FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E

Storlek: px
Starta visningen från sidan:

Download "FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E"

Transkript

1 (8 FORMLER TILL NATIONELLT PROV I MATEMATIK KURS E ALGERA Rgl Adgdskvtio ( + = + + ( = + (kvdigsgl ( + ( = (kojugtgl ( + = ( = + + = ( + ( + = ( ( + + Ekvtio + p+ q = ött p p p = + q o = dä + = p o = q p q ARITMETIK Pfi T G M k d m µ p t gig mg kilo kto di ti milli miko o piko Pots Logitm Fö ll tl o o positiv tl o gäll + = = ( = = = ( = = = Fö positiv tl gäll: = = lg = = l Fö positiv tl o gäll: lg = lg + lg lg = lg lg lg p = p lg Gomtisk summ + k + k k ( k = dä k k Skolvkt 5

2 DIFFERENTIAL- OH INTEGRALKALKYL (8 Divts dfiitio f ( = lim f ( + f ( = lim f ( f ( Divigsgl Fuktio Divt dä ä tt llt tl ( > l ( > l k k k si os os si t + t = os f ( + g( f ( + g ( f ( g( f ( g ( + f ( g( f ( g( ( g ( f ( g( f ( g ( ( g( Kdjgl Om = f ( z o z = g( ä två div fuktio så gäll fö d smmstt fuktio = f ( g( tt d d dz = f ( g( g ( ll = d dz d Någ pimitiv fuktio f ( F ( ( ä ll kostt k k + ( ( l + + ( >, + l si os + os si + Skolvkt 5

3 (8 DIFFERENTIALEKVATIONER Homog kvtio Av : odig: + = Lösig k skivs = Av : odig: + + = D kktistisk kvtio + + = ött o Om o ä ll tl o = så k lösig skivs = ( + Om o ä ll tl o så k lösig skivs = + Om = s + t o = s it k lösig skivs = i s ( ost + si t Iomog kvtio Gllt stäms d llmä lösig som + = p, dä p ä ptikulälösig till d iomog kvtio o d llmä lösig till motsvd omog kvtio. Spl difftilkvtio: g ( = f ( Löss ligt g ( d = f ( d FUNKTIONSLÄRA Rät lij Epotilfuktio Potsfuktio k = Riktigskoffiit fö lij gom pukt (, o (, dä = k+ m Lij gom pukt (, m md iktigskoffiit k = k( Lij gom pukt (, md iktigskoffiit k k k = Villko fö viklät lij = o ä kostt > o = o ä kostt Skolvkt 5

4 4(8 GEOMETRI Ptgos sts + = Tigl = Pllllogm = Plllltpts = ( + ikl πd = π = 4 omkts = π = πd d α iklskto åg = π 6 = α π = 6 α Pism volm = lid Rk ikulä lid volm =π mtl = π Skolvkt 5

5 5(8 Pmid volm = Ko Rk ikulä ko volm = π s mtl = πs Klot volm = 4 π = 4π Likfomigt Fö likfomig gomtisk figu gäll tt motsvd vikl ä lik sto o tt föålldt mll motsvd sido ä lik. A F Tigl A o DEF ä likfomig. d Då gäll = f D f E Skl Askl = (Lägdskl Volmskl = (Lägdskl Vikl Nä två ät lij skä vd ä sidovikls summ 8º (t.. u + v =8º o vtiklvikl lik sto (t.. w = v. w u v Nä lij L skä två d iöds pllll lij L o L så ä likläg vikl lik sto (t.. v = w o lttvikl lik sto (t.. u = w w u v L L L Omvät gäll tt om lttvikl ll likläg vikl ä lik sto så ä lij L o L pllll. Skolvkt 5

6 6(8 Topptigl- o tsvslsts Om DE ä pllll md A gäll DE D E = = o A A D E = AD E D E A isktissts AD A = D A D Kodsts = d d Rdviklsts Mdlpuktsvikl till v iklåg ä dult så sto som dvikl till smm iklåg ( u = v u KOMPLEXA TAL iϕ Rpsttio z = + i = = (osϕ + i siϕ dä,, o ϕ ä ll tl smt i = Agumt Asolutloppt g z = ϕ z = = + t ϕ = Kojugt Tl z = + i o z = i klls kojugd tl z i( ϕ + ϕ Räklg ( z z z = = os( ϕ + ϕ + i si( ϕ + ϕ = i( ϕϕ ( os( ϕ ϕ + isi( ϕ ϕ = d Moivs foml z = ( (osϕ + i siϕ = (os ϕ + i si ϕ Euls foml i = os + i si os = i + i si = i i i Skolvkt 5

