( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen"

Transkript

1 gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal, el 7-59 OBS: Fyll i all på skrivigsomslage Age am och persor på varje iläma blad E kausal idskoiuerlig filer F har illsådsekvaioe y + y + y = x a) Moivera varför F är e sabil LTI-filer Age äve F :s impulssvar och F :s ampliudkarakerisik b) Visa a E( F ( x) ) E( x) då x är e isigal med ädlig = oaleergi E ( x) x d c) Besäm F ( si ) d) Besäm F ( si θ ) e) Besäm F e θ( ) e θ ( ) Fukioe f har periode och, < < f =, < < a) Uveckla f i Fourierserie b) Besäm e periodisk parikulärlösig ill y + y + y = f [uppg!] a Beräka b ( θ ) θ!!, a, b IR (p) (p) (p) (p) (p) (p) (p) I de idsdiskrea filre F bildas usigales värde som de arimeiska medelvärde av isigales re sease värde, dvs x a y = x + x + x F : ( ) a) Moivera varför F är e kausal, sabil LTI-filer Age äve F :s impulssvar och F :s ampliudkarakerisik F si b) Besäm ( ( )) c) Besäm ( si( ) θ ) F d) Besäm e isigal som ger usigale 7 θ δ δ( ) (p) (p) (p) (p) 5 Lös probleme u(,) = u(,) = u( x,) =, u ( x,) = u för < x <, < för = för x (6p) Fourier 6 a) Defiiera disribuio och visa a δ Fourier j b) Visa e f f ( ω Ω) ( Ω IR ) Ω ˆ zrasform c) Visa a x( N ) N z X ( z) ( N ) för diskrea sigaler x (p) (p) (p)

2 gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, --8, kl 5-85 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Erik Svesso, el 7-59 OBS: Fyll i all på skrivigsomslage Age am och persor på varje iläma blad E idskoiuerlig kausal filer har illsådsekvaioe y + y + y + y = x a) Är filre sabil? b) Besäm usigale då isigale är si c) Besäm usigale då isigale är ( + ) e θ E y E x då x är e isigal med ädlig d) Visa a = oaleergi E ( x) x d och y är svare på x Fukioe f är jäm, har periode 8 och för är, < f =, < < Beräka f för < < och, < uveckla f och med hjälp härav f i Fourierserie på cosius-siusform τ Visa a ekvaioe y + y + e e y( τ) dτ = e θ faligsekvaio är e (p) (p) (p) (p) y k = f (age kära k) och besäm e lösig y 6z E kausal idsdiskre LTI-filer har överförigsfukio H ( z) = 6z a) Visa a filre är sabil och besäm filres impulssvar b) Age filres illsådsekvaio och ampliudkarakerisik x = cos c) Besäm usigale då isigale är 5 Besäm e följd a : IR som saisfierar a = då, = a + = a + a då a och (p) (p) (p) 6 Lös värmeledigsprobleme u x = u, < x <, < (, ) = u (, ) =, u( x,) = δ( x ) x (6p) 7 a) Defiiera disribuio och svag koverges b) Visa a för e sabil idsdiskre LTI-filer F med impulssvare h jα jα jα gäller a F e = H e e c) Visa a xn = x δn ( N ) för diskrea sigaler x (p) (p) (p)

