System, Insignal & Utsignal

Storlek: px
Starta visningen från sidan:

Download "System, Insignal & Utsignal"

Transkript

1 Kap 1 Signaler och Sysem x Sysem y = H{x} 1 Sysem, Insignal & Usignal Insignal x() x[n] SYSTEM H! H = sysemoperaorn Usignal y() = H{y()} y[n] = H{x[n]} w E SYSTEM = en maemaisk modell av e fysikalisk sysem, al. en algorim, som för olika insignaler x genererar olika usignaler y. w En SIGNAL = en informaionsbärande maemaisk funkion som represenerar en (ofa mäbar) fysikalisk sorhe. w Signalerna är här ofas deerminisiska, endimensionella, periodiska eller icke-periodiska, idskoninuerliga eller idsdiskrea.

2 Kap 1 Signaler och Sysem x Sysem y = H{x} 2 Signaloperaioner w Skifning: y 2 () = x(+2) x() y 1 () = x( 3) y() = x( ± T) 2 3 w Spegling: y( ) = x( ) w Tidsskalning: y( ) = x( a ) y() = x( ) x() x(3) x() x(0,4) (0,4=2/5) 1/3 1 5/2

3 Kap 1 Signaler och Sysem x Sysem y = H{x} 3 Signalyper x() Tidskoninuerlig signal ( coninuous-ime ) x[n] Tidsdiskre signal ( discree-ime ) n Periodisk signal x() är T 0 periodisk x() = x( +T 0 ) T 0, min = Grundperiodiden x() T 0

4 Kap 1 Signaler och Sysem x Sysem y = H{x} 4 Signalyper olika klassificeringar Kausal signal x() = 0 för < 0 (Anikausal signal x() = 0 för 0 ) Energisignal = signal som har ändlig signalenergi E x = x() 2 d Effeksignal = signal som har ändlig signaleffek 1 P x = lim T T T 2 T 2 x() 2 d

5 Kap 1 Signaler och Sysem x Sysem y = H{x} 5 Signalmodeller de vikigase Enhessege u() (heavisidefunkionen, uni sep funcion ) u () 1; 0 = 0; < 0 1 u() u() används ofa vid sudier av sysems segsvar, dvs. y() då x() = u() för a forma/definiera signaler under olika idsinervall.ex.kausala signaler. Också användbar: (sår ej i boken) u 0 () = 1; > 0 0; 0 ( Använd u ( ) i sälle för u( ) 0 )

6 Kap 1 Signaler och Sysem x Sysem y = H{x} 6 Signalmodeller de vikigase Diracimpulsen δ() Paul Dirac:s egen definiion : Gränsvärdesolkning: ( uni impulse funcion ): δ () = 0 0 δ ()d = 1 1 τ τ d ( ) δ () då τ 0 area = 1 δ ( )

7 Kap 1 Signaler och Sysem x Sysem y = H{x} 7 Signalmodeller de vikigase ϕ(t) = dirac:ens vik Egenskaper hos diracimpulsen: φ() δ ( T) = φ(t) δ ( T) 2. φ()δ ( T)d = φ(t) φ(t) T δ ( T) φ() ( The sampling/sifing propery ) φ ( T ) δ ( T) T δ() definieras av samband 2! δ() är en disribuion (generaliserad funkion) Disribuioner definieras av sin verkan, via e inegralsamband, på andra (es-)funkioner (här är esfunkionen ϕ() ). 3. u() = δ ( τ )dτ δ ( ) = du ( ) d

8 Kap 1 Signaler och Sysem x Sysem y = H{x} 8 Signalmodeller de vikigase Generella komplexa exponenialfunkionen e s s = σ + jω e s = e σ e jω e s = e σ e jω 4 cenrala specialfall: s = 0 k e 0 = k (1) ω = 0 e σ (2) cos ω ( ) = 1 2 es + e s ( ); σ = 0 (3) e σ cos( ω); allmän (4)

9 Kap 1 Signaler och Sysem x Sysem y = H{x} 9 Sysemegenskaper 1. Linjärie Lå insignalerna x 1 () och x 2 () ge upphov ill usignalerna y 1 () resp. y 2 () och beraka insignalen x() = a x 1 () + b x 2 () (a, b konsaner) Syseme är linjär omm usignalen kan skrivas som y() = a y 1 () + b y 2 () Annars är de icke-linjär ( nonlinear ) Al. formulering: H a x 1 ( ) + b x 2 ( ) ( ) ( ) { } = a H { x 1 } + b H { x 2 } Linjär homogen, och addiiv, H ( ) ( ) + x 2 ( ) ( ) H { a x } = a H { x } { x 1 } = H { x 1 ( ) } + H { x 2 ( ) } Linjärieskonsekvens: Om x() = 0 y() = 0

