i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)"

Transkript

1 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen y(t) beror av C:s laddning Q(t): y(t) = Q(t) C Strömmen i(t) transporterar laddning till C: i(t) = dq(t) dt = C dy(t) dt Strömmen ger ett förhållande mellan x(t) och y(t): () (2) Kombineras ekvationerna (2) och (3) fås x(t) = y(t) + i(t)r (3) RC x(t) = dy(t) y(t) + (4) RC dt Denna differentialekvation kan lösas med hjälp av integrerande faktor: multiplicera båda sidor i ekvation (4) med exp(t/rc) och skriv om högerledet. RC e RC t x(t) = d ( y(t)e t) RC (5) dt Om vi förutsätter att x() = y() = kan vi lösa ekvation (5) genom att integrera båda sidor från τ = till τ = t. y(t)e RC t = t RC e RC τ x(τ)dτ (6) 2

2 y(t) = t RC e RC (t τ) x(τ)dτ (7) Om x(t) = och h(t) = för t < kan vi se att ekvation (7) är en faltning: där impulssvaret h(t) ges av y(t) = h(t) = t h(t τ)x(τ)dτ (8) { RC e RC t, t, t < Faltning är en linjär operation och därför är kretsen ett linjärt system. Vi har sett till att impulssvaret är kausalt, men vi kan också konstatera att systemet är dynamiskt och stabilt (h(t) absolut integrerbart). 2.2 Sinussignaler 2.2. En sinus på ingången Beräkna utsignalen y(t) från ett stabilt LTI-system med impulssvar h(t), då insignalen är en sinusvåg. Vad skiljer y(t) och x(t) åt? Hur liknar de varandra? (9) x(t) = sin(ωt) () För kontinuerliga LTI-system använder vi faltningsintegralen: y(t) = = = h(τ) sin (ω[t τ]) dτ h(τ) [sin(ωt) cos(ωτ) cos(ωt) sin(ωτ)] dτ h(τ) cos(ωτ)dτ sin(ωt) h(τ) sin(ωτ)dτ cos(ωt) () 3

3 Impulssvar från insignal-utsignalstabila LTI-system har egenskapen h(t) dt = K < (2) Därför kan vi sluta oss till att integralerna i sista steget i ekvation () konvergerar. Vi definierar K c (h, ω) K s (h, ω) h(τ) cos(ωτ)dτ h(τ) sin(ωτ)dτ (3) Eftersom en summa av sinus- och cosinusfunktioner av samma frekvens också är en sinusfunktion kan vi skriva om sista ledet i ekvation () (se βeta): y(t) = K c (h, ω) sin(ωt) K s (h, ω) cos(ωt) = ( ( Kc 2 (h, ω) + Ks 2 (h, ω) sin ωt + arctan K )) s(h, ω) K c (h, ω) A(h, ω) sin (ωt + φ(h, ω)) (4) Man brukar benämna A(h, ω) systemets frekvensgång, och φ(h, ω) systemets fasgång. Vid en jämförelse mellan in- och utsignal kan vi se att:. Amplituden har förändrats. Förändringen beror på impulssvaret h(t) och vinkelfrekvensen ω. 2. Fasen har förskjutits. Förskjutningen beror på impulssvaret h(t) och vinkelfrekvensen ω. 3. In- och utsignal har samma vinkelfrekvens. Vi får alltså ut en signal med samma form som insignalen. (Tanken med denna uppgift var att visa denna viktiga egenskap, inte härleda de specifika formlerna för A och φ.) Tänk på att detta gäller enbart för linjära system och sinus-signaler. Olinjära system spottar ur sig andra sinusfrekvenser än den på ingången. Ett linjärt system förvränger generellt andra signaler, t.ex. en fyrkantvåg Ett förenklat pianoackord Vi ser tonerna från ett piano som en insignal x(t). En enkel modell av signalen är x(t) = K a k sin(ω k t) (5) k= 4

