Transformer och differentialekvationer (MVE100)

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Transformer och differentialekvationer (MVE100)"

Transkript

1 Chalmers tekniska högskola och Göteborgs universitet Matematik 19 januari 211 Transformer och differentialekvationer (MVE1) Styckvis definierade funktioner forts. Laplacetransformen Som nämnts i inledningen vill man ofta betrakta indata i stil med fyrkantsvågor, som definieras av olika uttryck på olika intervall. För att kunna hantera sådana är det praktiskt att införa Heavisides stegfunktion 1, t, H(t) =, t <. Ibland definierar man istället H(t) = 1/2 eller låter det vara odefinierat. Eftersom vi i slutändan vill stoppa in H i integraler spelar valet sällan någon roll. Rita graferna för en funktion f(t), funktionen f(t)h(t a) och funktionen f(t a)h(t a). Vi ser att f(t)h(t a) kan tolkas som att f(t) aktiveras vid tiden t = a. Funktionen f(t a)h(t a) svarar mot att man tar grafen för t och translaterar den till intervallet t a. Dessa bilder är bra att ha i bakhuvudet. För a ges Laplacetransformen av f(t a)h(t a) av en enkel regel: f(t a)h(t a)e st ds = a f(t a)e st ds = Detta kallas i boken andra förskjutningsregeln f(t)e s(t+a) ds = e as F (s). f(t) f(t a)h(t a) (a ) F (s) e as F (s). Exempel: Beräkna Laplacetransformen av funktionen, t < 1, f(t) = (t 1) 2, 1 t < 2, 1, t 2. Givetvis kan man direkt räkna ut f(t)e st dt = 2 (t 1) 2 e st dt e st dt, men vi illustrerar här en mer systematisk metod. Vi skriver först f(t) = (t 1) 2 H(t 1) + ( 1 (t 1) 2) H(t 2),

2 Transformer och differentialekvationer M3 sid. 2 av 6 där exempelvis den andra termen kan utläsas vid tiden t = 2 aktiverar vi funktionen 1 och stänger av funktionen (t 1) 2. Sedan skriver vi Då får man 1 (t 1) 2 = 2t t 2 = (t 2) 2 2(t 2). f(t) = (t 1) 2 H(t 1) (t 2) 2 H(t 2) 2(t 2)H(t 2), Exempel: Lös differentialekvationen F (s) = 2 s 3 e s 2 s 3 e 2s 2 s 2 e 2s. x + 3x + 2x = f(t), x() = x () =, t där f(t) = 1 för t < 1 och annars. För t kan vi skriva f(t) = 1 H(t 1). Den Laplacetransformerade ekvationen blir alltså (s 2 + 3s + 2)X(s) = 1 e s ( s 1 X(s) = (1 e s ) 2s 1 ) s (s + 2) x(t) = 1 2 e t e 2t H(t 1) = Impulsfunktionen ( 1 2 e (t 1) e 2(t 1) 1 2 e t e 2t, t < 1, (e 1)e t + 1(1 2 e2 )e 2t, t 1. Antag att vi ersätter fyrkantspulsen f i föregående exempel med pulsen f ε som är 1/ε då t < ε och annars (rita bild!). Vad händer då ε? Observera att arean under grafen är konstant = 1. Om f ε är en kraft så är denna area impuls, dvs den momentförändring som kraften ger upphov till. Gränsfallet ε svarar alltså mot att impulsen 1 tillförs momentant vid tiden t =. Det är praktiskt att tänka på gränsfallet som en funktion δ som uppfyller, t =, δ(t) =, t, δ(t) dt = 1. Observera dock att det inte finns någon sådan funktion! Som vi strax skall förklara går det att ge mening åt δ som en distribution. Likväl brukar man kalla δ impulsfunktionen eller Diracs deltafunktion. )