10 Kap 1 Signaler och Sysem x Sysem y = H{x} 10 Sysemegenskaper 2. Tidsinvarians ( ime invariance ) För e idsinvarian sysem ändras ine sysemes paramerar med iden. Konsekvens: Om x() y() x( T) y( T), dvs. om H { x( ) } = y ( ) H { x( T )} = y ( T ) Ine idsinvarian sysem idsvarian (= idsvariabel, icke idsinvarian) ( ime-varying ) Exempel: x() y () y ( T) x ( T) T Prakiska sysem är ofas Linjära & TidsInvariana LTI-sysem

11 Kap 1 Signaler och Sysem x Sysem y = H{x} 11 Sysemegenskaper 3. Kausalie Sysemegenskap y( 0 ) beror på x( 0 )? y( 0 ) beror på x( > 0 )? Kausal JA NEJ Icke-kausal Evenuell JA Spec.fall: ani-kausal NEJ JA Handlar om usignalens beroende av insignalen. Kausal sysem usignalen beror ine på insignalens framida värden: Kausalieskonsekvens: Om x( < 0 ) = 0 y( < 0 ) = 0 Alla fysikaliska realidssysem är kausala (Boken: causal resp. non-causal )

12 Kap 1 Signaler och Sysem x Sysem y = H{x} 12 Sysemegenskaper 4. Sabilie Usignalen från e (insignal-usignal-)sabil ( BIBO sable ) sysem är begränsad för alla begränsade insignaler, dvs. x() K 1 < y() K 2 <, K 1, K 2 R Om ej uppfyll syseme är (insignal-usignal-)insabil ( BIBO unsable ) I kursen fokuserar vi främs på exern sabilie mer om dea senare (kap. 2.6)! 5. Invererbarhe x() y() = S H { x() } S i = x()? Om H i { y() } = x() gäller för sysem S i, så är sysem S invererbar och sysem S i är inverssysem ill sysem S.

13 Kap 1 Signaler och Sysem x Sysem y = H{x} 13 Sysemegenskaper 6. Tidskoninuerlig vs. Tidsdiskre ( coninuous-ime vs. discree-ime ) x() y() x[n] y[n] Tidskoninuerliga sysem modelleras/implemeneras ofa m.h.a. idsdiskrea sysem: x() Likformig sampling = nt s Tidsdiskre sysem Tidskoninuerlig x[n] y[n] sysem H {x[n]} Tidskoninuerlig sysem Rekonsrukion y() = H {x()} Kursfokus: Egenskaper hos dessa olika delblock sam relaioner mellan de olika in- och usignalerna både i idsdomänen och frekvensdomänen!

14 Kap 1 Signaler och Sysem x Sysem y = H{x} 14

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner

Signal- och Bildbehandling FÖRELÄSNING 1 Introduktion. Signaler och System. Exempel på signaler som funktion av tid en produkt mobiltelefoner Signal- och Bildbehandling FÖRELÄSNING Inrodukion. Signaler och Sysem. Vad är en signal och e sysem? Eempel på olika signaler. Vad kan man anända signalbehandling ill? Eempel på olika illämpningar Klassificering

Läs mer

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1

SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SIGNALER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET KLASSIFICERING AV SIGNALER Fem egenskaper a beaka vid klassificering. Är signalen idskoninuerlig eller idsdiskre? jämn och/eller udda? periodisk

Läs mer

Informationsteknologi

Informationsteknologi Föreläsning 2 och 3 Informaionseknologi Några vikiga yper av maemaiska modeller Blockschemamodeller Konsaner, variabler, paramerar Dynamiska modeller Tillsåndsmodeller en inrodkion Saiska samband Kor översik

Läs mer

Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1

Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 Kap 7 Fourierransformanalys av idskoninuerliga signaler Kap 7 Fourierransformanalys av idskoninuerliga signaler 2 Fourierransformen Fourierransformen ill x(): F { x() } = X(ω) = x() e jω d Inversa fourierransformen

Läs mer

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion)

Liten formelsamling Speciella funktioner. Faltning. Institutionen för matematik KTH För Kursen 5B1209/5B1215:2. Språngfunktionen (Heavisides funktion) Insiuionen för maemaik KTH För Kursen 5B09/5B5: Lien formelsamling Speciella funkioner Språngfunkionen (Heavisides funkion) u() =, om > 0, 0, om < 0. Signumfunkionen sign =, om > 0,, om < 0. Rekangelfunkionen

Läs mer

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion

Föreläsning 4. Laplacetransformen? Lösning av differentialekvationer utan Laplacetransformen. Laplacetransformen Överföringsfunktion Föreläsning 4 Laplaceransormen? Laplaceransormen Överöringsunkion E kraull maemaisk verkyg ör a sudera och lösa linjära dierenialekvaioner T.ex. u Sysem y Vad blir usignalen y() give en viss insignal u()?