4 där vi har tagit med K rena toner. Ljudet passerar ett rum innan det når lyssnaren. Rummets akustik beskrivs av impulssvaret h(t) (dämpning, ekon, m.m.). Vad hör lyssnaren, d.v.s. vad blir y(t)? Antag att h(t) beskriver ett LTI-system. Under antagandet att rumsakustiken är linjär kan vi som vanligt skriva y(t) = h(t) x(t). Linjäriteten medför att superpositionsprincipen gäller: vi kan köra varje oskalad insignal sin(ω k t) genom systemet och sedan skala och summera utsignalerna. K K y(t) = y k (t) = k= k= a k h(τ) sin(ω k [t τ])dτ (6) Integralen i ekvation (6) löste vi i uppgift Använder vi resultatet från ekvation (4) får vi y(t) = K A(h, ω k ) sin(ω k t + φ(h, ω k )) (7) k= Vad lyssnaren hör beror alltså på hur rummet dämpar olika toner (genom A) och hur tonerna förskjuts (genom φ). Poängen är att A(h, ω) och φ(h, ω) tillsammans beskriver systemet då insignalen består av sinussignaler. I dessa fall innehåller A och φ samma information som h(t). Som exempel kan vi ta en situation där tonerna från pianot går helt opåverkade till lyssnarens öra (inga ekon, ingen dämpning). Däremot sker en liten tidsfördröjning T på grund av ljudets ändliga hastighet. Detta motsvarar impulssvaret i figur 2. h(t) T t Figur 2: Tidsfördröjning av ljud. Integralerna i ekvation (3) kollapsar då till K c (h, ω) = cos(ωt ) K s (h, ω) = sin(ωt ) (8) 5

5 och vi får A(ω) = φ(ω) = ωt (9) Denna rumsakustik dämpar inte någon sinusfrekvens, men inför en fasförskjutning som motsvarar tidsfördröjningen Frekvensgång Ett LTI-systems frekvensgång A(ω) (som beskriver förändringen av sinussignalers amplitud) bestäms av impulssvaret h(t). Beräkna frekvensgången A(ω) för systemet, t < h(t) =, t (2), t > Utgå gärna från resultatet från uppgifterna 2.2. och Vi behöver beräkna integralerna i ekvation (3): K c (h, ω) = K s (h, ω) = = sin(ω) ω cos(ωt)dt sin(ωt)dt = cos(ω) ω (2) Frekvensgången systemets dämpning (eller förstärkning) av amplituden hos sinussignaler kan nu beräknas med hjälp av ekvation (4). A(ω) = sin 2 (ω) + cos ω 2 (ω) + 2 cos(ω) 2 = cos(ω) (22) ω Denna frekvensgång visas i figur 3. Här kan vi se att systemet behandlar olika frekvenser olika. Till exempel dödar det alla signaler av typen sin(n2πt), n. Generellt föredrar det också låga frekvenser framför höga. Vi har ett filter! 6

6 A(w) w Figur 3: Filter med rektangulärt impulssvar Sinusar i fyrkant Gör en första ordningens fourierapproximation av fyrkantvågen x(t) i figur 4. Beteckna perioden T. x(t) t - Figur 4: Fyrkantvåg med amplitud och period T. Fyrkantvågen x(t) är en periodisk signal som uppfyller Dirichlets villkor (se ekvation (3.2), sidan 77 i Svärdström). Alltså kan vi skriva den som en oändlig summa av sinusfunktioner: en fourierserie. x(t) = A n cos(nω t) + B n sin(nω t) (23) n= Fourier kom helt enkelt på att periodiska funktioner går att bygga av sinusfunktioner. Det som varierar för olika funktioner är ω, A n och B n : 7