3 gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, --5, kl 5-85 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Mari Adiels, el 7-59 OBS: Fyll i all på skrivigsomslage Age am och persoummer på varje iläma blad du vill ha räa! E idskoiuerlig LTI-filer har segsvare J = e cos( ) θ a) Besäm filres impulssvar, moivera varför filre är kausal och sabil, age filres illsådsekvaio och besäm filres ampliudkarakerisik b) Besäm svare på si ( ) E y E x då x är e isigal med ädlig c) Visa a = oaleergi E ( x) x d och y är svare på x (6p) (p) (p) τ Visa a ekvaioe y + y ( τ) e dτ = y ( τ) e är e faligsekvaio τ dτ + e y k = f och besäm e lösig y (6p) E kausal idsdiskre filer har illsådsekvaioe y y( ) = x( ) + x( ) a) Visa a filre är sabil b) Besäm filres ampliudkarakerisik x = si c) Besäm usigale då isigale är d) Besäm usigale då isigale är x ( ) = θ (p) (p) (p) Lös probleme y( + ) y( + ) + y =,, y =, <, y = y = ( ) (p) 5 Lös probleme u (, y) = u (, y) = u ( x,) u y + u yy =, ( x,) = δ( x ) < x <, < = y < (6p) 6 a) Visa a θ = δ b) Visa a för e sabil idskoiuerlig LTI-filer F med jα jα impulssvare h gäller a F ( e ) h( α) e b Laplace b s + b c) Visa a si = ˆ (p) (p) (p)

4 gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, , kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS: Age lije och iskrivigsår sam am och persoummer på skrivigsomslage Age am och persoummer på varje iläma blad du vill ha räa! a) Beräka ( cosh θ ) ( cos θ ) ( ) b) Beräka a θ b θ,,b IR a \{ } Svare skall ges ua -ecke E LTI-filer har ampliudkarakerisike A ( ω) = + ω och faskarakerisike Φ( ω) = arca ω a) Besäm filres impulssvar och visa a filre är kausal och sabil Age filres illsådsekvaio b) Besäm svare på cos c) Besäm svare på cos θ d) Besäm svare på ( + ) e θ( ) (p) (p) (6p) (p) (p) (p) a) Visa a filre är kausal och sabil Age filres illsådsekvaio b) Besäm svare på cos E diskre LTI-filer har impulssvare h = θ c) Besäm svare på θ cos (p) (p) Lös probleme u = u + u, < x <, < (,) = u(,) = u( x, ) =, u ( x, ) = x (7p) Fourier 5 a) Visa δ b) Härled Placherels formler Laplace c) Visa f F ( s) d) Vad meas med a e filer är idsivaria? (p) (p) (p) (p)

5 gamla eor maem me E, fk, del B () 5 Maemaik CTH&GU Teame i maemaiska meoder E, fk, del B, TMA98, , kl 85-5 Hjälpmedel: Formelsamlig (delas u, skall lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: OBS: Age lije och iskrivigsår sam am och persoummer på skrivigsomslage Age am och persoummer på varje iläma blad du vill ha räa!!! Lös för > fukioera x( ), y( ), z( ) ur syseme x + y + z = x y z = x + y + z =, x =, y =, z = (6p) E kausal filer har illsådsekvaioe y + y + y = x a) Är filre sabil? b) Visa a A( ω) och ria A ( ω ):s graf [ A( ω ) är filres ampliudkarakerisik ] c) Hur sor del av impulssvares oala eergi ligger i bade ω? d) Besäm usigale, då isigale är cos, resp θ cos, resp θ( ) e ( e θ ) cos [p+p+p] e) Besäm e isigal, då usigale är (p) (p) (p) (8p) (p) Beräka e e ( ) θ (p) Lös probleme u = u, < x <, < u u u x x x (, ) = (, ) =, (, ) = δ( ) + δ ( ) (7p) 5 a) Visa a e lijär, idsivaria filer är e faligsfiler x a x h b) Visa a f = f δ (p) 6 Defiiera disribuio och svag koverges (p)

