Funktionen som inte är en funktion

Storlek: px
Starta visningen från sidan:

Download "Funktionen som inte är en funktion"

Transkript

1 Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen säs in, dvs. har en nollskild rörelsemängd, så ändras nämnda rörelsemängd. Inegralen över idsinervalle av krafen ugör e må på den ändrade rörelsemängden, och kallas för krafens impuls på punkmassan. Impuls = T f HL En korvarig kraf vars impuls har värde Om f :s impuls mä över hela idsaxeln har värde, och om f överför huvudparen av denna impuls under e lie inervall run idpunken 0, så kan de se u som i figuren nedanför. krafen impulsen

2 Funkionen som ine är en funkion.nb 2

3 3 Funkionen som ine är en funkion.nb I illusraionen ovanför kan krafen f h väljas fri bland fem sycken funkioner 2 h -h,h HL, h L -h,h h+ - - h HL, h qhh + L, h - p h 2, h sincj p h N. Ju mindre h-värde man väljer, deso mer lik Heavisidefunkionen blir impulsen. Därför förefaller de naurlig - eller hur - a hävda a de som de fem kraferna f h närmar sig, då h Ø 0, är en kraf d vars impuls är exak lika med Heavisidefunkionen. Man kan fråga sig vilka egenskaper hos krafen f h som är avgörande för a dess impuls skall närma sig jus Heavisidefunkionen, då h Ø 0. A f h måse uppfylla - fh HL = () är självklar, eller hur. Dea gäller för varje posiiv h. Därför kommer inegralvärde från e allmer koncenrera inervall omkring origo, då h Ø 0. Dvs. för varje ε > 0 är inegraionsbidrage från > ε lika med noll, bara h görs illräcklig lien. M.a.o. är lim hø 0 f h HL = 0 >ε (2)

4 Funkionen som ine är en funkion.nb 4 De fyra försa valen av f h uppfyller uppenbarligen (5). Men även den feme, gör de, fasän ine på e lika ydlig sä. Delafunkionen Då man låer h Ø 0, kommer således funkioner f h som saisfierar (4) och (5), a närma sig e objek som vi beecknar med d. De är radiion a, som nedanför, represenera d grafisk med en pil av längd. Tros a d ine är någon vanlig funkion (se längre ner i exen) kallas den för delafunkionen eller Diracfunkionen. De formella maemaiska maskinerie bakom är mins sag delika, och uvecklades under många 0

5 den för delafunkionen eller Diracfunkionen. De formella maemaiska maskinerie bakom d är mins sag delika, och uvecklades under många år av bl.a. den briiske fysikern och Nobelprisagaren Paul Dirac och den franske maemaikern Lauren Schwarz. 5 Funkionen som ine är en funkion.nb Paul Dirac och Lauren Schwarz Delafunkionens egenskaper är - dhl = (3) >ε dhl = 0, ε ¹ 0 lim dhl = + Ø0 (4) (5) Ë ANM Formeln (6) illsammans med (7) urycker a inegralvärde kommer från delafunkionens uppförande i origo. De följer a 0+ Ÿ 0- dhl = Ÿ 0- dhl = 0+ Ÿ - dhl =, och a Ÿ 0+ dhl = 0- Ÿ - dhl = 0. All dea beyder a d "söer u" hela sin impuls i en ensaka punk. När man hävdar a d ine är en vanlig funkion, åsyfas jus dea uppförande. För en "vanlig" inegrerbar funkion är nämligen inegraionsbidrage från en ensaka punk lika med noll. En inegralformel Grafen för produken fÿ f h mellan f h och en koninuerlig funkion f blir allmer lik grafen för fh0lÿ f h då h Ø 0.