3 Transformer och differentialekvationer M3 sid. 3 av 6 Något om distributioner Vi skall inte ge någon fullständig framställning av distributionsteorin, men kan presentera dem grundläggande idén som är mycket enkel. Man kan studera en funktion f med hjälp av avbildningen ϕ ϕ(t)f(t) dt, (1) där ϕ varierar över en lämplig klass av testfunktioner. Vanligen väljer man testfunktionerna som mängden av alla oändligt deriverbara funktioner som är utanför något begränsat intervall. En distribution är en avbildning från mängden av testfunktioner till de reella eller komplexa talen som uppfyller vissa villkor (linearitet och en form av kontinuitet). Däremot behöver den inte ges av en integral som i (1). Observera att med f ε som ovan har vi ϕ(t)f ε (t) dt = 1 ε ϕ(t) dt ϕ(), ε. ε (Använd integralkalkylens medelvärdessats.) Det är alltså naturligt att definiera δ som distributionen ϕ ϕ(). Formellt skriver man och mer allmänt ϕ(t)δ(t) dt = ϕ() ϕ(t)δ(t a) dt = ϕ(a). (2) En formell räkning ger nu att Laplacetransformen av δ(t a) bör vara δ(t a)e st dt = δ(t a)h(t)e st dt = H(a)e as e as, a, =, a <, där vi använder (2) trots att H(t)e st strängt taget inte är en testfunktion. Vi accepterar detta som definition: f(t) δ(t a) (a ) F (s) e as. Exempel: En konkret situation där deltafunktionen uppträder naturligt är vid punktbelastning av en balk. Vi tar ett enkelt exempel, se vidare ST En belastad balk beskrivs av ekvationen EI y (4) (x) = W (x), x l, där y(x) är balkens nedböjning i punkten x och W (x) den nedtryckande kraften per längdenhet. Konstanten EI är balkens böjstyvhet (flexural rigidity).

4 Transformer och differentialekvationer M3 sid. 4 av 6 Antag att balken har längden l = 1, och att den belastas med en punktmassa i x = a. Balkens egen vikt antas vara försumbar. I lämpliga enheter har vi då ekvationen Laplacetransformerar vi får vi y (4) (x) = δ(x a). s 4 Y (s) s 3 y() s 2 y () sy () y (3) () = e as, Y (s) = y() s + y () s 2 + y () s 3 + y(3) () s 4 e as, y(x) = y() + y ()x + y () x2 2 + y(3) () x3 6 a)3 H(x a)(x. 6 För att bestämma konstanterna behöver man veta hur balken är fäst i ändpunkterna. Vid konsolupphängning (cantilever) är ändpunkten x = fixerad i vågrätt läge medan ändpunkten x = 1 är helt fri. Detta svarar mot randvillkoren y() = y () =, y (1) = y (3) (1) =. Stoppar man in dessa villkor får man efter en räkning y(x) = x3 6 ax2 a)3 H(x a)(x = 2 6 Distributionsderivata x 3 6 ax2 2, x a, a 3 6 a2 x 2, a x 1. Vad är derivatan av en distribution? Om f är en deriverbar funktion så svarar f mot distributionen f (t)ϕ(t) dt = [ f(t)ϕ(t) ] f(t)ϕ (t) dt = f(t)ϕ (t) dt (första termen försvinner eftersom testfunktionerna är utanför ett begränsat intervall). Det är alltså naturligt att, mer allmänt, definiera derivatan av en distribution ϕ u(ϕ) som ϕ u(ϕ ). Exempel: Derivatan av impulsfunktionen är Observera att distributionen ϕ ϕ (). ϕ f(t)ϕ (t) dt existerar även för många funktioner f som inte är deriverbara eller ens kontinuerliga. Den kallas (distributions-)derivatan av f.