Läs mer

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) =

( ) ( ()) LTI-filter = linjärt, tidsinvariant filter. 0. Svaret skall ges utan -tecken. 2. Ett LTI-filter har amplitudkarakteristiken A( ω) = gamla eor maem me E, fk, del B (99) CTH&GU, maemaik Teame i maemaiska meoder, fk, delb, TMA98, 999-8-7, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige)bea Ej räkedosa Telefo: OBS:

Läs mer

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen

( ) ( θ( n) 1. Ett kausalt tidskontinuerligt filter F har tillståndsekvationen gamla eor maem me E, fk, del B () CTH&GU, maemaik Teame i maemaiska meoder fk, del B, TMA98, -8-, kl 85-5 Hjälpmedel: Formelsamlig (delas u, lämas illbaka efer skrivige) Bea Ej räkedosa Telefo: Rolf Liljedal,

Läs mer

1 Introduktion till SIMULINK. Grunderna..2. Biologiska system. 7 Uppgift: studium av återkopplat biosystem 9. Tidskontinuerliga Reglersystem...

1 Introduktion till SIMULINK. Grunderna..2. Biologiska system. 7 Uppgift: studium av återkopplat biosystem 9. Tidskontinuerliga Reglersystem... Inrodukion ill SIMULIK Insiuionen för Tillämpad fysik och elekronik Umeå Universie 99-0-04, 07--6 SG, 008-09-4 BE Inrodukion ill SIMULIK Grunderna.. Biologiska sysem. 7 Uppgif: sudium av åerkoppla biosysem

Läs mer

Frekvensanalys. Systemteknik/Processreglering Föreläsning 8. Exempel: experiment på ögats pupill. Frekvenssvar. Exempel:G(s)= 2

Frekvensanalys. Systemteknik/Processreglering Föreläsning 8. Exempel: experiment på ögats pupill. Frekvenssvar. Exempel:G(s)= 2 Frekvensanals Frekvenssvar Ssemeknik/Processreglering Föreläsning 8 Bode- och Nqisdiagram Sabilie och sabiliesmarginaler Läsanvisning: Process Conrol: 6. 6. Frekvensanals Sdera hr ssem reagerar på signaler

Läs mer

Om antal anpassningsbara parametrar i Murry Salbys ekvation

Om antal anpassningsbara parametrar i Murry Salbys ekvation 1 Om anal anpassningsbara paramerar i Murry Salbys ekvaion Murry Salbys ekvaion beskriver a koldioxidhalen ändringshasighe är proporionell mo en drivande kraf som är en emperaurdifferens. De finns änkbara

Läs mer

Funktionen som inte är en funktion

Funktionen som inte är en funktion Funkionen som ine är en funkion Impuls En kraf f som under e viss idsinervall T verkar på en s.k. punkmassa, säer punkmassan i rörelse om den var i vila innan. Och om punkmassan är i rörelse när krafen

Läs mer

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Styr och Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Syr och Reglereknik FR: Syr- och reglereknik H Adam Lagerberg Syr- och reglereknik H Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Syr-

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B1862 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 FREDAGEN DEN 1 JUNI 21 KL 8. 13. Examinaor : Lars Hols,

Läs mer

Diverse 2(26) Laborationer 4(26)

Diverse 2(26) Laborationer 4(26) Diverse 2(26) (Reglereknik) Marin Enqvis Reglereknik Insiuionen för sysemeknik Linköpings universie Föreläsare och examinaorer: Marin Enqvis (ISY) Simin Nadjm-Tehrani (IDA) Lekionsassisener: Jonas Callmer

Läs mer

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti.

Tentamen: Miljö och Matematisk Modellering (MVE345) för TM Åk 3, VÖ13 klockan 14.00 den 27:e augusti. Tenamen: Miljö och Maemaisk Modellering MVE345) för TM Åk 3, VÖ3 klockan 4.00 den 27:e augusi. För uppgifer som kräver en numerisk lösning så skriv ned di svar och hur ni gick ill väga för a lösa uppgifen

Läs mer

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden

Kursens innehåll. Ekonomin på kort sikt: IS-LM modellen. Varumarknaden, penningmarknaden Kursens innehåll Ekonomin på kor sik: IS-LM modellen Varumarknaden, penningmarknaden Ekonomin på medellång sik Arbesmarknad och inflaion AS-AD modellen Ekonomin på lång sik Ekonomisk illväx över flera

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Egenvärden och egenvekorer Definiion Lå F vara en linjär avbildning. Om ale λ och vekorn x uppfyller F (x) =λx, x 6= kallar vi x egenvekor och λ egenvärde ill F. Obs. Likheen är möjlig endas när F är en

Läs mer

Fouriermetoder för VT2008

Fouriermetoder för VT2008 Insiuionen för maemaik KTH Fouriermeoder för T VT008 Eike Peermann Innehåll. Inledning.... Fourierserier och -inegraler inom signaleorin. Komplexa fourierserier.... Lie om fel...6.3 Om orogonalie. Parsevals

Läs mer

Om de trigonometriska funktionerna

Om de trigonometriska funktionerna Analys 360 En webbaserad analyskurs Grundbok Om de rigonomeriska funkionerna Anders Källén MaemaikCenrum LTH anderskallen@gmail.com Om de rigonomeriska funkionerna () Inrodukion I de här kapile ska vi