6 Funkionen som ine är en funkion.nb 6 f f h fÿ f h 3 h Dea fakum moiverar approximaionen - fhlÿ fh HL º - fh0lÿ fh HL = fh0lÿ - fh HL = fh0l De följer a delafunkionen har egenskapen HL - fhl dhl = fh0l (6) för koninuerliga funkioner f. Noera a (6) kan berakas som e specialfall av (9), nämligen där f =. Formeln (9) kommer a illämpas flera gånger under kursen, så lägg den på minne, sam se ill a du har en inuiiv försåelse för den. Man brukar olka (9) som a "d agerar på f och reurnerar f:s värde i origo". Med dea synsä är d en lineär operaor på rumme av funkioner som är koninuerliga i origo. (Lineärieen kommer sig av a inegraion är jus en lineär operaion.) Med mosvarande argumenaion som i ANM 5 kan man konsaera a värde av inegraionen i (9) kommer från uppförande i origo. Därför är närhels a < 0 < b. a b fhl dhl = fh0l.

7 7 Funkionen som ine är en funkion.nb Diskre version De finns även en diskre version av delafunkionen. Och den är en "hel vanlig" (diskre) funkion: dhnl = ;, n = 0 0, n ¹ 0 Den diskrea versionen av delafunkionen uppfyller en diskre version av likheen (6) fhnl dhnl = fh0l - vilke är lä a verifiera, eller hur.

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Modellering av Dynamiska system Ställ frågor!

Modellering av Dynamiska system Ställ frågor! Modellering av Dynamiska sysem -2014 Säll frågor! Beng Carlsson bc@i.uu.se Rum 2211 Inrodukion #1 Sysem och deras modeller Dynamiska och saiska sysem Användning av modeller Maemaisk modellering E modelleringsexempel

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

Jobbflöden i svensk industri 1972-1996

Jobbflöden i svensk industri 1972-1996 Jobbflöden i svensk induri 1972-1996 av Fredrik Andersson 1999-10-12 Bilaga ill Projeke arbeslöshesförsäkring vid Näringsdeparemene Sammanfaning Denna udie dokumenerar heerogenieen i induriella arbesällens

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Om de trigonometriska funktionerna

Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi

Läs mer

System, Insignal & Utsignal

System, Insignal & Utsignal Kap 1 Signaler och Sysem x Sysem y = H{x} 1 Sysem, Insignal & Usignal Insignal x() x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem,

Läs mer

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning Hans Andersson (FP), ordförande i Tiohundra nämnden varanna år och Karin Thalén, förvalningschef TioHundra bakom solarna som symboliserar a ingen ska falla mellan solar inom TioHundra. Ingen åervändo TioHundra

Läs mer

Fouriermetoder för VT2008

Fouriermetoder för VT2008 Insiuionen för maemaik KTH Fouriermeoder för T VT008 Eike Peermann Innehåll. Inledning.... Fourierserier och -inegraler inom signaleorin. Komplexa fourierserier.... Lie om fel...6.3 Om orogonalie. Parsevals

Läs mer

2 Laboration 2. Positionsmätning

2 Laboration 2. Positionsmätning 2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Numerisk analysmetod för oddskvot i en stratifierad modell

Numerisk analysmetod för oddskvot i en stratifierad modell U.U.D.M. Projec Repor 25:2 Numerisk analysmeod för oddskvo i en sraifierad modell Mikael Jedersröm Examensarbee i maemaik, 3 hp Handledare och examinaor: Ingemar Kaj Maj 25 Deparmen of Mahemaics Uppsala

Läs mer

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER

5B1134 MATEMATIK OCH MODELLER FEMTE FÖRELÄSNINGEN INTEGRALER 5B1134 MATEMATK OC MODELLER EMTE ÖRELÄSNNGEN NTEGRALER 1. OM NTEGRALER 1.1. Primiiva unkioner. Vi har se idigare a vissa unkioner,, har primiiva unkioner, dvs en unkion,, vars derivaa. Om är en primiiv

Läs mer

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET?

KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? KOLPULVER PÅ GAMLA FINGERAVTRYCK FUNGERAR DET? En undersökning av hur väl kolpulver framkallar åldrade fingeravryck avsaa på en ickeporös ya. E specialarbee uför under kriminaleknisk grundubildning vid

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14.

Tentamen på grundkursen EC1201: Makroteori med tillämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. STOCKHOLMS UNIVERSITET Naionalekonomiska insiuionen Mas Persson Tenamen på grundkursen EC1201: Makroeori med illämpningar, 15 högskolepoäng, lördagen den 14 februari 2009 kl 9-14. Tenamen besår av io frågor

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svesning Examensarbee uför i Reglereknik av Andreas Pilkvis LiTH-ISY-EX-- Linköping Analys och modellering av ljusbåglängdsregleringen

Läs mer

Uppgifter för Fy 1 från gamla Nationella Prov Ordnade efter område och svårighetsgrad

Uppgifter för Fy 1 från gamla Nationella Prov Ordnade efter område och svårighetsgrad 2015 Uppgifter för Fy 1 från gamla Nationella Prov Ordnade efter område och svårighetsgrad 2015-05-01 1 Nedan följer en sammanställning av gamla Nationella Prov i Fysik A och B som är anpassade för Fy

Läs mer

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet 1 File = SweTrans_RuMarch09Lohmander_090316 ETT ORD KORRIGERAT 090316_2035 (7 sidor inklusive figur) Sraegiska möjligheer för skogssekorn i Ryssland med fokus på ekonomisk opimering, energi och uhållighe

Läs mer

Pensionsåldern och individens konsumtion och sparande

Pensionsåldern och individens konsumtion och sparande Pensionsåldern och individens konsumion och sparande Om hur en höjning av pensionsåldern kan ändra konsumionen och sparande. Maria Nilsson Magiseruppsas Naionalekonomiska insiuionen Handledare: Ponus Hansson

Läs mer

Tentamensskrivning i Matematik IV, 5B1210.

Tentamensskrivning i Matematik IV, 5B1210. Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

Föreläsning 8. Kap 7,1 7,2

Föreläsning 8. Kap 7,1 7,2 Föreläsning 8 Kap 7,1 7,2 1 Kap 7: Klassisk komponenuppdelning: Denna meod fungerar bra om idsserien uppvisar e saisk mönser. De är fyra komponener i modellen: Muliplikaiv modell: Addiiv modell: där y

Läs mer

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster Tjänseprisindex för deekiv- och bevakningsjänser; säkerhesjänser Branschbeskrivning för SNI-grupp 74.60 TPI- rappor nr 17 Camilla Andersson/Kamala Krishnan Tjänseprisindex, Prisprogramme, Ekonomisk saisik,

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

5 VÄaxelkurser, in ation och räantor vid exibla priser {e ekter pºa lºang sikt

5 VÄaxelkurser, in ation och räantor vid exibla priser {e ekter pºa lºang sikt 5 VÄaxelkurser, in aion och räanor vid exibla priser {e eker pºa lºang sik Som vi idigare noera anar vi a den reala väaxelkursen pºa lºang sik Äar oberoende av penningmäangden och väaxelkursen beror dºa

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM

Lektion 4 Lagerstyrning (LS) Rev 20130205 NM ekion 4 agersyrning (S) Rev 013005 NM Nedan följer alla uppgifer som hör ill lekionen. De är indelade i fyra nivåer där nivå 1 innehåller uppgifer som hanerar en specifik problemsällning i age. Nivå innehåller

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tenamen i Signal- och bildbehandling TSBB14 Tid: 29-6-3 kl. 8-12 Lokal: R41 och U15 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och 1.45 el 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Förslag till minskande av kommunernas uppgifter och förpliktelser, effektivisering av verksamheten och justering av avgiftsgrunderna

Förslag till minskande av kommunernas uppgifter och förpliktelser, effektivisering av verksamheten och justering av avgiftsgrunderna Bilaga 2 Förslag ill minskande av kommuner uppgifer och förplikelser, effekivisering av verksamheen och jusering av avgifsgrunderna Ågärder som minskar kommuner uppgifer Inverkan 2017, milj. euro ugifer