6 gamla eor maem me E, fk, del B () 6 ma me E, fk, del B, gamla eor, svar () -8- a) ω e θ( ), + ω + k = a) cos( ( k ) ) b) c) si d) ( e ) θ si e) e k + k k+ cos ( + ) arca + k+ k k + k = k ) a+ b θ a) h ) = ( δ( ) + δ( ) + δ ), A ( α) = + ( cosα + cosα + cosα) ( b) si cos = y c) för,, si cos = y = y = y för = d) x = θ 5) u( x, ) = si( ( + ) )si( ( + ) x) a) ja b) ( si + cos) c) e θ ) f = δ( + ) δ( ) δ( ), < <, k = 5 si ( k + ) f = si( ( k + ) ) si( ( k + ) ), f = + ( k + ) cos( ( k + ) ) ) e si θ k= 6 m a) h = 6 då = m +, m, h = aars b) y ( ) 6y = 6x( ), 6 6 A ( α) = c) 57cos α 7 si 5) a = si θ 6) u ( x, ) = ( ) e cos( x) --5 a) h = δ ( e cos + e si ) θ b) 6 si + cos ) y = e b) ( ) θ ) cos θ d) ( ) a) ( sih + si ) θ a) h = e θ 5) b) ( ) a θ + om b ω +, A ( ω) = ω ω + 6ω cos α 7+ 8cos α ( + ) cosh ( + ) = =! c) ( si cos + ) 5 sih( ( + ) y) si( ( + ) x) + + a b a =, θ a b om a b, illsekv: y + y + y = x b) si c) ( si e ) θ( ) d) + y = x b) ( 9cos si ) c) 9 cos si + ( ) a) y( ) + ( ) e si( ) si( x) ) u( x, ) = = ) x =, y( ) = e, z = e ( > ), a) ja c) ( arca ) 88% e) ( e e sg ), b) d) ( si, e e + si θ, si θ( ) ( e e ) θ k k k ) + θ ) si e e k= k ( si ) e k ( x) si e θ A 5 5

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) = gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

System, Insignal & Utsignal

System, Insignal & Utsignal Kap 1 Signaler och Sysem x Sysem y = H{x} 1 Sysem, Insignal & Usignal Insignal x() x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem,

Läs mer

Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1

Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 Kap 7 Fourierransformanalys av idskoninuerliga signaler Kap 7 Fourierransformanalys av idskoninuerliga signaler 2 Fourierransformen Fourierransformen ill x(): F { x() } = X(ω) = x() e jω d Inversa fourierransformen

Läs mer

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2 Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte

Läs mer

Funktionen som inte är en funktion

Funktionen som inte är en funktion Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

2009-11-20. Prognoser

2009-11-20. Prognoser 29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska

Läs mer

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9

TISDAGEN DEN 20 AUGUSTI 2013, KL 8-12. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 9 ekniska högskolan vid Li Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam EAME I PPE08 PROKIOSEKOOMI för M ISAGE E 20 AGSI 203, KL 8-2 Sal: ER Provkod: E2 Anal uppgifer:

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1

{ } = F(s). Efter lång tid blir hastigheten lika med mg. SVAR: Föremålets hastighet efter lång tid är mg. Modul 2. y 1 ösningsförslag ill enamensskrivning i SF1633 Differenialekvaioner I Tisdagen den 7 maj 14, kl 8-13 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är

Läs mer

Sammanfattning av formler i balkteoripärm PJG,

Sammanfattning av formler i balkteoripärm PJG, Saafattig a frler i balkteripär JG -- sitt B: Böj- ch stågerka eligt Berlli/Eler-balkteri Defratisatagade: öjig: ε w Späig: Sittstrheter: σ Eε σ N σ d σ d σ d V τ d V τ d Sittstrheter id ll töjig: N σ

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tenamen i Signal- och bildbehandling TSBB14 Tid: 29-6-3 kl. 8-12 Lokal: R41 och U15 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och 1.45 el 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4) 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen

Läs mer

med en differentialekvation. Det förmodligen mest typiska processexemplet på ett (oberoende variabler). Se avsnitt 2.3. Laboratoriet för reglerteknik

med en differentialekvation. Det förmodligen mest typiska processexemplet på ett (oberoende variabler). Se avsnitt 2.3. Laboratoriet för reglerteknik 5. Ekla dyamiska sysem 5. Ekla dyamiska sysem I kapiel 3 härleddes modeller för e aal dyamiska sysem frå olika ekikområde. Gemesam för syseme var a de kude beskrivas med ordiära differeialekvaioer av låg

Läs mer

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring.