Läs mer

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik E06 nbyggd Elekronik F F3 F4 F Ö Ö P-block Dokumenaion, Seriecom Pulsgivare,, R, P, serie och parallell KK LAB Pulsgivare, Menyprogram Sar för programmeringsgruppuppgif Kirchoffs lagar Nodanalys Tvåpolsasen

Läs mer

1. Geometriskt om grafer

1. Geometriskt om grafer Arbesmaerial, Signaler&Sysem I, VT04/E.P.. Geomerisk om grafer En av den här kursens syfen är a ge de vikigase maemaiska meoderna som man använder för a bearbea signaler av olika slag. Ofa är de så a den

Läs mer

3. Matematisk modellering

3. Matematisk modellering 3. Maemaisk modellering 3. Modelleringsprinciper 3. Maemaisk modellering 3. Modelleringsprinciper 3.. Modellyper För design oc analys av reglersysem beöver man en maemaisk modell, som beskriver sysemes

Läs mer

Repetitionsuppgifter

Repetitionsuppgifter MVE5 H6 MATEMATIK Chalmers Repeiionsuppgifer Inegraler och illämpningar av inegraler. (a) Beräkna Avgör om den generaliserade inegralen arcan(x) ( + x) dx. dx x x är konvergen eller divergen. Beräkna den

Läs mer

Tentamen ssy080 Transformer, Signaler och System, D3

Tentamen ssy080 Transformer, Signaler och System, D3 Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.

Läs mer

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4)

i(t) C i(t) = dq(t) dt = C dy(t) dt y(t) + (4) 2 Andra lektionen 2. Impulssvar 2.. En liten krets Beräkna impulssvaret för kretsen i figur genom att beräkna hur y(t) beror av x(t). R x(t) i(t) C y(t) Figur : Första ordningens lågpassfilter. Utsignalen

Läs mer

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll?

Diskussion om rörelse på banan (ändras hastigheten, behövs någon kraft för att upprätthålla hastigheten, spelar massan på skytteln någon roll? Likformig och accelererad rörelse - Fysik 1 för NA11FM under perioden veckorna 35 och 36, 011 Lekion 1 och, Rörelse, 31 augusi och sepember Tema: Likformig rörelse och medelhasighe Sroboskopfoo av likformig-

Läs mer

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde

Introduktion till Reglertekniken. Reglerteknik. Vad är Reglerteknik? Vad är Reglerteknik? Vad är Reglerteknik? Önskat värde Börvärde Reglereknik F: Reglereknik V Adam Lagerberg Reglereknik V Adam Lagerberg Vad är Reglereknik? Behov av syrning Vad är Reglereknik? Läran om Åerkopplade Sysem Blockschema Reglereknik V Adam Lagerberg Reglereknik

Läs mer

Fouriermetoder för Signaler och system I

Fouriermetoder för Signaler och system I Insiuionen för maemaik, KTH 05096 Arbesmaerial för 5B09/5:/HT05/E.P. Fouriermeoder för Signaler och sysem I Syfe med de här kursavsnie är a ge en orienering av en del i den maemaiska analysen, de s.k.

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tenamen i Signal- och bildbehandling TSBB14 Tid: 29-6-3 kl. 8-12 Lokal: R41 och U15 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 9. och 1.45 el 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Laboration 3: Växelström och komponenter

Laboration 3: Växelström och komponenter TSTE20 Elekronik Laboraion 3: Växelsröm och komponener v0.2 Ken Palmkvis, ISY, LiU Laboraner Namn Personnummer Godkänd 1 Översik I denna labb kommer ni undersöka beeende när växelspänningar av olika frekvens

Läs mer

Transformer och differentialekvationer (MVE100)

Transformer och differentialekvationer (MVE100) Chalmers tekniska högskola och Göteborgs universitet Matematik 19 januari 211 Transformer och differentialekvationer (MVE1) Styckvis definierade funktioner forts. Laplacetransformen Som nämnts i inledningen

Läs mer

Steg och impuls. ρ(x) dx. m =

Steg och impuls. ρ(x) dx. m = Seg och impuls Punkmssor, punklddningr och punkkrfer hr llid en viss ubredning även om den är lien. En mer verklighesrogen beskrivning v en punkmss m är en densie ρ(x) som är skild från noll på e mycke

Läs mer

2 Laboration 2. Positionsmätning

2 Laboration 2. Positionsmätning 2 Laboraion 2. Posiionsmäning 2.1 Laboraionens syfe A sudera olika yper av lägesgivare A sudera givarnas saiska och dynamiska egenskaper 2.2 Förberedelser Läs laboraionshandledningen och mosvarande avsni

Läs mer

in t ) t -V m ( ) in - Vm

in t ) t -V m ( ) in - Vm 1 Föreläsning 17/11 Hambley asni 14.5 14.7 Komparaorn ej i Hambley) En komparaor anänds för a agöra eckne på den differeniella insignalen. Komparaorn besår a en operaionsförsärkare som aningen saknar åerkoppling