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmaemaik II iskrea kommuaionsfunkioner Erik Alm, Hannover Re Sockholm 2013 iskre eknik Premier och annuieer bealas diskre ödligheen definieras ofas i en diskre abell (Undanag: de Nordiska

Läs mer

FAQ. frequently asked questions

FAQ. frequently asked questions FAQ frequenly asked quesions På de följande sidorna har jag samla ihop några av de frågor jag under årens lopp få av sudener när diverse olika problem uppså i arbee med SPSS. De saisiska problemen har

Läs mer

Fouriermetoder för Signaler och system I

Fouriermetoder för Signaler och system I Insiuionen för maemaik, KTH 05096 Arbesmaerial för 5B09/5:/HT05/E.P. Fouriermeoder för Signaler och sysem I Syfe med de här kursavsnie är a ge en orienering av en del i den maemaiska analysen, de s.k.

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

Modeller och projektioner för dödlighetsintensitet

Modeller och projektioner för dödlighetsintensitet Modeller och projekioner för dödlighesinensie en anpassning ill svensk populaionsdaa 1970- Jörgen Olsén juli 005 Presenerad inför ubildningsuskoe inom Svenska Akuarieföreningen den 1 sepember 005 Modeller

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

Tjänsteprisindex (TPI) 2010 PR0801

Tjänsteprisindex (TPI) 2010 PR0801 Ekonomisk saisik/ Enheen för prissaisik 2010-06-22 1(12) Tjänseprisindex (TP) 2010 PR0801 denna beskrivning redovisas förs allmänna uppgifer om undersökningen sam dess syfe, regelverk och hisorik. Därefer

Läs mer

Betalningsbalansen. Tredje kvartalet 2008

Betalningsbalansen. Tredje kvartalet 2008 Bealningsbalansen Tredje kvarale 2008 Bealningsbalansen Tredje kvarale 2008 Saisiska cenralbyrån 2008 Balance of Paymens. Third quarer 2008 Saisics Sweden 2008 Producen Producer Saisiska cenralbyrån,

Läs mer

Håkan Pramsten, Länsförsäkringar 2003-09-14

Håkan Pramsten, Länsförsäkringar 2003-09-14 1 Drifsredovisning inom skadeförsäkring - föreläsningsaneckningar ill kursavsnie Drifsredovisning i kursen Försäkringsredovi s- ning, hösen 2004 (Preliminär version) Håkan Pramsen, Länsförsäkringar 2003-09-14

Läs mer

Dags för stambyte i KPI? - Nuvarande metod för egnahem i KPI

Dags för stambyte i KPI? - Nuvarande metod för egnahem i KPI SAISISKA CENRALBYRÅN Pm ill Nämnden för KPI 1(21) Dags för sambye i KPI? - Nuvarande meod för egnahem i KPI För beslu Absrac I denna pm preseneras hur nuvarande meod för egnahem i KPI beräknas, moiveras

Läs mer

ByggeboNytt. Kenth. i hyresgästernas tjänst. Getingplåga Arbetsförmedlingen på plats i Alvarsberg. Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn

ByggeboNytt. Kenth. i hyresgästernas tjänst. Getingplåga Arbetsförmedlingen på plats i Alvarsberg. Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn ByggeboNy Nr 3 2012 Byggebo AB, Box 34, 572 21 Oskarshamn Geingplåga Arbesförmedlingen på plas i Alvarsberg Kenh i hyresgäsernas jäns Sark posiiv rend Den posiiva renden håller i sig. Under sommaren har

Läs mer

Konjunkturinstitutets finanspolitiska tankeram

Konjunkturinstitutets finanspolitiska tankeram Konjunkurinsiues finanspoliiska ankeram SPECIALSTUDIE NR 16, MARS 2008 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET (KI) gör analyser och prognoser över den svenska och ekonomin sam bedriver forskning