2. Ange dimensionen (enheten) hos följande storheter (använd SI-enheter): spänning, töjning, kraft, moment, förskjutning, deformation, vinkeländring. Tekniska Högskolan i inköping, IKP DE 1 - (Teoridel uan hjälpmedel) ÖSNINGAR 1. (a) Vilka fysikaliska sorheer ingår (kan ingå) i e jämvikssamband? (b) Vilka fysikaliska sorheer ingår (kan ingå) i e kompaibiliessamband?

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

1 Första lektionen. 1.1 Repetition

1 Första lektionen. 1.1 Repetition Första lektioe. Repetitio.. Eergi, effekt och effektivvärde Atag att vi har aslutit ett motståd R Ω till vägguttaget skulle det vara smart i praktike?. Beräka eergi och effekte över R, samt amplitude för

Läs mer

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15

FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 21 augusti 2008 kl 9-15 FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 hp, FK4009 Torsdagen den 1 augusti 008 kl 9-15 Hjälpmedel: handbok och räknare. Varje uppgift ger maximalt 4 poäng. Var

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Formelsamling Elektriska kretsar

Formelsamling Elektriska kretsar Formelsamlig Elektriska kretsar Iehållsförteckig sida Symbolsamlig Formelsamlig. Ström, späig, effekt, eergi, potetial 4. Ohms lag, resistas, koduktas 4 3. Kirchhoffs lagar, späigs- och strömdelig 4 4.

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta.

Studentens personnummer: Giltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. KOD: Kurskod: PC106/PC145 Persolighet, hälsa och socialpsykologi (15 hp) Datum: 4/5 014 Hel- och halvfart VT14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare: Niklas Frasso

Läs mer

Pingsteld över Maramba, Zambia

Pingsteld över Maramba, Zambia Nyhesbrev Nr 10 2014 Jesus är desamme i går och idag och i evighe. (Hebr. 13:8) Pigseld över Maramba, Zambia Maramba är e kåksad srax uaför sade Livigsoe i Zambia. I dea yhesbrev vill jag rapporera frå

Läs mer

Lösningar till Matematisk analys IV,

Lösningar till Matematisk analys IV, Lösningar ill Maemaisk anals IV, 85. Vi börjar med kurvinegralen 5 5 dx + 5 x5 + x d. Sä P x, = 5 5 och Qx, = 5 x5 + x. Vi använder Greens formel för a beräkna den givna kurvinegralen. Efersom ine är en

Läs mer

7,5 25 Blandade tider. 7,5 25 Blandade tider. 7,5 25 Blandade tider

7,5 25 Blandade tider. 7,5 25 Blandade tider. 7,5 25 Blandade tider REGISTRERINGSINFORMATION Kurserna är lisade i boksavsordning. OBS! WEBBREGISTRERING SKA ALLTID GÖRAS I FÖRSTA HAND! Du som redan är suden på ÖU ska webbregisrera dig via Sudenforum. Du kan ine webbregisrera

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

Kvinnors arbetsmiljö. Rapport 2012:11. Tillsynsaktivitet 2012 inom regeringsuppdraget om kvinnors arbetsmiljö. Delrapport

Kvinnors arbetsmiljö. Rapport 2012:11. Tillsynsaktivitet 2012 inom regeringsuppdraget om kvinnors arbetsmiljö. Delrapport Kviors arbesmiljö Tillsysakivie 12 iom regerigsuppdrage om kviors arbesmiljö Delrappor Rappor 12:11 12-5-9 1 (9) Ehee för mäiska och omgivig Chrisia Josso, 8-73 94 18 arbesmiljoverke@av.se Delrappor Tillsysakivie

Läs mer

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner Signal- och Bildbehandling FÖRELÄSNING Inrodukion. Signaler och Sysem. Vad är en signal och e sysem? Eempel på olika signaler. Vad kan man anända signalbehandling ill? Eempel på olika illämpningar Klassificering