7 ω = 2π T A n = 2 T T /2 x(t) cos(nω t)dt B n = 2 T T /2 T /2 T /2 x(t) sin(nω t)dt (24) Koefficienterna A n och B n säger hur mycket x(t) liknar cos(nω t) respektive sin(nω t). En första ordningens approximation innebär att vi tar med termer upp t.o.m. n = (vi använder de grundläggande byggstenarna). ˆx (t) = A n cos(nω t) + B n sin(nω t) n= = A + A cos(ω t) + B sin(ω t) (25) Räknar vi ut likhetskoefficienterna med hjälp av ekvation (24) får vi A = 2 T T /2 x(t)dt = A = 2 T T /2 T /2 T /2 x(t) cos(ω t)dt = 4 π B = 2 T T /2 x(t) sin(ω t)dt T /2 = (26) Koefficienten A säger hur mycket likspänning som finns i x(t) i det här fallet ingen. Koefficienten B blir noll eftersom x(t) är en jämn funktion medan sin(ω t) är en udda funktion (x(t) liknar inte en udda funktion alls). Se figur 5. ˆx (t) = 4 π cos(ω t) (27) 8

8 T T Figur 5: Första ordningens fourierapproximation av fyrkantvåg. Reflektion : Efter uppgifterna kan vi konstatera följande:. Vi kan bygga periodiska funktioner som summor av sinussignaler. 2. Vi kan från impulssvaret h(t) räkna ut hur sinussignaler och summor av sinussignaler påverkas av ett LTI-system. Här kan man ana betydelsen av frekvensdomänen. Vi har en ekvivalent beskrivning av signaler och system som är oberoende av t. Problemet nu är att inga verkliga signaler är strikt periodiska. Det är här fouriertransformen kommer in i bilden. En icke-periodisk signal kan ses som en periodisk signal där T. Fourierserien övergår då till en integral (se sidan 85 i Svärdström). Kravet är att x(t) är en energisignal, d.v.s. har ändlig energi Signal i frekvensdomänen Hur ser följande signal, ekvation (28), ut i frekvensdomänen? Med andra ord: Vilka sinusar behövs för att bygga den, och hur mycket av varje?, t < x(t) =, t 2 (28), t > 2 Signalen är inte periodisk, så den går inte att skriva som en fourierserie. Däremot kan vi tillämpa fouriertransformen eftersom x(t) är en energisignal: Under förutsättningen att Dirichlets villkor är uppfyllda. 9

9 Vi transformerar x(t) till frekvensdomänen: x 2 (t)dt = < (29) X(ω) = = 2 x(t)e jωt dt e jωt dt = [ e jωt ] 2 jω = [ e jω e j2ω] jω = 2 [ e jω/2 e jω/2 ] e j3ω/2 ω 2j = sin(ω/2) e j3ω/2 (3) ω/2 Transformen X(ω) innehåller information om både amplitud och fas för de sinusvågor som behövs. X(ω) = sin(ω/2) ω/2 φ(ω) = 3 2 ω (3) Det räcker alltså inte med att veta hur mycket av varje frekvens vi behöver fasen behövs också. Tillsammans beskriver de x(t) (se figur 6). Reflektion 2: När vi i uppgift.2. räknade ut hur ett LTI-system påverkade sinussignaler utgick vi från impulssvaret h(t). Ta en titt på ekvationerna (3) och (4): det vi gjorde (utan att veta om det) var att fouriertransformera h(t)! 2 Jämför med ekvationerna (3.52) och (3.53) på sidan 95 i Svärdström. Beroende på vad vi vill göra med ett LTI-system kan vi välja domän. Övergången via fouriertransformen illustreras i figur 7. Vi kallar H(ω) för systemets frekvenssvar, H(ω) för systemets frekvensgång och φ(ω) = arg(h(w)) för systemets fasgång. När det gäller signaler pratar vi om spektrum (X(ω)), amplitudspektrum ( X(ω) ) och fasspektrum (φ(ω)). 2 Det går att se med hjälp av Eulers formel, exp( jωt) = cos(ωt) j sin(ωt).