5 Transformer och differentialekvationer M3 sid. 5 av 6 Exempel: Språngfunktionen H är inte deriverbar som funktion. Däremot existerar distributionsderivatan ϕ H(t)ϕ (t) dt = vilket vi känner igen som impulsfunktionen. Vi har alltså H = δ. ϕ (t) dt = [ ϕ(t) ] = ϕ(), På motsvarande sätt kan man beräkna distributionsderivatan av funktioner med språngdiskontinuiteter. Ett språng a enheter uppåt i punkten t = b ger ett bidrag med a δ(t b), ett språng a enheter neråt bidrar med a δ(t b). Exempel: Vad är derivatan av t 2, t < 2, f(t) = t, t 2? Eftersom funktionen är diskontinuerlig tolkar vi derivatan som distributionsderivatan. För att få fram denna måste vi addera bidraget 2t för t < 2, bidraget 2δ(t 2) från språnget och bidraget 1 för t > 2. På kompakt form kan svaret skrivas Överföringsfunktion f (t) = 2t + (1 2t)H(t 2) 2δ(t 2). Som nämnts ovan kan många system beskrivas med differentialekvationer av typen a n x (n) + a n 1 x (n 1) + + a x = b m u (m) + b m 1 u (m 1) + + b u, (3) där u är indata och x utdata. Systemet kallas tidsoberoende om koefficienterna a i och b i är konstanta. Ett annat naturligt villkor är n m, vilket man i boken kallar fysiskt realiserbart. Om n < m kan kontinuerliga indata ge upphov till språng i utdata, vilket i många sammanhang är orealistiskt. Antag att systemet utgår från viloläge, dvs att x() = x () = = x (n 1) () =, u() = u () = = u (m 1) () =. Laplacetransformen av (3) är då (a n s n + a n 1 s n a )X(s) = (b m s m + b m 1 s m b )U(s). Funktionen G(s) = X(s) U(s) = b ms m + b m 1 s m b a n s n + a n 1 s n a

6 Transformer och differentialekvationer M3 sid. 6 av 6 kallas överföringsfunktion. Den är ett viktigt verktyg för att studera systemets egenskaper. Vi tar upp några exempel, som diskuteras mer detaljerat i boken. Exempel: Stabilitet. Om alla nollställen till nämnaren i G (det karakteristiska polynomet) har negativ realdel så är systemet asymptotiskt stabilt. Detta betyder att om man stänger av indata, dvs u(t) = för t t, så återvänder systemet till viloläge, dvs x(t) då t. Detta är lätt att inse redan från vad man lärde sig i envariabelanalysen. För t t har nämligen lösningen formen x(t) = i p i (t)e λ it, där λ i är nollställen till karakteristiska polynomet och p i är polynom. Om alla λ i har negativ realdel kommer x(t) då t. Exempel: Impulssvar. Låt indata ges av impulsfunktionen, dvs u(t) = δ(t). Motsvarande utdata x(t) kallas systemets impulssvar, eller fundamentallösning. Eftersom U(s) = 1 så är X(s) = G(s), dvs överföringsfunktionen är Laplacetransformen av impulssvaret. Exempel: Faltning. Lösningen till begynnelsevärdesproblemet a n x (n) + a n 1 x (n 1) + + a x = b m u (m) + b m 1 u (m 1) + + b u, ges av integralen (en så kallad faltning) x() = x () = = x (n 1) () = x(t) = t u(τ)h(t τ) dτ, där h(t) är systemets impulssvar. Impulssvaret bestämmer alltså systemets utveckling även för godtyckliga indata. Detta resultat har stor teoretisk betydelse, men är inte så användbart som man skulle kunna tro för konkreta räkningar. Exempel: Frekvenssvar. Låt indata ges av u(t) = A sin(ωt). Antag också att systemet är asymptotiskt stabilt. Då t kommer x(t) att närma sig en svängning med samma frekvens som u, men med en förändring av amplitud och fas. Mer precis har vi x(t) x ss (t), t, där x ss (t) = A G(iω) sin ( ωt + arg(g(iω)) ). Genom att mäta amplitudförändring och fasförskjutning för olika frekvenser ω kan man alltså uppskatta överföringsfunktionen G(iω).

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1.

REGLERTEKNIK KTH REGLERTEKNIK AK EL1000/EL1110/EL En tillståndsmodell ges t.ex. av den styrbara kanoniska formen: s 2 +4s +1. REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Lösningsförslag till tentamen 2009 2 5, kl. 4.00 9.00. (a) Laplacetransform av () ger s 2 Y (s)+4sy (s)+y (s) =U(s), och överföringsfunktionen blir G(s)

Läs mer

y(0) = e + C e 1 = 1

y(0) = e + C e 1 = 1 KTH-matematik Tentamensskrivning, 006-01-14, kl. 14.00 19.00. 5B106 Differentialekvationer I, för BDMP. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg (3) krävs minst 17 poäng, för betyg 4 krävs