Läs mer

Kolla baksidan på konvolut för checklista Föreläsning 6

Kolla baksidan på konvolut för checklista Föreläsning 6 0/1/014 10:17 Prakisk info, fors. Lös uppgif Fyll i e konvolu (åeranvänds ills uppgifen godkänd) TST0 lekronik Konvolu hias ovanpå den svara brevlåda som svar lämnas i Svar brevlåda placerad i samma korridor

Läs mer

Elektroniska skydd Micrologic A 2.0, 5.0, 6.0, 7.0 Lågspänningsutrustning. Användarmanual

Elektroniska skydd Micrologic A 2.0, 5.0, 6.0, 7.0 Lågspänningsutrustning. Användarmanual Elekroniska skydd Micrologic.0, 5.0, 6.0, 7.0 Lågspänningsurusning nvändarmanual Building a Newavancer Elecricl'élecricié World Qui fai auan? Elekroniska skydd Micrologic.0, 5.0, 6.0 och 7.0 Inrodukion

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB Tid: 3-5-3 Lokaler: TER Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.5 och.3 tel 73-8 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling, OH-film,

Läs mer

Signal- och bildbehandling TSBB03, TSBB14

Signal- och bildbehandling TSBB03, TSBB14 Tentamen i Signal- och bildbehandling TSBB03, TSBB4 Tid: 00-0- Lokaler: G33 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 4.50 och 6.50 tel 073-804 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

7. Sampling och rekonstruktion av signaler

7. Sampling och rekonstruktion av signaler Arbetsmaterial 5, Signaler&System I, VT04/E.P. 7. Sampling och rekonstruktion av signaler (Se också Hj 8.1 3, OW 7.1 2) 7.1 Sampling och fouriertransformering Man säger att man samplar en signal x(t) vid

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning

Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex Formell beskrivning A är proporionell mo B de finns e al k så a A=kB A

Läs mer

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen

GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.

Läs mer

Tentamensskrivning i Matematik IV, 5B1210.

Tentamensskrivning i Matematik IV, 5B1210. Tenamensskrivning i Maemaik IV, 5B Tisdagen den 4 november 6, kl 4-9 Hjälpmedel: BETA, Mahemaics Handbook Redovisa lösningarna på e sådan sä a beräkningar och resonemang är läa a följa Svaren skall ges

Läs mer

Signalbehandling. Andreas Fhager

Signalbehandling. Andreas Fhager Signalbehandling Andreas Fhager andreas.1ager@chalmers.se Innehåll Modellering av fysiskt fenomen Analoga/digitala signaler Nervsignaler Periodiska funkboner/fourierserie Frekvensspektrum Filter Faltning

Läs mer

Föreläsning 8. Kap 7,1 7,2

Föreläsning 8. Kap 7,1 7,2 Föreläsning 8 Kap 7,1 7,2 1 Kap 7: Klassisk komponenuppdelning: Denna meod fungerar bra om idsserien uppvisar e saisk mönser. De är fyra komponener i modellen: Muliplikaiv modell: Addiiv modell: där y

Läs mer

Ulrik Söderström 20 Jan Signaler & Signalanalys

Ulrik Söderström 20 Jan Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Ulrik Söderström 19 Jan Signalanalys

Ulrik Söderström 19 Jan Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt

Läs mer

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016

Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA APRIL 2016 Insiuionen för illämpad mekanik, Chalmers ekniska högskola TENTAMEN I HÅFASTHETSÄA F MHA 08 6 AI 06 ösningar Tid och plas: 8.30.30 i M huse. ärare besöker salen 9.30 sam.00 Hjälpmedel:. ärobok i hållfasheslära:

Läs mer

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning

Ingen återvändo TioHundra är inne på rätt spår men behöver styrning Hans Andersson (FP), ordförande i Tiohundra nämnden varanna år och Karin Thalén, förvalningschef TioHundra bakom solarna som symboliserar a ingen ska falla mellan solar inom TioHundra. Ingen åervändo TioHundra

Läs mer

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik.

shetstalet och BNP Arbetslöshetstalet lag Blanchard kapitel 10 Penningmängd, inflation och sysselsättning Effekter av penningpolitik. Kap 10: sid. 1 Blanchard kapiel 10 Penninmänd, inflaion och ssselsänin Effeker av penninpoliik. Tre relaioner: Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och medellån sik Tar hänsn

Läs mer

Lösningar till tentamen i Kärnkemi ak den 21 april 2001

Lösningar till tentamen i Kärnkemi ak den 21 april 2001 Lösningar ill enamen i Kärnkemi ak den 21 april 2001 Konsaner och definiioner som gäller hela enan: ev 160217733 10 19 joule kev 1000 ev ev 1000 kev Gy A 60221367 10 23 mole 1 Bq sec 1 Bq 10 6 Bq joule