Läs mer

Skillnaden mellan KPI och KPIX

Skillnaden mellan KPI och KPIX Fördjupning i Konjunkurläge januari 2008 (Konjunkurinsiue) Löner, vinser och priser 7 FÖRDJUPNNG Skillnaden mellan KP och KPX Den långsikiga skillnaden mellan inflaionsaken mä som KP respekive KPX anas

Läs mer

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2

Lektion 3 Projektplanering (PP) Fast position Projektplanering. Uppgift PP1.1. Uppgift PP1.2. Uppgift PP2.3. Nivå 1. Nivå 2 Lekion 3 Projekplanering (PP) as posiion Projekplanering Rev. 834 MR Nivå 1 Uppgif PP1.1 Lieraur: Olhager () del II, kap. 5. Nedan följer alla uppgifer som hör ill lekionen. e är indelade i fyra nivåer

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik E06 nbyggd Elekronik F F3 F4 F Ö Ö P-block Dokumenaion, Seriecom Pulsgivare,, R, P, serie och parallell KK LAB Pulsgivare, Menyprogram Sar för programmeringsgruppuppgif Kirchoffs lagar Nodanalys Tvåpolsasen

Läs mer

( ) är lika med ändringen av rörelse-

( ) är lika med ändringen av rörelse- LÖSNINGAR TILL PROBLEM I KAPITEL 9 LP 9. Impulslagen skris allmän Fd p() p( ) β och ualas: är lika med ändringen a rörelse- krafens impuls under idsineralle, mängden under samma idsinerall. y I dea problem

Läs mer

En modell för optimal tobaksbeskattning

En modell för optimal tobaksbeskattning En modell för opimal obaksbeskaning under idsinkonsisena preferenser och imperfek informaion Krisofer Törner* 1 Engelsk iel: A model for opimal obacco excise axaion under imeinconsisen preferences and

Läs mer

3 Rörelse och krafter 1

3 Rörelse och krafter 1 3 Rörelse och krafer 1 Hasighe och acceleraion 1 Hur lång id ar de dig a cykla 5 m om din medelhasighe är 5, km/h? 2 En moorcykel accelererar från sillasående ill 28 m/s på 5, s. Vilken är moorcykelns

Läs mer

Egnahemsposten i konsumentprisindex. KPI-utredningens förslag. Specialstudie Nr 2, maj 2002

Egnahemsposten i konsumentprisindex. KPI-utredningens förslag. Specialstudie Nr 2, maj 2002 Egnahemsposen i konsumenprisindex En granskning av KPI-uredningens förslag Specialsudie Nr 2, maj 22 Ugiven av Konjunkurinsiue Sockholm 22 Konjunkurinsiue (KI) gör analyser och prognoser över den svenska

Läs mer

Realtidsuppdaterad fristation

Realtidsuppdaterad fristation Realidsuppdaerad frisaion Korrelaionsanalys Juni Milan Horemuz Kungliga Tekniska högskolan, Insiuion för Samhällsplanering och miljö Avdelningen för Geodesi och geoinformaik Teknikringen 7, SE 44 Sockholm

Läs mer

Välkommen till. och. hedersvåld försvara ungdomarnas rättigheter. agera mot. Illustration: www.istockphoto.com. juno blom

Välkommen till. och. hedersvåld försvara ungdomarnas rättigheter. agera mot. Illustration: www.istockphoto.com. juno blom Välkommen ill och Illusraion: www.isockphoo.com # 6 OKTOBER 2009 årg 3 SkandinaviSk SjukvårdSinformaion agera mo juno blom hedersvåld försvara ungdomarnas räigheer Själavårdarna inom Kriminalvården samalar