Läs mer

Fouriermetoder för VT2008

Fouriermetoder för VT2008 Insiuionen för maemaik KTH Fouriermeoder för T VT008 Eike Peermann Innehåll. Inledning.... Fourierserier och -inegraler inom signaleorin. Komplexa fourierserier.... Lie om fel...6.3 Om orogonalie. Parsevals

Läs mer

TNA001 Matematisk grundkurs Övningsuppgifter

TNA001 Matematisk grundkurs Övningsuppgifter TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri

Läs mer

Formelsamling i kretsteori, ellära och elektronik

Formelsamling i kretsteori, ellära och elektronik Formelsamling i kretsteori, ellära och elektronik Elektro- och informationsteknik Lunds tekniska högskola Februari FORMELSAMLING I KRETSTEORI, ELLÄRA OCH ELEKTRONIK Kretsteori Komplexvärden Realdelskonvention:

Läs mer

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ] TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift

Läs mer

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes

Linjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom

Läs mer

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15 Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Formelsamling i Hållfasthetslära för F

Formelsamling i Hållfasthetslära för F Formelsamling i Hållfasthetslära för F Avd. för Hållfasthetslära Lunds Universitet Oktober 017 1 Spänningar τ σ Normalspänning: σ = spänningskomponent vinkelrät mot snittta Skjuvspänning: τ = spänningskomponent

Läs mer

Tentamensskrivning i Matematik IV, 5B1210.

Tentamensskrivning i Matematik IV, 5B1210. Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges

Läs mer

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =. Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a

Läs mer

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

TENTAMEN I TURBOMASKINERNAS TEORI

TENTAMEN I TURBOMASKINERNAS TEORI Kraftverksteknik TMT JK/MG/IC 9-4- TENTAMEN I TURBOMASKINERNAS TEORI Tisdagen den te april 9, kl. 8.-., sal M:L Hjälpmedel: OBS! Räknedosa, Tefyma Skriv endast på papperets ena sida Börja för varje ny

Läs mer

Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer

Kapitel 3-4. Kapitel 3, Integralrelationer repetition energiekvationen. Kapitel 4, Differentialrelationer Kaiel 3-4 Kaiel 3, Inegralrelaioner reeiion energiekaionen Kaiel 4, Differenialrelaioner Berakelsesä maeriella eriaan koniniesekaionen imlsekaionen energiekaionen Reeiion, Kaiel 3 Ssem: En samling maeria

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Matematisk statistik

Matematisk statistik Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik E06 nbyggd Elekronik F F3 F4 F Ö Ö P-block Dokumenaion, Seriecom Pulsgivare,, R, P, serie och parallell KK LAB Pulsgivare, Menyprogram Sar för programmeringsgruppuppgif Kirchoffs lagar Nodanalys Tvåpolsasen

Läs mer

Fouriermetoder för Signaler och system I

Fouriermetoder för Signaler och system I Insiuionen för maemaik, KTH 05096 Arbesmaerial för 5B09/5:/HT05/E.P. Fouriermeoder för Signaler och sysem I Syfe med de här kursavsnie är a ge en orienering av en del i den maemaiska analysen, de s.k.

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Formelsamling. TFYA16 Mekanik TB. r r. B r. Skalär produkt. Vektorprodukt (kryss produkt) r r r. C r B r Φ A r. En vektor: där Φ är vinkeln mellan A r

Formelsamling. TFYA16 Mekanik TB. r r. B r. Skalär produkt. Vektorprodukt (kryss produkt) r r r. C r B r Φ A r. En vektor: där Φ är vinkeln mellan A r oelsalg TYA6 ekak TB E eko: a a ˆ + a ˆj + a kˆ z ˆ ˆj kˆ a a a + a + a Skalä poduk ˆ ˆ ˆ ˆj z Vekopoduk (kss poduk) C c ˆ + c ˆj + c kˆ C A B A B cosφ dä Φ ä kel ella A C A B Dä A A, B B och Φ ä kel ella