10 X(w) (a) 5 fi(w) w (b) w Figur 6: Frekvensinnehåll i rektangulär puls. x(t) h(t) y(t)=h(t) x(t) * F F - X(w) H(w) Y(w)=H(w)X(w) Figur 7: Ekvivalens mellan frekvens- och tidsdomän för LTI-system Ideal lågpass Beräkna impulssvaret för ett idealt lågpassfilter som tar bort alla frekvenser över 2 Hz. Tänk på att impulssvaret ska vara reellt! Hur kan vi realisera detta filter? Ett idealt filter tar bort alla oönskade frekvenser fullständigt, medan de önskade inte påverkas alls (varken till fas eller amplitud 3. Alltså vill vi ha {, ω 2π 2 H(ω) = (32), ω > 2π 2 Men, fouriertransformen arbetar också med negativa ω. Frekvenssvaret H(ω) måste specificeras för alla ω för ett entydigt impulssvar ska hittas. Ett impulssvar (eller signal) som är reell i tidsdomänen måste ha symmetrisk frekvensgång (symmetriskt spektrum). Låt ω g beteckna gränsfrekvensen 2π 2 rad/s. 3 Svärdström skriver att det ska vara kausalt och faslinjärt. Det verkar finnas olika definitioner.

11 {, ω ωg H(ω) = (33), ω > ω g Impulssvaret fås via den inversa fouriertransformen h(t) = 2π ω g = 2π ω g H(ω)e jωt dt e jωt dt ] ωg = [ 2π jt ejωt ω g = [ e jω gt e jωgt ] πt 2j = sin(ω gt) πt (34) Som vanligt säger en bild mer än tusen formler. Figur 8 visar en del av impulssvaret för det ideala filtret. Hur ska vi då realisera det här filtret? Det går inte! Impulssvaret är som synes icke-kausalt och filtret kan därför inte byggas. Som beteckningen idealt filter antyder. 45 h(t) t Figur 8: Impulssvar för idealt lågpassfilter. 2

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar 6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

Signal- och bildbehandling TSBB03

Signal- och bildbehandling TSBB03 Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Frekvensplanet och Bode-diagram. Frekvensanalys

Frekvensplanet och Bode-diagram. Frekvensanalys Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,

Läs mer

Tillämpad Fysik Och Elektronik 1

Tillämpad Fysik Och Elektronik 1 FREKVENSSPEKTRUM (FORTS) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 ICKE-PERIODISKA FUNKTIONER Icke- periodiska funktioner kan betraktas som periodiska, med oändlig periodtid P. TILLÄMPAD FYSIK

Läs mer

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30

Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30 Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2 7 Elektriska kretsar Av: Lasse Alfredsson och Klas Nordberg 7- Nedan finns en krets med resistanser. Då kretsen ansluts till en annan elektrisk krets uppkommer spänningen vin ( t ) och strömmen ( ) Bestäm

Läs mer

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ] TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift

Läs mer

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.

Läs mer

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00

Tentamen i Elektronik, ESS010, del 1 den 21 oktober 2008 klockan 8:00 13:00 Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS00, del den oktober 008 klockan 8:00 :00 Uppgifterna

Läs mer

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny

Teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Teori... Dagens meny Tidigare har vi gått igenom Fourierserierepresentation av periodiska signaler och Fouriertransform av icke-periodiska signaler. Fourierserierepresentationen av x(t) ges av: där a k = 1 T + T a k e jkω

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Signaler några grundbegrepp

Signaler några grundbegrepp Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett

Läs mer

Tentamen SSY041 Sensorer, Signaler och System, del A, Z2

Tentamen SSY041 Sensorer, Signaler och System, del A, Z2 Tentamen SSY4 Sensorer, Signaler och System, del A, Z Examinator: Ants R. Silberberg 6 Dec kl. 8.3-.3, sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 88 Lösningar: Anslås måndag december på institutionens

Läs mer

Tentamen i Elektronik för E, ESS010, 12 april 2010

Tentamen i Elektronik för E, ESS010, 12 april 2010 Tentamen i Elektronik för E, ESS00, april 00 Tillåtna hjälpmedel: Formelsamling i kretsteori v i v in i Spänningen v in och är kända. a) Bestäm i och i. b) Bestäm v. W lampa spänningsaggregat W lampa 0