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem

Kompletterande material till föreläsning 5 TSDT08 Signaler och System I. Erik G. Larsson LiU/ISY/Kommunikationssystem ompletterande material till föreläsning 5 TSDT8 Signaler och System I Erik G. Larsson LiU/ISY/ommunikationssystem erik.larsson@isy.liu.se November 8 5.1. Första och andra ordningens tidskontinuerliga LTI

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Lektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1

Lektion 1. Bo Bernhardsson FRT130 Control Theory, Lecture 1 Lektion 1 Kursinnehåll - kursprogram - schema Det praktiska - boken - idag sid 71-101 Mattebakgrund - Spannes Blixtkurs Laplacetransform AK 17 Koppling till tillståndsbeskrivning AK 18 Betoning av transienter

Läs mer

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4) 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen

Läs mer

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d

Figur 2: Bodediagrammets amplitudkurva i uppgift 1d Lösningsförslag till tentamen i Reglerteknik Y (för Y och D) (TSRT) 008-06-0. (a) Vi har systemet G(s) (s3)(s) samt insignalen u(t) sin(t). Systemet är stabilt ty det har sina poler i s 3 samt s. Vi kan

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H5 MATEMATIK Chalmers Repetitionsuppgifter Integraler och tillämpningar av integraler. (a) Beräkna (b) Avgör om den generaliserade integralen arctan(x) ( + x) dx. dx x x är konvergent eller divergent.

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF65, Signaler och system I Tentamen tisdagen 4--4, kl 8 Hjälpmedel: BETA Mathematics Handbook. Formelsamling i Signalbehandling rosa), Formelsamling för Kursen SF65 ljusgrön). Obs : Obs : Obs : Obs 4:

Läs mer

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003

Gränsvärden. Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Gränsvärden Joakim Östlund Patrik Lindegrén Pontus Nyrén 4 december 2003 Innehåll Introduktion 3 2 Gränsvärden 4 2. Gränsvärden då går mot.................... 4 2.2 Gränsvärden då går mot a.....................

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

Högre ordnings ekvationer och system av 1:a ordningen

Högre ordnings ekvationer och system av 1:a ordningen Institutionen för matematik, KTH 05020 Tillägg för 5B209/HT05/E.P. Högre ordnings ekvationer och system av :a ordningen Vi har hittills lärt oss lösa linjära ekvationer med konstanta koefficienter och

Läs mer

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar 6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Linköpings universitet Matematiska institutionen Matematik och tillämpad matematik Kurskod: TATA4 Provkod: TEN Tentamen i Envariabelanalys 4--8 kl. 8.. Inga hjälpmedel. Lösningarna ska vara fullständiga,

Läs mer

Linjära differentialekvationer av andra ordningen

Linjära differentialekvationer av andra ordningen Linjära differentialekvationer av andra ordningen Matematik Breddning 3.2 Definition: En differentialekvation av typen y (x) + a(x)y (x) + b(x)y(x) = h(x) (1) där a(x), b(x) och h(x) är givna kontinuerliga

Läs mer

Övningar i Reglerteknik. Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys. y(0) = 2,

Övningar i Reglerteknik. Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys. y(0) = 2, Differentialekvationer Övningar i Reglerteknik Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys.. Lös följande begynnelsevärdesproblem dy dt y =, t > 0 y(0)

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl

REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Kortfattade lösningsförslag till tentamen , kl REGLERTEKNIK KTH REGLERTEKNIK AK EL000/EL0/EL20 Kortfattade lösningsförslag till tentamen 202 2 7, kl. 9.00 4.00. (a) (i) Överföringsfunktionen ges av G(s)U(s) = G 0 (s)u(s)+g (s)(u(s)+g 0 (s)u(s)) = [G

Läs mer

Laboration 2 M0039M, VT2016

Laboration 2 M0039M, VT2016 Laboration 2 M0039M, VT2016 Ove Edlund, Staffan Lundberg, TVM 24 februari 2016 1 Teoridel 1.1 Serielösningar till differentialekvationer Den grundläggande idén (se t.ex. utdelat material, Lektion 18) är

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Nyquistkriteriet. Henrik Sandberg. Extra material till Reglerteknik AK 19 maj 2014