Läs mer

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

P L P N P L P N L π(p) Kartprojektioner Ett bonusproblem: longitudproblemet Lätt att på öppet hav bestämma latitud (nord-sydlig position). Lösning: mät solens höjd över horisonten med sextant. Tabell

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01

Formelsamling. Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Formelsamling Elektromagnetisk fältteori för F och Pi ETE055 & ETEF01 Institutionen för elektro- och informationsteknik Lunds tekniska högskola Juni 014 Innehåll 1 Elstatik 1 Likström 4 3 Magnetostatik

Läs mer

Linjär regression - kalibrering av en våg

Linjär regression - kalibrering av en våg Lijär regressio Saolikhet och statistik Regressiosaalys HT 2008 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Samba mella två storheter ofta av itresse:... solarium hucacer... BN växelkurs... rökaet

Läs mer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

Steg och impuls. ρ(x) dx. m =

Steg och impuls. ρ(x) dx. m = Seg och impuls Punkmssor, punklddningr och punkkrfer hr llid en viss ubredning även om den är lien. En mer verklighesrogen beskrivning v en punkmss m är en densie ρ(x) som är skild från noll på e mycke

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri,

Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad. Institutionen för Astronomi och teoretisk fysik Lunds Universitet. S:t Petri, Hur mycket betyder Higgs partikeln? MASSOR! Leif Lönnblad Institutionen för Astronomi och teoretisk fysik Lunds Universitet S:t Petri, 12.09.05 Higgs 1 Leif Lönnblad Lund University Varför är Higgs viktig?

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Tentamen i Kunskapsbaserade system, 5p, Data 3

Tentamen i Kunskapsbaserade system, 5p, Data 3 Kuskapsbaserade system, tetame 2000-03-0 Istitutioe för tekik Tetame i Kuskapsbaserade system, 5p, Data 3 Datum: 2000-03-0 Tid: 8.00-3.00 Lärare: Potus Bergste, 3365 Hjälpmedel: Miiräkare Uppgiftera ska

Läs mer

Signalbehandling. Andreas Fhager

Signalbehandling. Andreas Fhager Signalbehandling Andreas Fhager andreas.1ager@chalmers.se Innehåll Modellering av fysiskt fenomen Analoga/digitala signaler Nervsignaler Periodiska funkboner/fourierserie Frekvensspektrum Filter Faltning

Läs mer

Fouriertransformen. Faltning, filtrering och sampling

Fouriertransformen. Faltning, filtrering och sampling Faltig Fouriertrasforme Faltig, filtrerig och samplig Givet två sigaler f och g och deras respektive spektra f`, g`, hur bildar ma e tredje sigal såda att dess spektrum är lika med summa f` + g`. Lätt!

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering.

i de fall de existerar. Om gränsvärdet ifråga inte skulle existera, ange i så fall detta med motivering. Kap 9. 9.5, 9.8 9.9, 6.5. Talföljd, mootoa talföljder, koverges, serier, koverges, geometriska serier, itegralkriterium, p serier, jämförelsekriterier, absolut koverges, altererade serier, potesserie,

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

Laborationsuppgift om Hertzsprung-Russell-diagrammet

Laborationsuppgift om Hertzsprung-Russell-diagrammet Laborationsuppgift om Hertzsprung-Russell-diagrammet I denna uppgift kommer du att tillverka ett HR-diagram för stjrärnorna i Orions stjärnbild och dra slutsatser om stjärnornas egenskaper. HR-diagrammet

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Diskreta signaler och system

Diskreta signaler och system Kapitel 7 Diskreta signaler och system I detta kapitel diskuteras grundläggande teori för diskreta signaler och system. För diskreta signaler introduceras z-transformen, som ligger som grund för representationen

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x) Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås

Läs mer