Läs mer

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2

TSDT18/84 SigSys Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 1 1 Kap 7 Fouriertransformanalys av tidskontinuerliga signaler 2 Kap 7 Fourirrasormaalys av idskoiurliga sigalr Kap 7 Fourirrasormaalys av idskoiurliga sigalr Fourirrasorm Fourirrasorm ill x(: F F { x( } X( x( j d Ivrsa ourirrasorm ill X(: { X( } x( π X( j d Jr. ourirsri:

Läs mer

Signal- och bildbehandling TSBB14

Signal- och bildbehandling TSBB14 Tentamen i Signal- och bildbehandling TSBB4 Tid: -5-8 Lokaler: TER3 Ansvarig lärare: Maria Magnusson besöker lokalen kl. 8.45 och.45 tel 8336, 73-84 38 67 Hjälpmedel: Räknedosa, medskickad formelsamling,

Läs mer

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19

Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.

Läs mer

AMatematiska institutionen avd matematisk statistik

AMatematiska institutionen avd matematisk statistik Kungl Tekniska Högskolan AMaemaiska insiuionen avd maemaisk saisik TENTAMEN I 5B86 STOKASTISK KALKYL OCH KAPITALMARKNADSTE- ORI FÖR F4 OCH MMT4 LÖRDAGEN DEN 5 AUGUSTI KL 8. 3. Examinaor : Lars Hols, el.

Läs mer

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]

1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ] TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift

Läs mer

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30

FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18. Ansvarig lärare: Helene Lidestam, tfn 282433 Salarna besöks ca kl 15.30 Tekniska högskolan vid LiU Insiuionen för ekonomisk och indusriell uveckling Produkionsekonomi Helene Lidesam TENTAMEN I TPPE13 PRODUKTIONSEKONOMI för I,Ii FREDAGEN DEN 21 AUGUSTI 2015, KL 14-18 Sal: Provkod:

Läs mer

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning

Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svetsning Analys och modellering av ljusbåglängdsregleringen i pulsad MIG/MAG-svesning Examensarbee uför i Reglereknik av Andreas Pilkvis LiTH-ISY-EX-- Linköping Analys och modellering av ljusbåglängdsregleringen

Läs mer

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic

Kurs: HF1012 Matematisk statistik Lärare: Armin Halilovic KONTROLLSKRIVNING Version A Kurs: HF Maemaisk saisik Lärare: Armin Halilovic Daum: 7 maj 6 Skrivid: 8:-: Tillåna hjälmedel: Miniräknare av vilken y som hels och formelblad som delas u i salen) Förbjudna

Läs mer

Diskreta signaler och system

Diskreta signaler och system Kapitel 7 Diskreta signaler och system I detta kapitel diskuteras grundläggande teori för diskreta signaler och system. För diskreta signaler introduceras z-transformen, som ligger som grund för representationen

Läs mer

Livförsäkringsmatematik II

Livförsäkringsmatematik II Livförsäkringsmaemaik II iskrea kommuaionsfunkioner Erik Alm, Hannover Re Sockholm 2013 iskre eknik Premier och annuieer bealas diskre ödligheen definieras ofas i en diskre abell (Undanag: de Nordiska

Läs mer

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator

BASiQ. BASiQ. Tryckoberoende elektronisk flödesregulator Tryckoberoende elekronisk flödesregulaor Beskrivning är en komple produk som besår av e ryckoberoende A-spjäll med mäenhe som är ansluen ill en elekronisk flödesregulaor innehållande en dynamisk differensryckgivare.

Läs mer

2009-11-20. Prognoser

2009-11-20. Prognoser 29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska

Läs mer

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.

3D vattenanimering Joakim Julin Department of Computer Science Åbo Akademi University, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo. 3D vaenanimering Joakim Julin Deparmen of Compuer Science Åbo Akademi Universiy, FIN-20520 Åbo, Finland e-mail: jjulin@nojunk.abo.fi Absrak Denna arikel kommer a presenera e anal olika algorimer för a

Läs mer

Förord: Sammanfattning:

Förord: Sammanfattning: Förord: Denna uppsas har illkommi sedan uppsasförfaarna blivi konakade av Elecrolux med en förfrågan om a undersöka saisikmodulen i deras nyimplemenerade affärssysem. Vi vill därför acka vår handledare

Läs mer

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet

Strategiska möjligheter för skogssektorn i Ryssland med fokus på ekonomisk optimering, energi och uthållighet 1 File = SweTrans_RuMarch09Lohmander_090316 ETT ORD KORRIGERAT 090316_2035 (7 sidor inklusive figur) Sraegiska möjligheer för skogssekorn i Ryssland med fokus på ekonomisk opimering, energi och uhållighe

Läs mer

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar

TSRT09 Reglerteori. Sammanfattning av föreläsning 9. Cirkelkriteriet. Sammanfattning av föreläsning 9, forts. Amplitudstabilitet hos svängningar glerteori 27, Föreläsning Daniel Axehill / 23 Sammanfattning av föreläsning 9. Cirkelkriteriet Linjärt system G(s) återkopplat med en statisk olinjäritet f(x) TSRT9 glerteori Föreläsning : Fasplan Daniel