Nyquistkriteriet. Henrik Sandberg. Extra material till Reglerteknik AK 19 maj 2014 Nyquistkriteriet Henrik Sandberg Extra material till Reglerteknik AK 19 maj 2014 Upplägg Harry Nyquist Frekvensanalys i sluten loop Nyquistkriteriet Exempel Argumentvariationsprincipen Harry Nyquist (1889-1976)

Läs mer

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och

5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren , och KTH Matematik 1 5B1134 Matematik och modeller Uppgifter från kontrollskrivningar och tentamina under läsåren 23-24, 24-25 och 25-26 26-8-31 1 Geometri med trigonometri Övning 1.1 [5B1134:Modell:1] C =

Läs mer

1 Att läsa matematik.

1 Att läsa matematik. 1 Att läsa matematik. Precis som vid all annan läsning som betyder något skall matematik läsas aktivt. Detta innebär olika saker för olika personer. För en del kanske det betyder att visualisera de idéer

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 5 Institutionen för matematik KTH 5 september 2017 Hur mycket behöver man jobba? Vi har ett gemensamt ansvar: Jag visar vad som behöver göras Men det är ni som måste göra det Viktigt faktum:

Läs mer

Svar till övningar. Nanovetenskapliga tankeverktyg.

Svar till övningar. Nanovetenskapliga tankeverktyg. Svar till övningar. Nanovetenskapliga tankeverktyg. January 18, 2010 Vecka 2 Komplexa fourierserier 1. Fourierkomponenterna ges av dvs vi har fourierserien f(t) = π 2 + 1 π n 0 { π n = 0 c n = 2 ( 1) n

Läs mer

f(x) = x 2 g(x) = x3 100

f(x) = x 2 g(x) = x3 100 När vi nu ska lära oss att skissa kurvor är det bra att ha en känsla för vad som händer med kurvan när vi sätter in stora tal. Inledningsvis är det ju polynom vi ska studera. Här ska vi se vad som händer

Läs mer

Lösningsförslag till tentamen i Reglerteknik (TSRT19)

Lösningsförslag till tentamen i Reglerteknik (TSRT19) Lösningsförslag till tentamen i Reglerteknik (TSRT9) 26-3-6. (a) Systemet är stabilt och linjärt. Därmed kan principen sinus in, sinus ut tillämpas. Givet insignalen u(t) sin (t) sin ( t) har vi G(i )

Läs mer

10. Kretsar med långsamt varierande ström

10. Kretsar med långsamt varierande ström 1. Kretsar med långsamt varierande ström [RMC] Elektrodynamik, ht 25, Krister Henriksson 1.1 1.1. Villkor för långsamt varierande I detta kapitel behandlas den teori som kan användas för att analysera

Läs mer

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula

Välkomna till TSRT19 Reglerteknik Föreläsning 3. Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Välkomna till TSRT19 Reglerteknik Föreläsning 3 Sammanfattning av föreläsning 2 PID-reglering Blockschemaräkning Reglerdesign för svävande kula Sammanfattning av förra föreläsningen 2 Vi modellerar system

Läs mer

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 3 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET Martin Enqvist Överföringsfunktioner, poler och stegsvar Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(8) Repetition: Öppen styrning & återkoppling 4(8)

Läs mer

Matematik 4 Kap 3 Derivator och integraler

Matematik 4 Kap 3 Derivator och integraler Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

Formelsamling i Reglerteknik

Formelsamling i Reglerteknik Formelsamling i Reglerteknik Laplacetransformation Antag att f : IR IR är en styckvis kontinuerlig funktion. Laplacetransformen av f definieras av Slutvärdesteoremet F(s) = L(f)(s) = 0 e st f(t)dt lim

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

Reglerteknik AK. Tentamen kl

Reglerteknik AK. Tentamen kl Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 20 0 20 kl 8.00 3.00 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt

Läs mer

AB2.9: Heavisides stegfunktion. Diracs deltafunktion

AB2.9: Heavisides stegfunktion. Diracs deltafunktion AB29: Heaviide tegfunktion Dirac deltafunktion Heaviide tegfunktion Heaviide tegfunktion definiera ut a) = { if t < a, if t > a Betrakta via exempel: ft) = 5 in t ft)ut 2) ft 2)ut 2) k[ut ) 2ut 4) + ut