Läs mer

2F1120 Spektrala transformer för Media Tentamen

2F1120 Spektrala transformer för Media Tentamen F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad

Läs mer

Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1

Ellära 2, Tema 3. Ville Jalkanen Tillämpad fysik och elektronik, UmU. 1 Ellära 2, ema 3 Ville Jalkanen illämpad fysik och elektronik, UmU ville.jalkanen@umu.se 1 Innehåll Periodiska signaler Storlek, frekvens,... Filter Överföringsfunktion, belopp och fas, gränsfrekvens ville.jalkanen@umu.se

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)

DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn) DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: --, kl. - Lokaler: U, U, U Ansvarig lärare: Maria Magnusson besöker lokalen kl.. och. tel. Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film, sa och

Läs mer

Växelström i frekvensdomän [5.2]

Växelström i frekvensdomän [5.2] Föreläsning 7 Hambley avsnitt 5.-4 Tidsharmoniska (sinusformade) signaler är oerhört betydelsefulla inom de flesta typer av kommunikationssystem. adio, T, mobiltelefoner, kabel-t, bredband till datorer

Läs mer

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date

AC-kretsar. Växelströmsteori. Lund University / Faculty / Department / Unit / Document / Date AC-kretsar Växelströmsteori Signaler Konstant signal: Likström och likspänning (DC) Transienta strömmar/spänningar Växelström och växelspänning (AC) Växelström/spänning Växelström alternating current (AC)

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

TENTAMEN Modellering av dynamiska system 5hp

TENTAMEN Modellering av dynamiska system 5hp TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.

Läs mer

Bildbehandling i frekvensdomänen. Erik Vidholm

Bildbehandling i frekvensdomänen. Erik Vidholm Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den definieras

Läs mer

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015

Extra kursmaterial om. Elektriska Kretsar. Lasse Alfredsson. Linköpings universitet November 2015 Extra kursmaterial om Elektriska Kretsar asse lfredsson inköpings universitet asse.lfredsson@liu.se November 205 Får kopieras fritt av ith-studenter för användning i kurserna TSDT8 Signaler & System och

Läs mer

Andra ordningens kretsar

Andra ordningens kretsar Andra ordningens kretsar Svängningskretsar LCR-seriekrets U L (t) U s U c (t) U R (t) L di(t) dt + Ri(t) + 1 C R t0 i(t)dt + u c (0) = U s LCR-seriekrets För att undvika integralen i ekvationen, så deriverar

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 1 Komplexa tal De komplexa talen används när man behandlar växelström inom elektroniken. Imaginära enheten betecknas i elektroniken med j (i, som används i matematiken, är ju upptaget av strömmen). Den

Läs mer

Samtidig visning av alla storheter på 3-fas elnät

Samtidig visning av alla storheter på 3-fas elnät Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna

Läs mer

Föreläsning 10, Egenskaper hos tidsdiskreta system

Föreläsning 10, Egenskaper hos tidsdiskreta system Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering

Läs mer

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Spektrum av en samplad signal. Trunkering i tiden Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Spektrum av en samplad signal Samplingsprocessen kan skrivas som Fouriertranformen kan enligt linjäritetsoch tidsskiftsatsen

Läs mer

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Tekniska Högskolan i Lund Institutionen för Elektrovetenskap Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007. Uppgifterna i tentamen ger totalt

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Spektralanalys - konsten att hitta frekvensinnehållet i en signal

Spektralanalys - konsten att hitta frekvensinnehållet i en signal Spektralanalys - konsten att hitta frekvensinnehållet i en signal Bengt Carlsson, Erik Gudmundson och Marcus Björk Systems and Control Dept. of Information Technology, Uppsala University 7 november 013

Läs mer

Laboration i tidsdiskreta system

Laboration i tidsdiskreta system Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt

Läs mer

Diskret representation av kontinuerliga signaler

Diskret representation av kontinuerliga signaler Kapitel 6 Diskret representation av kontinuerliga signaler I digital signalbehandling är det vanligt att en kontinuerlig signal representeras i form av en diskret sekvens, t.ex. för att överföras eller

Läs mer

Sammanfattning TSBB16

Sammanfattning TSBB16 Sammanfattning TSBB16 Frekvensfunktion =H(omega) Kombinationen av amplitud och faskarakteristik är unik. H(ω) = D(ω) e^jψ(ω)=y(t)/x(t). Detta är frekvensfunktionen. H(ω)=utsignal/insignal D(ω) = H(ω).