Läs mer

Betalningsbalansen. Fjärde kvartalet 2012

Betalningsbalansen. Fjärde kvartalet 2012 Bealningsbalansen Fjärde kvarale 212 Bealningsbalansen Fjärde kvarale 212 Saisiska cenralbyrån 213 Balance of Paymens. Fourh quarer 212 Saisics Sweden 213 Producen Producer Saisiska cenralbyrån, enheen

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

Ansökan till den svenskspråkiga ämneslärarutbildningen för studerande vid Helsingfors universitet. Våren 2015

Ansökan till den svenskspråkiga ämneslärarutbildningen för studerande vid Helsingfors universitet. Våren 2015 Ansökan ill den svenskspråkiga ämneslärarubildningen för suderande vid Helsingfors universie Våren 2015 Enheen för svenskspråkig ämneslärarubildning info-amneslarare@helsinki.fi fn 02-941 20606, 050-448

Läs mer

Elektroniska skydd Micrologic 2.0 och 5.0 Lågspänningsutrustning. Användarmanual

Elektroniska skydd Micrologic 2.0 och 5.0 Lågspänningsutrustning. Användarmanual Elekoniska skydd Lågspänningsuusning Användarmanual Building a Newavancer Elecicl'élecicié World Qui fai auan? Elekoniska skydd Inodukion ill de elekoniska skydde Lära känna de elekoniska skydde Funkionsöversik

Läs mer

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer: Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Upphandlingar inom Sundsvalls kommun

Upphandlingar inom Sundsvalls kommun Upphandlingar inom Sundsvalls kommun 1 Innehåll Upphandlingar inom Sundsvalls kommun 3 Kommunala upphandlingar - vad är de? 4 Kommunkoncernens upphandlingspolicy 5 Vad är e ramaval? 6 Vad gäller när du

Läs mer

Ha kul på jobbet är också arbetsmiljö

Ha kul på jobbet är också arbetsmiljö Tväeri, kök, recepion, konor, hoellrum Här finns många olika arbesuppgifer och risker. Och på jus de här hoelle finns e sälle där de allid är minus fem grader en isbar. Ha kul på jobbe är också arbesmiljö

Läs mer

Truckar och trafik farligt för förare

Truckar och trafik farligt för förare De händer en del i rafiken. För några år sedan körde en av Peer Swärdhs arbeskamraer av vägen. Pressade ider, ruckar och unga fordon. På åkerie finns många risker. Arbesgivaren är ansvarig för arbesmiljön,

Läs mer

Tunga lyft och lite skäll för den som fixar felen

Tunga lyft och lite skäll för den som fixar felen Tunga lyf och lie skäll för den som fixar felen De fixar soppe i avloppe, de rasiga gångjärne, den läckande vämaskinen. De blir uskällda, igenkända, välkomnade. A jobba hemma hos människor har sina särskilda

Läs mer

Förord: Sammanfattning:

Förord: Sammanfattning: Förord: Denna uppsas har illkommi sedan uppsasförfaarna blivi konakade av Elecrolux med en förfrågan om a undersöka saisikmodulen i deras nyimplemenerade affärssysem. Vi vill därför acka vår handledare

Läs mer

Kan arbetsmarknadens parter minska jämviktsarbetslösheten? Teori och modellsimuleringar

Kan arbetsmarknadens parter minska jämviktsarbetslösheten? Teori och modellsimuleringar Kan arbesmarknadens parer minska jämviksarbeslösheen? Teori och modellsimuleringar Göran Hjelm * Working aper No.99, Dec 2006 Ugiven av Konjunkurinsiue Sockholm 2006 * Analysen i denna rappor bygger på

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

Naturens skatter blir julens pynt

Naturens skatter blir julens pynt Naurens skaer blir julens pyn Hos Karen: 1. Fransk vinage 2. Fruk & grön som julpyn 3. Speglar i alla rum 18 drömhem & rädgård F 14/2016 drömhem 1 Karen lockar fram julkänslan med fynd från sin egen rädgård,

Läs mer

I situationer där det inte råder någon oklarhet om vilken funktion f som avses, nöjer vi oss med att skriva c n istället för c n Hf L.