Läs mer

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k)

Följande uttryck används ofta i olika problem som leder till differentialekvationer: A=kB. A= k (för ett tal k) TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uryck används ofa i olika problem som leder ill differenialekvaioner: Tex A är proporionell mo B A är omvän proporionell mo B Formell beskrivning de finns

Läs mer

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer:

Dagens förelf. Arbetslöshetstalet. shetstalet och BNP. lag. Effekter av penningpolitik. Tre relationer: Blanchard kapiel 9 Penninmänd, Inflaion och Ssselsänin Daens förelf reläsnin Effeker av penninpoliik. Tre relaioner: Kap 9: sid. 2 Phillipskurvan Okuns la AD-relaionen Effeken av penninpoliik på kor och

Läs mer

43.036/1 NRT 107 F031 8...38 P, PI, P-PI 110...230 V~ 0.28 NRT 107 F041 8...38 P, PI, P-PI 24 V~ 0.28

43.036/1 NRT 107 F031 8...38 P, PI, P-PI 110...230 V~ 0.28 NRT 107 F041 8...38 P, PI, P-PI 24 V~ 0.28 43.036/1 NR 10: Regulaor för lufkondiionering (värme/kyla) Kompak regulaor för lufkondiionering med pulsade ugångar för 2- och 4-rörs sysem för värme och kyla i separaa rum. Lämplig för alla yper av byggnader.

Läs mer

n Ekonomiska kommentarer

n Ekonomiska kommentarer n Ekonomiska kommenarer Riksbanken gör löpande prognoser för löneuvecklingen i den svenska ekonomin. Den lönesaisik som används som bas för Riksbankens olika löneprognoser är den månaliga konjunkurlönesaisiken.

Läs mer

Signaler & Signalanalys

Signaler & Signalanalys Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla

Läs mer

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts.

TSRT09 Reglerteori. Sammanfattning av Föreläsning 1. Sammanfattning av Föreläsning 1, forts. Sammanfattning av Föreläsning 1, forts. Reglerteori 217, Föreläsning 2 Daniel Axehill 1 / 32 Sammanfattning av Föreläsning 1 TSRT9 Reglerteori Föreläsning 2: Beskrivning av linjära system Daniel Axehill Reglerteknik, ISY, Linköpings Universitet

Läs mer

LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik

LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 015-06-05 SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 14.00 19.00 Sal: MA:10, C-J Hjälpmedel: Miniräknare, formelsamling i signalbehandling

Läs mer

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL!

Exempeltenta 3 SKRIV KLART OCH TYDLIGT! LYCKA TILL! Exempelena 3 Anvisningar 1. Du måse lämna in skrivningsomslage innan du går (även om de ine innehåller några lösningsförslag). 2. Ange på skrivningsomslage hur många sidor du lämnar in. Om skrivningen

Läs mer

Om exponentialfunktioner och logaritmer

Om exponentialfunktioner och logaritmer Om eponenialfunkioner och logarimer Anals360 (Grundkurs) Insuderingsuppgifer Dessa övningar är de änk du ska göra i ansluning ill a du läser huvudeen. Den änka gången är som följer: a) Läs igenom huvudeens

Läs mer

Föreläsning 7 Kap G71 Statistik B

Föreläsning 7 Kap G71 Statistik B Föreläsning 7 Kap 6.1-6.7 732G71 aisik B Muliplikaiv modell i Miniab Time eries Decomposiion for Försäljning Muliplicaive Model Accurac Measures Från föreläsning 6 Daa Försäljning Lengh 36 NMissing 0 MAPE

Läs mer

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 16 aug Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic Tenamen TEN, HF, 6 aug 6 Maemaisk saisik Kurskod HF Skrivid: 8:5-:5 Lärare och examinaor : Armin Halilovic Hjälmedel: Bifoga formelhäfe ("Formler och abeller i saisik ") och miniräknare av vilken y som

Läs mer

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar

Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar 6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)

Läs mer

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster

Tjänsteprisindex för detektiv- och bevakningstjänster; säkerhetstjänster Tjänseprisindex för deekiv- och bevakningsjänser; säkerhesjänser Branschbeskrivning för SNI-grupp 74.60 TPI- rappor nr 17 Camilla Andersson/Kamala Krishnan Tjänseprisindex, Prisprogramme, Ekonomisk saisik,

Läs mer

Industriell reglerteknik: Föreläsning 2

Industriell reglerteknik: Föreläsning 2 Industriell reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Föreläsningar 1 / 33 1 Sekvensstyrning: Funktionsdiagram, Grafcet. 2 Grundläggande

Läs mer

G(s) = 5s + 1 s(10s + 1)

G(s) = 5s + 1 s(10s + 1) Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer

Läs mer

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2) LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj

Läs mer

bättre säljprognoser med hjälp av matematiska prognosmodeller!