Läs mer

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1 1 Föreläsning 4, Ht Hambley avsnitt 14.1, 4.1 Aktiva filter 1 I första läsperioden behandlades passiva filter. Dessa har nackdelen att lastens resistans påverkar filtrets prestanda. Om signalen tas ut

Läs mer

Periodiska signaler, frekvens, filter, överföringsfunktion

Periodiska signaler, frekvens, filter, överföringsfunktion Periodiska signaler, frekvens, filter, överföringsfunktion Ville Jalkanen illämpad fysik och elektronik, UmU ville.jalkanen@umu.se 1 Informationsbärare Signal Fysikalisk storhet som varierar pga annan

Läs mer

Transformer och differentialekvationer (MVE100)

Transformer och differentialekvationer (MVE100) Chalmers tekniska högskola och Göteborgs universitet Matematik 19 januari 211 Transformer och differentialekvationer (MVE1) Styckvis definierade funktioner forts. Laplacetransformen Som nämnts i inledningen

Läs mer

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F6 Bodediagram, Nyquistkriteriet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 11 Frekvensegenskaper Hur svarar ett (slutet) system på oscillerande signaler? 2 / 11

Läs mer

Signal- och bildbehandling TSBB03 och TSEA70

Signal- och bildbehandling TSBB03 och TSEA70 Tentamen i Signal- och bildbehandling TSBB03 och TSEA70 Tid: 004-08-10 kl. 8-1 Lokaler: TER1 Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 10.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,

Läs mer

Diskreta signaler och system

Diskreta signaler och system Kapitel 7 Diskreta signaler och system I detta kapitel diskuteras grundläggande teori för diskreta signaler och system. För diskreta signaler introduceras z-transformen, som ligger som grund för representationen

Läs mer

Signal- och bildbehandling TSEA70

Signal- och bildbehandling TSEA70 Tentamen i Signal- och bildbehandling TSEA70 Tid: 2003-0-0 kl. 4-8 Lokaler: Examinator: U Maria Magnusson Seger Ansvarig lärare: Olle Seger besöker lokalen kl. 5 och 7. tel 259, 0702/337948 Hjälpmedel:

Läs mer

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning

Läs mer

7. Sampling och rekonstruktion av signaler

7. Sampling och rekonstruktion av signaler Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid

Läs mer

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion?

Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? Vad gör vi när vi bara har en mätserie och ingen elegant matematisk funktion? 1 Ett problem med Fourier- och Laplacetransformen är att de kräver att signalen som skall transformeras kan skrivas som en

Läs mer

Signalanalys med snabb Fouriertransform

Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör

Läs mer

Reglerteknik AK. Tentamen kl

Reglerteknik AK. Tentamen kl Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

Harmonisk oscillator Ulf Torkelsson

Harmonisk oscillator Ulf Torkelsson 1 Haronisk rörelse Föreläsning 13/9 Haronisk oscillator Ulf Torkelsson Betrakta en potentiell energi, V (x), so har ett iniu vid x, och studera rörelsen i närheten av detta iniu. O vi släpper en partikel

Läs mer

Innehåll. Innehåll. sida i

Innehåll. Innehåll. sida i 1 Introduktion... 1.1 1.1 Kompendiestruktur... 1.1 1.2 Inledning... 1.1 1.3 Analogt/digitalt eller tidskontinuerligt/tidsdiskret... 1.2 1.4 Konventioner... 1.3 1.5 Varför digital signalbehandling?... 1.4

