.

Läs mer

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00

Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00 Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.

Läs mer

Digital signalbehandling Föreläsningsanteckningar

Digital signalbehandling Föreläsningsanteckningar Iiuio ör d- och lroi Digil iglhdlig Förläigcigr --7 Kur gr grudupr om ldr i mmi uryc, vi hir i i på pri implimrigr m ämr ädå dl å i örigåd. Vrör digil iglhdlig? Poiiv grrd oggrh (gräd v l ir) rproducrrh

Läs mer

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson) Digital sigalbhadlig ESS040 Förläsig 0 Digital sigalbhadlig ESS040 Kapitl 7 Digitala FourirTrasform DFT LTH 0 dlo Grbic (mtrl. frå Bgt Madrsso Istitutio för ltro- och iformatiosti Lud Uivrsity 53 Digital

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE

Läs mer

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25 SF676, am 5 aug 7 Isiuio för mamaik, KH SF676, Diffrialkvaior md illämpigar am isdag 5 aug 7 Skrivid: 8:-: Eamiaor: Krisia Bjrklöv För godkä (bg E krävs r godkäda modulrr frå dl I Varj moduluppgif bsår

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita

Läs mer

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B. Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars

Läs mer

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,

Läs mer

Frikort utskrivet 14/6 2013, giltigt t.o.m 23/4 2014 24/4 2014 150 kr 150 kr Första avgift erlagd för nytt avgiftsåret

Frikort utskrivet 14/6 2013, giltigt t.o.m 23/4 2014 24/4 2014 150 kr 150 kr Första avgift erlagd för nytt avgiftsåret Ho gosadssydd och fio D ä upp ill vaj ladsig a fassälla om osadsa sall vaa 1100 ll läg fö högosadssydd. D lagsifad högosadssydd ä isgilig. Elig Fullmäigs bslu ä högosadsa fö öpp hälso- och sjuvåd fö pso

Läs mer

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) = gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:

Läs mer

6 Strukturer hos tidsdiskreta system

6 Strukturer hos tidsdiskreta system 6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.

Läs mer

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma

Läs mer

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor

TENTAMEN. HF1903 Matematik 1 TEN2 Skrivtid 13:15 17:15 Fredagen 10 januari 2014 Tentamen består av 3 sidor ENAMEN HF9 Mmik EN Skrivid : 7: Frdgn jnuri nmn bsår v sidor Hjälpmdl: Udl ormlbld Räkndos j illån nmn bsår v uppgir som ol kn g poäng F är undrkän bg mn md möjligh ill komplring Komplringn kn nds görs

Läs mer

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000

TENTAMEN Datum: 19 aug 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel Kurskod HF1000, HF1003, 6H3011, 6H3000, 6L3000 TENTAMEN Dum: 9 ug 08 TEN: Dffrnlkvonr, kompl l och Tlors forml Kurskod HF000, HF00, H0, H000, L000 Skrvd: 8:-: Hjälpmdl: Bfog formlld och mnräknr v vlkn p som hls Lärr: Armn Hllovc Dnn nmnslpp får j hålls

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 27-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekviosssem. Gusselimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekviosssem med oek m m m m ss) och m ekvioer: E lföljd -ippel) s s s är e lösig ill

Läs mer

TENTAMEN. Tillämpad digital signalbehandling. Sven Knutsson. Typgodkänd räknare Sven Knutsson: Signalprocessorn ADSP-2105

TENTAMEN. Tillämpad digital signalbehandling. Sven Knutsson. Typgodkänd räknare Sven Knutsson: Signalprocessorn ADSP-2105 Istitutioe för dt- och eletrotei 4-8- TETAME KURSAM PROGRAM: m Eletroigejörslije å / läsperiod årsurs /läsperiod 4 KURSBETECKIG LET39 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3 7.3 HJÄLPMEDEL

Läs mer

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x) Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi

Läs mer

Vilka varor och tjänster samt länder handlar svenska företag med? - och varför?