I situationer där det inte råder någon oklarhet om vilken funktion f som avses, nöjer vi oss med att skriva c n istället för c n Hf L. Fourierserien Fourierkoefficienter I avsnittet trigonometriska olynom har vi härlett en integralformel för koefficienterna i n c n  n W t när summan är lika med f HtL. Med integralformeln som utgångsunkt

Läs mer

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning

VA-TAXA. Taxa för Moravatten AB:s allmänna vatten- och avloppsanläggning VA-TAXA 2000 Taxa för Moravaen AB:s allmänna vaen- och avloppsanläggning Taxa för Moravaen AB:s Allmänna vaen- och avloppsanläggning 4 4.1 Avgif as u för nedan angivna ändamål: Anagen av Moravaen AB:s

Läs mer

Teknisk dokumentation

Teknisk dokumentation Teknisk dokumenaion Oscar Carlsson Version 1.0 Saus Granskad Godkänd Reglereknisk projekkurs WalkCAM LIPs Andreas Fälskog walkcam@bredband.ne 1 PROJEKTIDENTITET Reglereknisk projekkurs WalkCAM 2007/VT

Läs mer

Mät upp- och urladdning av kondensatorer

Mät upp- och urladdning av kondensatorer elab011a Namn Daum Handledarens sign. Laboraion Mä upp- och urladdning av kondensaorer Varför denna laboraion? Oscilloskope är e vikig insrumen för a sudera kurvformer. Avsiken med den här laboraionen

Läs mer

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo. 3D vaenanimering Joakim Julin Deparmen of Compuer Science Åbo Akademi Universiy, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.fi Absrak Denna arikel kommer a presenera e anal olika algorimer för a

Läs mer

Rörelse. Hastighet. 166 Rörelse Författarna och Zenit AB

Rörelse. Hastighet. 166 Rörelse Författarna och Zenit AB Rörelse Hur kan en acceleraion ara negai? Vad innebär de a en rörelse är likformig? Kan å händelser ara samidiga, men ändå ine? Vilken acceleraion får en fri fallande kropp? Vad menas med likformig accelererad

Läs mer

Studieverktyg. Tankekartor Fickminne/MP3

Studieverktyg. Tankekartor Fickminne/MP3 Sudieverky Tankekaror Fickminne/MP MindFull - Tankekaror på svenska Proramme Mindull är e läanvän och lexibel ankekarsproram som låer di bya dina ankekaror precis som du vill ha dem. Du kan använda ex,

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmaemaik II Hanering av översko Beng von Bahr Richard Blom 2004 1(22) Innehållsföreckning 1. Hur och var översko uppsår i en livporfölj...3 1.1. Resularäkningen...3 Ekonomisk resula i allmänhe...3

Läs mer

Chalmers. Matematik- och fysikprovet 2010 Fysikdelen

Chalmers. Matematik- och fysikprovet 2010 Fysikdelen Chalmers Teknisk fysik Teknisk maemaik Arkiekur och eknik Maemaik- och fysikprove 2010 ysikdelen Provid: 2h. Hjälpmedel: inga. På sisa sidan finns en lisa över fysikaliska konsaner m.m. som evenuell kan

Läs mer

Inflation och penningmängd

Inflation och penningmängd EKONOMSK DEBAT BO AXELL nflaion och penningmängd Vilka är inflaionens besämningsfakorer? Dea är själva ugångspunken for flerale ariklar i dea emanummer.. Somliga hävdar a inflaionen speciell i e lie land

Läs mer

Betalningsbalansen. Tredje kvartalet 2012

Betalningsbalansen. Tredje kvartalet 2012 Bealningsbalansen Tredje kvarale 2012 Bealningsbalansen Tredje kvarale 2012 Saisiska cenralbyrån 2012 Balance of Paymens. Third quarer 2012 Saisics Sweden 2012 Producen Producer Saisiska cenralbyrån,

Läs mer

Diverse 2(26) Laborationer 4(26)

Diverse 2(26) Laborationer 4(26) Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer

Läs mer

Vad är den naturliga räntan?