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik

LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling

Läs mer

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 10. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 2008, Kai Nordlund 10.1 10.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

Signalbehandling. Andreas Fhager

Signalbehandling. Andreas Fhager Signalbehandling Andreas Fhager andreas.1ager@chalmers.se Innehåll Modellering av fysiskt fenomen Analoga/digitala signaler Nervsignaler Periodiska funkboner/fourierserie Frekvensspektrum Filter Faltning

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, vt 213, Kai Nordlund 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera kretsar

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1. REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)

Läs mer

Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform

Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att

Läs mer

Föreläsning 29/11. Transienter. Hambley avsnitt

Föreläsning 29/11. Transienter. Hambley avsnitt 1 Föreläsning 9/11 Hambley avsnitt 4.1 4.4 Transienter Transienter inom elektroniken är signaler som har kort varaktighet. Transienterna avtar ofta exponentiellt med tiden. I detta avsnitt studerar vi

Läs mer

DT1120 Spektrala transformer för Media Tentamen

DT1120 Spektrala transformer för Media Tentamen DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,

Läs mer

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:

Läs mer

TSBB16 Datorövning A Samplade signaler Faltning

TSBB16 Datorövning A Samplade signaler Faltning Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna

Läs mer

Bildbehandling i frekvensdomänen

Bildbehandling i frekvensdomänen Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267

Läs mer

Introduktion till fordonselektronik ET054G. Föreläsning 3

Introduktion till fordonselektronik ET054G. Föreläsning 3 Introduktion till fordonselektronik ET054G Föreläsning 3 1 Elektriska och elektroniska fordonskomponenter Att använda el I Sverige Fas: svart Nolla: blå Jord: gröngul Varför en jordkabel? 2 Jordning och

Läs mer

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01

Elektro och Informationsteknik LTH. Laboration 3 RC- och RL-nät i tidsplanet. Elektronik för D ETIA01 Elektro och Informationsteknik LTH Laboration 3 R- och RL-nät i tidsplanet Elektronik för D ETIA01??? Telmo Santos Anders J Johansson Lund Februari 2008 Laboration 3 Mål Efter laborationen vill vi att

Läs mer

Vågrörelselära och optik

Vågrörelselära och optik Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:

Läs mer

Spektrala Transformer

Spektrala Transformer Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)

Läs mer

Syntes av digitala filter

Syntes av digitala filter Kapitel 8 Syntes av digitala filter 8. Digitala filter I kapitel 7 hade vi sambandet (7.8) för ett linjärt system, enligt vilket utsignalens z-transform är insignalens transform multiplicerad med systemets

Läs mer

Tentamen i Elektronik för E, 8 januari 2010

Tentamen i Elektronik för E, 8 januari 2010 Tentamen i Elektronik för E, 8 januari 200 Tillåtna hjälpmedel: Formelsamling i kretsteori Tvåpol C A I V Du har tillgång till en multimeter som kan ställas in som voltmeter eller amperemeter. Voltmeter

Läs mer

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A,

Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens ω och amplitud A, Övning 8 Introduktion Varmt välkomna till åttonde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Frekvenssvar Frekvenssvaret är utsignalen då insginalen är en sinusvåg med frekvens

Läs mer

Hambley avsnitt

Hambley avsnitt Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.

Läs mer

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ).

1+v(0)kt. + kt = v(0) . Detta ger sträckan. x(t) = x(0) + v(0) = x(0) + 1 k ln( 1 + v(0)kt ). . (3 poäng) Antag att en partikel rör sig i ett medium där friktionskraften är proportionell mot kvadraten av hastigheten v(t) R så att dv(t) = k ( v(t) ), t > för en konstant k >. Bestäm v(t) som funktion

Läs mer

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter

Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter Digitala filter Digitala filter FIR Finit Impulse Response Digitala filter förekommer t.ex.: I Matlab, Photoshop oh andra PCprogramvaror som filtrerar. I apparater med signalproessorer, t.ex. mobiltelefoner,