Vilka varor och tjänster samt länder handlar svenska företag med? - och varför? Emj www.mf.smj Smällsm fö u Emf uvcl d slml sm mlm ll läudvs smällsus. Syf ä lv övd fösåls fö u smällsm fu. Ml båd s c s fösåls fö u d s u Sv. Ml bså v fy s övd uf sm bdl usdl, bsmd, fsmd c ffl m. Uf bsvs

Läs mer

Höstlov i Motala 2010

Höstlov i Motala 2010 Höstlv i Mtl 2010 1-5 vbr S prgrt ch läs tt s sr udr årt på: tl.s/ug Bwlig Mtl Bwlighll Öppttidr Mådg 1/11 13.00-16.00 Tisdg 2/11 12.00-16.00 Osdg 3/11 13.00-16.00 Trsdg 4/11 12.00-16.00 Frdg 5/11 12.00-16.00

Läs mer

INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER)

INLÄMNINGSUPPGIFT 1 MATEMATIK 2, HF1000 ( DIFFERENTIAL EKVATIONER) INLÄMNINGSPPGIFT MATEMATIK, HF000 ( DIFFERENTIAL EKVATIONER) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av tre uppgifter. Individuellt arbete. Du väljer tre av nedanstående

Läs mer

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl 1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta

Läs mer

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter

1. lösa differentialekvationer (DE) och system av DE med konstanta koefficienter Armin Hlilovic: EXTRA ÖVNINGAR plcrnormr APACETRANSFORMER plcrnormr nvän bl nn ör lö irnilkvionr DE och ym v DE m konn koicinr lö någr ypr v ingrlkvionr bämm bili ho linjär ym Diniion å vr inir ör plcrnormn

Läs mer

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat Sigal- och Bildbhadlig FÖREÄSNING 6 -trasform - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta systm. Vi ska s hur d hägr ihop md TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig.

Läs mer

Digital signalbehandling Digital signalbehandling

Digital signalbehandling Digital signalbehandling Istitutioe för data- och eletrotei --8 Ly, Fuerst: Itroductory Digital Sigal Processig Kapitel. 7 Mbit/s. 96 Mbit/s., bit/s. a) b) - - CHALMERS LINDHOLMEN Sida Istitutioe för data- och eletrotei Sve Kutsso

Läs mer

Lösningar till övningsuppgifter i

Lösningar till övningsuppgifter i Löigr ill öviguppgifr i Adr Svärdröm 999 Bäm mdlvärd och ffkivvärd för igl i figur. v Uppgif. -,5,5,5 ---------------------------------------------------------------------------------------------------------------

Läs mer

TFYA16: Tenta Svar och anvisningar

TFYA16: Tenta Svar och anvisningar 150821 TFYA16 1 TFYA16: Tenta 150821 Svar och anvisningar Uppgift 1 a) Sträckan fås genom integration: x = 1 0 sin π 2 t dt m = 2 π [ cos π 2 t ] 1 0 m = 2 π m = 0,64 m Svar: 0,64 m b) Vi antar att loket

Läs mer

Föreläsning 10 pn- övergången III

Föreläsning 10 pn- övergången III Förläsig 10 - övrgåg - övrgåg Tmrur RkombiBo Hög srömmr/säigr Småsiglmoll rmigskcis Sol LWiM Diffusioskcis 16-04- 0 Förläsig 10, Komo7ysik 016 1 Diffusiossrömmr E F V - V E F - µ µ = = i + 1 1 0 W W D

Läs mer

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik: Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad

Läs mer

GOSPEL PÅ SVENSKA 2. Innehåll

GOSPEL PÅ SVENSKA 2. Innehåll GOSPEL PÅ SVENSKA 2 Innehåll Kom oh se 7 Lovsung vår Gud 8 Barmhärtige Gud 10 Igen 11 är min Herde 1 Ditt Ord estår 16 redo 18 När delar 21 Herre hör vår ön 2 Vår ader 2 ör mig 26 O Herre längtar 28 Hallelua,

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Övning 3 - Kapitel 35

Övning 3 - Kapitel 35 Övig 3 - Kapitel 35 7(1). Brytigsidex får vi frå Eq. 35-3: c = = v. 998 10 8 19. 10 8 ms ms = 156.. 6(4). (a) Frekvese för gult atriumljus är,998 10 589 10 5,09 10 (b) När ljuset färdas geom glas blir

Läs mer

Föreläsning 7 pn-övergången III

Föreläsning 7 pn-övergången III Förläsig 7 -övrgåg III -övrgåg Tmrur Diovrir Småsiglmoll rmigskcis Diffusioskcis 13-4-17 Förläsig 7, Komofysik 13 1 Komofysik - Kursövrsik Biolär Trsisorr -övrgåg: kcisr Ookomor -övrgåg: srömmr Mi: Flsh,

Läs mer

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Armi Hlilovic: ETRA ÖVNINGAR, SF676 Sysem v lijär DE Sid v 6 SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Iehåll: Mrisorm Begyelsevärdesprobleme Eises- och eydighessse ör lijär sysem

Läs mer

Sommarpraktik - Grundskola 2017

Sommarpraktik - Grundskola 2017 Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur

Läs mer

Jag vill inte vara ensam

Jag vill inte vara ensam Jg ill ine r ensm Krl-Gunnr Sensson G =132 f l m n o u s s s z f l l u z mp n s s n s s n s s n s s s s n s s n s s mps s n s s n s s n s s n s s n s s n ff s s s s s s s s s s s s mp s s s s s s s s s

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( ) 6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så

Läs mer

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n. 27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag

Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag Tentamensskrivning i Mekanik Del Dynamik för M 08 Lösningsförslag. a) meelbart före stöt har kula en horisontella hastigheten v mean kula är i vila v s v = 0. Låt v och v beteckna kulornas hastigheter

Läs mer

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z

(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:

Läs mer

Föreläsning 10. java.lang.string. java.lang.string. Stränghantering

Föreläsning 10. java.lang.string. java.lang.string. Stränghantering Föläig Stäghtig j.lg.stig E täg btå tt tl tc Stäg i ht om objt l Stig E täg it modifi ft tt d h pt! Stig - l : ch[] - cot : it + lgth(): it + chat(it): ch + idxof(ch): it E täg h: Ett äd och lägd Ett tl

Läs mer

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel)

Tekniska Högskolan i Linköping, IKP Tore Dahlberg TENTAMEN i Hållfasthetslära; grk, TMMI17, kl 8-12 DEL 1 - (Teoridel utan hjälpmedel) DEL - (Teoridel uan hjälpmedel). Vilken yp av ekvaion är dea: LÖSNINGAR ε x = E (σ x νσ y )+α T Ange vad sorheerna ε x, σ x, σ y, E, ν, α och T beyder, inklusive deras dimension (enhe) i SI-enheer. E maerialsamband

Läs mer

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten ) rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------

Läs mer

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

TENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare

TENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare Istitutioe för dt- och eletrotei 5-5-4 TETAME KURSAM PROGRAM: m Eletro- och dtigejörslije å / läsperiod årsurs /läsperiod 3 KURSBETECKIG LET39 96 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav

Läs mer

Trädstrukturer. Definitioner och terminologi. Informationsteknologi Tom Smedsaas 21 augusti 2016

Trädstrukturer. Definitioner och terminologi. Informationsteknologi Tom Smedsaas 21 augusti 2016 Iformtiostkoloi Tom Smss uusti 6 Trästrukturr Dfiitior och trmioloi I list hr vrj o xkt ftrföljr (utom sist) och förår (utom först). Om vi tillåtr tt o hr flr ftrföljr rhållr vi trästruktur: c f h i j

Läs mer

En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n

En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 4

LEDNINGAR TILL PROBLEM I KAPITEL 4 LEDNINAR TILL PROBLEM I KAPITEL 4 LP 4.3 Tyngdkraften, normalkraften och friktionskraften verkar på lådan. Antag att normalkraftens angreppspunkt är på avståndet x från lådans nedre vänstra hörn. Kraftekvationen

Läs mer

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005

Tentamen i hållfasthetslära fk för M3 (MHA160) måndagen den 23/5 2005 Tentamen i hållfasthetslära fk för M (MHA160) måndagen den /5 005 uppg 1 Spänningsanalys ü Delproblem 1 Studera spänningstillståndet: σ 0 = i j k Huvudspänningar:fås ur: 140 60 0 60 80 0 0 0 10 y z { A

Läs mer

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx). TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn

Läs mer

Uppgifter 9 och 10 är för de som studerar byggteknik

Uppgifter 9 och 10 är för de som studerar byggteknik INLÄMNINGSPPGIFT MATEMATIK OCH MATEMATISK STATISTIK, HF003 007/08 ( DIFFERENTIAL EKVATIONER ) armin@sth.kth.se www.sth.kth.se/armin tel 08 790 80 Inlämningsuppgift består av två uppgifter. Individuellt

Läs mer

Föreläsning 11: Grafer, isomorfi, konnektivitet

Föreläsning 11: Grafer, isomorfi, konnektivitet Förläsning 11: Grfr, isomorfi, konnktivitt En orikt nkl grf (V, E) står v hörn, V, oh kntr, E, vilk förinr istinkt nor: ing pilr, ing öglor, int multipl kntr mlln hörn. Två hörn u,v V är grnnr om t finns

Läs mer

ρ. Farten fås genom integrering av (2):

ρ. Farten fås genom integrering av (2): LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt

Läs mer

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10

Kontrollskrivning 3 i SF1676, Differentialekvationer med tillämpningar. Tisdag kl 8:15-10 KH Matematik Kotrollskrivig 3 i SF676, Differetialekvatioer med tillämpigar isdag 7-5-6 kl 8:5 - illåtet hjälpmedel på lappskrivigara är formelsamlige BEA För godkäd på module räcker 5 poäg Bara väl motiverade

Läs mer

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum:

Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: Lösningar/svar till tentamen i MTM060 Kontinuumsmekanik Datum: 004-08- Observera Om tentamensuppgiften är densamma som på den nya kursen MTM3 är uppgiften löst med den metod som är vanligast i denna kurs.