Vad är den naturliga räntan? penning- och valuapoliik 20:2 Vad är den naurliga ränan? Henrik Lundvall och Andreas Wesermark Förfaarna är verksamma vid avdelningen för penningpoliik, Sveriges riksbank. Vilken realräna bör en cenralbank

Läs mer

Kylvätska, tappa ur och fylla på

Kylvätska, tappa ur och fylla på Kyväska, appa ur och fya på Nödvändiga speciaverkyg, konro- och mäinsrumen sam hjäpmede Adaper för ryckprovare för kysysem -V.A.G 1274/8- Rör för ryckprovare för kysysem -V.A.G 1274/10- Uppsamingskär för

Läs mer

Inbyggd radio-styrenhet 1-10 V Bruksanvisning

Inbyggd radio-styrenhet 1-10 V Bruksanvisning Version: R 2.1 Ar. r.: 0865 00 Funkion Radio-syrenheen möjliggör en radiosyrd ändning/ släckning och ljusdämpning av en belysning. Inkopplingsljussyrkan kan sparas i apparaen som memory-värde. Bejäning

Läs mer

Aktiverade deltagare (Vetenskapsteori (4,5hp) HT1 2) Instämmer i vi ss mån

Aktiverade deltagare (Vetenskapsteori (4,5hp) HT1 2) Instämmer i vi ss mån 2012-10-30 Veenskapseori (4,5hp) HT12 Enkäresula Enkä: Saus: Uvärdering, VeTer, HT12 öppen Daum: 2012-10-30 14:07:01 Grupp: Besvarad av: 19(60) (31%) Akiverade delagare (Veenskapseori (4,5hp) HT1 2) 1.

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

Tjänsteprisindex för varulagring och magasinering

Tjänsteprisindex för varulagring och magasinering Tjänseprisindex för varulagring och magasinering Branschbeskrivning för SNI-grupp 63.12 TPI-rappor nr 14 Kaarina Båh Chrisian Schoulz Tjänseprisindex, Prisprogramme, Ekonomisk saisik, SCB November 2005

Läs mer

För ett magiskt liv. Motivation för skoltrötta. Kom på Carolinas seminarium Gör din grej!

För ett magiskt liv. Motivation för skoltrötta. Kom på Carolinas seminarium Gör din grej! HÖSTEN 2013! a g n ä l r e Ef Kom på Carolinas seminarium Gör din grej! Inspiraion a hia jus din unika energikälla För e magisk liv Carolinas fina kalender och dagbok hjälper dig a skapa di drömliv Moivaion

Läs mer

Betalningsbalansen. Tredje kvartalet 2010

Betalningsbalansen. Tredje kvartalet 2010 Bealningsbalansen Tredje kvarale 2010 Bealningsbalansen Tredje kvarale 2010 Saisiska cenralbyrån 2010 Balance of Paymens. Third quarer 2010 Saisics Sweden 2010 Producen Producer Saisiska cenralbyrån,

Läs mer

Finansmarknaden; En översikt av instrument och värderingsmodeller

Finansmarknaden; En översikt av instrument och värderingsmodeller Finansmarknaden; En översik av insrumen och värderingsmodeller Jan R. M. Röman Deparmen of Mahemaics and Physics Mälardalen Universiy, weden Mälardalen Universiy INLEDNING... Akieopionens villkor... Akieerminens

Läs mer

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd.

Från kap. 25: Man får alltid ett spänningsfall i strömmens riktning i ett motstånd. Från kap. 5: Ohm s lag Hög poenial på den sida där srömmen går in Låg poenial på den sida där srömmen går u Man får allid e spänningsfall i srömmens rikning i e mosånd. Från kap. 5: Poenialskillnaden över

Läs mer