Läs mer

Signaler & Signalanalys

Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla

Läs mer

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007

MEKANIK LABORATION 2 KOPPLADE SVÄNGNINGAR. FY2010 ÅK2 Vårterminen 2007 I T E T U N I V E R S + T O C K H O L M S S FYSIKUM Stockholms universitet Fysikum 3 april 007 MEKANIK LABORATION KOPPLADE SVÄNGNINGAR FY010 ÅK Vårterminen 007 Mål Laborationen avser att ge allmän insikt

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Påtvingad svängning SDOF

Påtvingad svängning SDOF F(t)=F 0 cosω 0 t Förflyttning x M k Vi betraktar det vanliga fjäder-massa systemet men nu påverkas systemet med en kraft som varierar periodiskt i tiden: F(t)=F 0 cosω 0 t Den periodiskt varierande kraften

Läs mer

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2) LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj

Läs mer

Övningar i Reglerteknik. Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys. y(0) = 2,

Övningar i Reglerteknik. Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys. y(0) = 2, Differentialekvationer Övningar i Reglerteknik Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys.. Lös följande begynnelsevärdesproblem dy dt y =, t > 0 y(0)

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

Laboration ( ELEKTRO

Laboration ( ELEKTRO UMEÅ UNIVERSITET Tillämpad fysik och elektronik Sverker ohansson ohan Pålsson 21-2-16 Rev 1.1 $.7,9$),/7(5 Laboration ( ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

Lektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1

Lektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1 Lektion 1 Kursinnehåll - kursprogram - schema Det praktiska - boken - idag sid 71-101 Mattebakgrund - Spannes Blixtkurs Laplacetransform AK 17 Koppling till tillståndsbeskrivning AK 18 Betoning av transienter

Läs mer

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh

Läs mer

Förstärkarens högfrekvensegenskaper. Återkoppling och stabilitet. Återkoppling och förstärkning/bandbredd. Operationsförstärkare.

Förstärkarens högfrekvensegenskaper. Återkoppling och stabilitet. Återkoppling och förstärkning/bandbredd. Operationsförstärkare. FÖRELÄSNING 5 Förstärkarens högfrekvensegenskaper Återkoppling och stabilitet Återkoppling och förstärkning/bandbredd Operationsförstärkare Kaskadkoppling Per Larsson-Edefors, Chalmers tekniska högskola

Läs mer

Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra

Ht Läsanvisningar till Hilbertrum och partiella differentialekvationer. Del 1. Ur Anton, Rorres; Elementary Linear Algebra Ht-2010 Umeå universitet Institutionen för matematik och matematisk statistik PAB Läsanvisningar till Hilbertrum och partiella differentialekvationer Del 1 Ur Anton, Rorres; Elementary Linear Algebra 10.1-10.

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s)

Figure 1: Blockdiagram. V (s) + G C (s)y ref (s) 1 + G O (s) Övning 9 Introduktion Varmt välkomna till nionde övningen i Reglerteknik AK! Håkan Terelius hakante@kth.se Repetition Känslighetsfunktionen y ref + e u F (s) G(s) v + + y Figure : Blockdiagram Känslighetsfunktionen

Läs mer

Växelström K O M P E N D I U M 2 ELEKTRO

Växelström K O M P E N D I U M 2 ELEKTRO MEÅ NIVERSITET Tillämpad fysik och elektronik Sverker Johansson Johan Pålsson 999-09- Rev.0 Växelström K O M P E N D I M ELEKTRO INNEHÅLL. ALLMÄNT OM LIK- OCH VÄXELSPÄNNINGAR.... SAMBANDET MELLAN STRÖM

Läs mer

TSDT15 Signaler och System

TSDT15 Signaler och System TSDT5 Signaler och System DATORUPPGIFTER VÅREN 03 OMGÅNG Mikael Olofsson, mikael@isy.liu.se Efter en förlaga av Lasse Alfredsson February, 03 Denna uppgiftsomgång behandlar faltning samt system- & signalanalys

Läs mer