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

Sjung och läs nu Bacchi böner (sång nr 57)

Sjung och läs nu Bacchi böner (sång nr 57) Sung läs nu Bacchi öner (sång nr 57) ext musik: Carl Michael Bellman Arr: Eva oller 009 Soprano 1 Soprano. Alto 1 Alto enor 1.Sung läs nu 1.Sung läs nu 1.Sung läs nu Bac - chi ö - ner, Bac - chi Bac -

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Tunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0

Tunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0 Förläsig 9. Förra gåg: Sridig ot ottialarriär. Pottialodll (idalisrad): U U ( ) 0, 0 L, för övrigt ψ( ) ik ik ifallad U = U ψ( ) F trasittrad ik rflktrad U = 0 0 L Iuti arriär 0 < < L: ( fall) ) E U ψ

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

Bröderna fara väl vilse ibland (epistel nr 35)

Bröderna fara väl vilse ibland (epistel nr 35) Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me

Läs mer

A LT B A R Y TO N. enkelt

A LT B A R Y TO N. enkelt A LT SOPRAN sahlt nklt B A R Y TO N Innhåll: Amn - låt rns lja råda 2 Du ljuvast n Gud har männs kär Gud ll oss väl 6 Halluja 7 Hlg 8 följr dg Gud 9 Julat Do 10 Kom, öppna dn dörr 11 r 12 Må dn väg gå

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E (8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p

Läs mer

Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1

Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 Kap 7 Fourierransformanalys av idskoninuerliga signaler Kap 7 Fourierransformanalys av idskoninuerliga signaler 2 Fourierransformen Fourierransformen ill x(): F { x() } = X(ω) = x() e jω d Inversa fourierransformen

Läs mer

Digital signalbehandling Digitalt Ljud

Digital signalbehandling Digitalt Ljud Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1

Läs mer

Kursinformation Mekanik f.k. TMMI39

Kursinformation Mekanik f.k. TMMI39 Kursinformation Mekanik f.k. TMMI39 Uppdaterad 202--26 Linköpings universitet tekniska högskolan IEI/mekanik Joakim Holmberg Omfång 30 h föreläsningar och 24 h lektioner i period HT2, hösten 202. Kursansvarig,

Läs mer

bruksanvisning/ user manual

bruksanvisning/ user manual bruksanvisning/ user manual IBU 50 - IBU 50 RF L ä s d e n n a b r u k s a n v i s n i n g f ö r s t! B ä s t a k u n d, T a c k f ö r a t t d u h a r v a l t a t t k -p ö pra o deun k t C. y lvii n dhao

Läs mer

Steg och impuls. ρ(x) dx. m =

Steg och impuls. ρ(x) dx. m = Seg och impuls Punkmssor, punklddningr och punkkrfer hr llid en viss ubredning även om den är lien. En mer verklighesrogen beskrivning v en punkmss m är en densie ρ(x) som är skild från noll på e mycke

Läs mer

FÖRELÄSNING 13: Tidsdiskreta system. Kausalitet. Stabilitet. Egenskaper hos ett linjärt, tidsinvariant system (LTI)

FÖRELÄSNING 13: Tidsdiskreta system. Kausalitet. Stabilitet. Egenskaper hos ett linjärt, tidsinvariant system (LTI) p. FÖRELÄSNING 3: Tidsdiskrea sysem. Kausalie. Sabilie. Linjära idsinvariana sysem (LTI-sysem) Differenial- och differens-ekvaioner Räkna på idskoninuerlig LTI-sysem med Fourierr. (kursiv) Räkna på idsdiskre

Läs mer

1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser.

1. Rita följande tidssekvenser. 2. Givet tidssekvensen x n i nedanstående figur. Rita följande tidssekvenser. Lasse Björkma 999 . Rita följade tidssekveser. a) δ e) u b) δ f) u u c) δ + δ g) u d) u h) u. Givet tidssekvese x i edaståede figur. Rita följade tidssekveser. a) x c) x b) x + 3 d) x 3. Givet tidssekvesera

Läs mer