Läs mer

Lösningar och kommentarer till uppgifter i 3.1

Lösningar och kommentarer till uppgifter i 3.1 Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man

Läs mer

ERE 102 Reglerteknik D Tentamen

ERE 102 Reglerteknik D Tentamen CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel:

Läs mer

Stabilitet m.a.p. begynnelsedata

Stabilitet m.a.p. begynnelsedata Stabilitet m.a.p. begynnelsedata Begreppet stabilitet används i flera olika sammanhang. I kap.9-14 tänker man på black-box system och insignal-utsignalstabilitet begränsad insignal = begränsad utsignal

Läs mer

LAPLACETRANSFORMEN OCH LINEÄRA SYSTEM 1

LAPLACETRANSFORMEN OCH LINEÄRA SYSTEM 1 LAPLACETRANSFORMEN OCH LINEÄRA SYSTEM 1 Kurt Hansson 2 29 1 c 29 Kurt Hansson, LiTH/MAI. 2 e-post: kurt.hansson@liu.se ii Innehåll Kursbeskrivning ix 1 Laplacetransformen 1 1.1 Definition............................

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

1 Primitiva funktioner

1 Primitiva funktioner Primitiva funktioner Definition. F ( är en primitiv funktion till f( om F ( f(. Antag att vi har hittat en primitiv funktion F ( till f(. Finnsdetflerprimitivafunktionerochvilken form har de i så fall?

Läs mer

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73

Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73 Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 4: Tillämpningar av derivata Institutionen för matematik KTH 22-23 september 2015 Översikt över några viktiga derivatatillämningar 1. Förändringstakt. Derivata mäter förändringstakt, till exemel

Läs mer

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x).

x 4 a b X c d Figur 1. Funktionsgrafen y = f (x). Konveitet En funktionsgraf, som inte är en rät linje, böjer ofta av åt ett bestämt håll i ett visst intervall. För en funktion som är deriverbar två gånger kan man med hjälp av andraderivatan ta reda på

Läs mer

TENTAMEN Modellering av dynamiska system 5hp

TENTAMEN Modellering av dynamiska system 5hp TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.

Läs mer

x 1 1/ maximum

x 1 1/ maximum a), 1 1 Definitionsmängd: 1,1 En funktion kan ha lokal maximum eller lokal minimum endast i punkter x av följande tre typer: (i) stationära punkter (punkter där 0) (ii) ändpunkter till (endast de ändpunkter

Läs mer

Upphämtningskurs i matematik

Upphämtningskurs i matematik Upphämtningskurs i matematik C.J. 2013 Föreläsningsunderlaget är uppbyggt utgående från kurserna i den långa gymnasiematematiken, ellips-kursböckerna (Schilds förlag) har använts som förebild. Böckerna

Läs mer

KOMPLEX ANALYS EXEMPELSAMLING. Augusti 2006 GRUNDLÄGGANDE EGENSKAPER. 1. Beräkna real- och imaginärdel av. 1 1 i. ( i i c) 1 + i.

KOMPLEX ANALYS EXEMPELSAMLING. Augusti 2006 GRUNDLÄGGANDE EGENSKAPER. 1. Beräkna real- och imaginärdel av. 1 1 i. ( i i c) 1 + i. KOMPLEX ANALYS EXEMPELSAMLING. Augusti 6 GRUNDLÄGGANDE EGENSKAPER.. Beräkna real- och imaginärdel av a) i b) ( i ) 3 c) + i ( 3 ) 3 i d) ( i 5 + ) i 9 +. Bestäm absolutbelopp och argument av a) i 3 b)

Läs mer

SAMMANFATTNING TATA41 ENVARIABELANALYS 1

SAMMANFATTNING TATA41 ENVARIABELANALYS 1 SAMMANFATTNING TATA4 ENVARIABELANALYS LÄST SOM EN DEL AV CIVILINGENJÖRSPROGRAMMET I INDUSTRIELL EKONOMI VID LITH, HT 04 Senast reviderad: 05-06-0 Författare: Viktor Cheng INNEHÅLLSFÖRTECKNING Diverse knep...3