bättre säljprognoser med hjälp av matematiska prognosmodeller! Whiepaper 24.9.2010 1 / 5 Jobba mindre, men smarare, och uppnå bäre säljprognoser med hjälp av maemaiska prognosmodeller! Förfaare: Johanna Småros Direkör, Skandinavien, D.Sc. (Tech.) johanna.smaros@relexsoluions.com

Läs mer

Tjänsteprisindex för varulagring och magasinering

Tjänsteprisindex för varulagring och magasinering Tjänseprisindex för varulagring och magasinering Branschbeskrivning för SNI-grupp 63.12 TPI-rappor nr 14 Kaarina Båh Chrisian Schoulz Tjänseprisindex, Prisprogramme, Ekonomisk saisik, SCB November 2005

Läs mer

Högre ordnings ekvationer och system av 1:a ordningen

Högre ordnings ekvationer och system av 1:a ordningen Institutionen för matematik, KTH 05020 Tillägg för 5B209/HT05/E.P. Högre ordnings ekvationer och system av :a ordningen Vi har hittills lärt oss lösa linjära ekvationer med konstanta koefficienter och

Läs mer

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik Tentamen 6-6- SIGNALBEHANDLING I MULTIMEDIA, ETI65 Tid: 8.-3. Sal: Vic, - Hela Hjälpmedel: Miniräknare, formelsamling i signalbehandling

Läs mer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer

AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer AB2.8: Laplacetransformation av derivator och integraler. Differentialekvationer Laplacetransformen som an analytisk funktion SATS 1 Om Laplaceintegralen F (s) = L (f) = e st f(t)dt är konvergent för s

Läs mer

Optimal prissäkringsstrategi i ett råvaruintensivt företag Kan det ge förbättrad lönsamhet?

Optimal prissäkringsstrategi i ett råvaruintensivt företag Kan det ge förbättrad lönsamhet? Föreagsekonomiska Magiseruppsas Insiuionen Höserminen 2004 Opimal prissäkringssraegi i e råvaruinensiv föreag Kan de ge förbärad lönsamhe? Förfaare: Marin Olsvenne Tobias Björklund Handledare: Hossein

Läs mer

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén

FÖRDJUPNINGS-PM. Nr 4. 2010. Räntekostnaders bidrag till KPI-inflationen. Av Marcus Widén FÖRDJUPNNGS-PM Nr 4. 2010 Ränekosnaders bidrag ill KP-inflaionen Av Marcus Widén 1 Ränekosnaders bidrag ill KP-inflaionen dea fördjupnings-pm redovisas a en ofa använd approximaiv meod för beräkning av

Läs mer

Signaler några grundbegrepp

Signaler några grundbegrepp Kapitel 2 Signaler några grundbegrepp I detta avsnitt skall vi behandla några grundbegrepp vid analysen av signaler. För att illustrera de problemställningar som kan uppstå skall vi först betrakta ett

Läs mer

Penningpolitik och finansiell stabilitet några utmaningar framöver

Penningpolitik och finansiell stabilitet några utmaningar framöver NATIONAL- EKONOMISKA FÖRENINGENS FÖRHANDLINGAR 21-5-17 Sammanfaade av Birgi Filppa, Karin Siredo och Elisabeh Gusafsson Ordförande: Anders Björklund Inledare: Sefan Ingves, Riksbankschef Kommenaor: Pehr

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6 ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.

Läs mer

Inbyggd radio-styrenhet 1-10 V Bruksanvisning

Inbyggd radio-styrenhet 1-10 V Bruksanvisning Version: R 2.1 Ar. r.: 0865 00 Funkion Radio-syrenheen möjliggör en radiosyrd ändning/ släckning och ljusdämpning av en belysning. Inkopplingsljussyrkan kan sparas i apparaen som memory-värde. Bejäning

Läs mer

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000

Genom att uttrycka y-koordinaten i x ser vi att kurvan är funktionsgrafen till y = x 2. Lektion 2, Flervariabelanalys den 19 januari 2000 Lekion, Flervariabelanals den 9 januari..6 Finn hasighe, far och acceleraion vid idpunk av en parikel med lägesvekorn Genom a urcka -koordinaen i ser vi a kurvan är funkionsgrafen ill. Beskriv också parikelns

Läs mer

Konjunkturinstitutets finanspolitiska tankeram

Konjunkturinstitutets finanspolitiska tankeram Konjunkurinsiues finanspoliiska ankeram SPECIALSTUDIE NR 16, MARS 2008 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET (KI) gör analyser och prognoser över den svenska och ekonomin sam bedriver forskning

Läs mer

BEGREPPSMÄSSIGA PROBLEM

BEGREPPSMÄSSIGA PROBLEM BEGREPPSMÄSSIGA PROBLEM Större delen av de rekommenderade uppgifterna i boken är beräkningsuppgifter. Det är emellertid även viktigt att utveckla en begreppsmässig förståelse för materialet. Syftet med

Läs mer