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

Exponentialmatrisen. Definition med potensserie. Egenskaper. Den sista likheten utgör definitionen av e At. Man kan nämligen visa att matrisföljden

Exponentialmatrisen. Definition med potensserie. Egenskaper. Den sista likheten utgör definitionen av e At. Man kan nämligen visa att matrisföljden Exponentialmatrisen Moment (kapitel i Spanne) Övningar Denna stencil i första hand! Def. med serie (5.2) 8,(2) diagonaliserbar A (5.) b,2 (utnyttja svartill 3.2&3.5) Lösn. av tillståndsekv. Cayley-Hamiltons

Läs mer

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik

Lösningsförslag v1.1. Högskolan i Skövde (SK) Svensk version Tentamen i matematik Lösningsförslag v1.1 Högskolan i Skövde (SK) Svensk version Tentamen i matematik Kurs: MA15G Matematisk Analys MA13G Matematisk analys för ingenjörer Tentamensdag: 1-8-8 kl 8.3-13.3 Hjälpmedel : Inga hjälpmedel

Läs mer

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p)

1. Rita in i det komplexa talplanet det område som definieras av följande villkor: (1p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF TEN Datum: -- Tid: :5-7:5 Hjälpmedel: Formelblad, delas ut i salen Miniräknare (av vilken tp som hels Förbjudna hjälpmedel: Ägna formelblad, telefon, laptop

Läs mer

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur

Transformmetoder. Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur UPPSALA UNIVERSITET Matematiska institutionen Transformmetoder Kurslitteratur: Styf/Sollervall, Transformteori för ingenjörer, 3:e upplagan, Studentlitteratur AB. Kontakt: Föreläsare och kursansvarig:

Läs mer

Meningslöst nonsens. November 19, 2014

Meningslöst nonsens. November 19, 2014 November 19, 2014 Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar? Fråga 1. Om f (x) är begränsad kommer F(x) = x 0 f (t)dt att vara kontinuerlig? Deriverbar?

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 2012-10-17 DEL A 1. Visa att ekvationen x 3 12x + 1 = 0 har tre lösningar i intervallet 4 x 4. Motivera ordentligt! (4 p) Lösningsförslag. Vi skall

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Blandade A-uppgifter Matematisk analys

Blandade A-uppgifter Matematisk analys TEKNISKA HÖGSKOLAN Matematik Blandade A-uppgifter Matematisk analys 1 Låt u = i och v = 1 + i Skriv det komplexa talet z = u/v på den polära formen re iϕ Svar: e i π Bestäm de reella tal x för vilka x

Läs mer

polynomfunktioner potensfunktioner exponentialfunktioner

polynomfunktioner potensfunktioner exponentialfunktioner Vi ar lärt oss derivera en funktion, främst polynom, med jälp av derivatans definition. Vi ar funnit denna teknik ganska krävande. Desto trevligare blir det då att konstatera att det finns enkla deriveringsregler,

Läs mer

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller

1. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som uppfyller Repetitionsuppgifter Endimensionell analys, Komplexa tal delkurs B2. (a) Los ekvationen z 2 4iz 7 + 4i = 0: Rotterna ska ges pa formen a + bi. (b) Rita i det komplexa talplanet alla komplexa tal z som

Läs mer

Teorifrå gor kåp

Teorifrå gor kåp Teorifrå gor kåp. 2.2 5.2 Funktioner och dess grafer 1) Vad är en funktion? 2) Vad är den naturliga definitionsmängden ge några eempel 3) Vad är en värdemängd? 4) Vad är en sammansatt funktion? 5) Varför

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts. Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet

Läs mer

TENTAMEN I TSRT19 REGLERTEKNIK

TENTAMEN I TSRT19 REGLERTEKNIK SAL: XXXXX TENTAMEN I TSRT9 REGLERTEKNIK TID: 25-8-2 kl. 8:-3: KURS: TSRT9 Reglerteknik PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Inger Erlander Klein, tel. 3-28665,73-9699 BESÖKER

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA4 Grundläggande kalkyl ÖVN3 Lösningsförslag 0.03.30 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

Lipschitz-kontinuitet

Lipschitz-kontinuitet Kapitel 2 Lipschitz-kontinuitet Vi börjar med att presentera den formella definitionen av gränsvärde och kontinuitet. Vi presenterar sedan en variant av kontinuitet som är lättare att använda och som ger

Läs mer

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x.

Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF1644) 1/ e x h. (sin x) 2 1 cos x. Institutionen för Matematik, KTH Lösningar till tentamen i Analys i en variabel för I och K (SF644) /6 29. Bestäm med derivatans definition d dx ex. Derivatans definition är f (x) = lim h h ( f(x + h)

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

G(s) = 5s + 1 s(10s + 1)

G(s) = 5s + 1 s(10s + 1) Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer

Läs mer

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning

TSIU61: Reglerteknik. Sammanfattning från föreläsning 5 (2/4) Stabilitet Specifikationer med frekvensbeskrivning TSIU6 Föreläsning 6 Gustaf Hendeby HT 206 / 7 Innehåll föreläsning 6 TSIU6: Reglerteknik Föreläsning 6 Stabilitet Specifikationer med frekvensbeskrivning Gustaf Hendeby ˆ Sammanfattning av föreläsning

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik

Reglerteknik I: F6. Bodediagram, Nyquistkriteriet. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik Reglerteknik I: F6 Bodediagram, Nyquistkriteriet Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 11 Frekvensegenskaper Hur svarar ett (slutet) system på oscillerande signaler? 2 / 11

Läs mer

Tentamensuppgifter, Matematik 1 α

Tentamensuppgifter, Matematik 1 α Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,

Läs mer

8. Euklidiska rum 94 8 EUKLIDISKA RUM

8. Euklidiska rum 94 8 EUKLIDISKA RUM 94 8 EUKLIDISKA RUM 8. Euklidiska rum Definition 8.. En skalärprodukt på vektorrummet V är en funktion som till varje par av element u och v i V ordnar ett reellt tal u v eller u v med följande egenskaper:.

Läs mer

Föreläsning 10, Egenskaper hos tidsdiskreta system

Föreläsning 10, Egenskaper hos tidsdiskreta system Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering

Läs mer

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet

Reglerteori, TSRT09. Föreläsning 8: Olinjäriteter och stabilitet. Torkel Glad. Reglerteknik, ISY, Linköpings Universitet Reglerteori, TSRT09 Föreläsning 8: Olinjäriteter och stabilitet Reglerteknik, ISY, Linköpings Universitet Sammanfattning av föreläsning 7 2(27) H 2 - och H - syntes. Gör W u G wu, W S S, W T T små. H 2

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Lineära system av differentialekvationer

Lineära system av differentialekvationer Föreläsning 8 Lineära system av differentialekvationer 8.1 Aktuella avsnitt i läroboken (5.1) Matrices and Linear Systems. (5.2) The Eigenvalue Method for Homogeneous Systems. (5.3) Second-Order Systems

Läs mer

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x =

med angivande av definitionsmängd, asymptoter och lokala extrempunkter. x 2 e x = UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik Distans, Matematik A Analys 2004 02 4 Skrivtid: 0-5. Hjälpmedel: Gymnasieformelsamling. Lösningarna skall åtföljas av förklarande

Läs mer

Industriell reglerteknik: Föreläsning 2

Industriell reglerteknik: Föreläsning 2 Industriell reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 33 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

Kvadratkomplettering

Kvadratkomplettering Kvadratkomplettering Steg-för-steg-demonstration Hillevi Gavel Institutionen för matematik och fysik (IMa) Mälardalens högskola (MDH) 3 april 2006 Instruktioner Det här bildspelet visar hur man genomför

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA24 Grundläggande kalkyl ÖVN2 Lösningsförslag 202.06.5 4.30 6.30 Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng:

Läs mer

DT1130 Spektrala transformer Tentamen

DT1130 Spektrala transformer Tentamen DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x

= ye xy y = xye xy. Konstruera även fasporträttet med angivande av riktningen på banorna. 5. Lös systemet x Uppsala Universitet Matematiska institutionen Anders Källström Prov i matematik Ordinära differentialekvationer F,Q,W,IT Civilingenjörsutbildningen 1996-6-7 Skrivtid: 15. 21.. Varje problem ger högst 5

Läs mer