7 7(8 NUMERISKA METODER Ekvtioslösig Nwto-Rpsos ittiosfoml: + = f ( f ( Itgl Itvllt dls i i dlitvll. Mittpukt i vj dlitvll tks,,..., Rktglmtod: f d = ( f ( + f ( f ( ( Tptsmtod: f d ( f ( + f ( + f ( f ( + f ( ( = Difftilkvtio = f (,, stglägd Euls mtod (tgtmtod: = + f (, + Mittpuktsmtod: = + f +, + dä k = f (, + k TRIGONOMETRI Dfiitio A ä ätviklig tigl. si A = os A = t A = motståd ktt potus potus äliggd ktt motståd ktt äliggd ktt A OP ä di i tsikl. Koodit fö P ä (, si v = os v = t v = P(, v o Skolvkt 5

8 8(8 Siussts si A si si = = osiussts = + os A Asts si = A Tigoomtisk foml si + os = si( α + β = siα os β + osα si β si( α β = siα os β osα si β os( α + β = osα os β siα si β os( α β = osα os β + siα si β tα + t β t( α + β = tα t β si α = siα osα os α = os α si α = os α = si α osα α + osα si = os = si + os = si( + v dä + α = o t v = Ekt väd Vikl v (gd π π π π π π 5π (di π si v os v t v 6 4 Ej df Skolvkt 5

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C, D OCH E FORMLER TILL NTIONELLT PROV I MTEMTIK KURS D OH E LGER Rgl dgdsktio kdigsgl kojugtgl Ektio p q ött p p p q o dä p o q p q RITMETIK Pi T G M k d m µ p t gig mg kilo kto di ti milli miko o piko 9 6 - - -

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D (7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + ) = + + ( ) = + (kdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ektio + p+ q = 0 ) ) ött p p p =

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D (7) FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdskvtio ( + ) = + + ( ) = + (kvdigsgl) ( + )( ) = (kojugtgl) ( + ) = + + + ( ) = + + = ( + )( + = ( )( + + Ekvtio + p+ q = ött p p p = + q

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D (7 FORMLER TILL NTIONELLT PROV I MTEMTIK KURS OH D LGER Rgl dgdsktio ( + = + + ( = + (kdigsgl ( + ( = (kojugtgl ( + = + + + ( = + + = ( + ( + = ( ( + + Ektio + p+ q = ött p p p = + q o = dä + = p o = q

Läs mer

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C

FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C FORMLER TILL NATIONELLT PROV I MATEMATIK KURS A, B OCH C ALGEBRA Kdeigsegle ( + ) + + ( ) + Kojugtegel ( + )( ) Adgdsektioe Ektioe + p + q 0 ötte p p p p + q o 4 4 id + p o q q ARITMETIK Pefi Tiopotes

Läs mer

ρ. Farten fås genom integrering av (2):

ρ. Farten fås genom integrering av (2): LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

FORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats:

FORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats: TRIGONOMETRISKA FORMLER... si 0 si 6 FORMELBLAD HF700, Bggproduktio 6. si cos 7. si45 si 4 si( ) t( ), cos( ) cos( ) cot( ) si( ) 8. cos( ) coscos sisi si 60 si 4. 9. cos( ) coscos sisi cos 0 cos 6 5.

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

1 Armin Halilovic: EXTRA ÖVNINGAR

1 Armin Halilovic: EXTRA ÖVNINGAR Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger

Läs mer

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt

Läs mer

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:

Läs mer

Föreläsning 10. java.lang.string. java.lang.string. Stränghantering

Föreläsning 10. java.lang.string. java.lang.string. Stränghantering Föläig Stäghtig j.lg.stig E täg btå tt tl tc Stäg i ht om objt l Stig E täg it modifi ft tt d h pt! Stig - l : ch[] - cot : it + lgth(): it + chat(it): ch + idxof(ch): it E täg h: Ett äd och lägd Ett tl

Läs mer

16.3. Projektion och Spegling

16.3. Projektion och Spegling 6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.

Läs mer

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi Itegrler Frå le: Itegrler Beräkigsveteskp I/KF Trpetsformel oc Simpsos formel Itegrler Itegrler Frå le: Frå le: Adptiv metod (dptiv Simpso) Lösig v itegrl i Mtl: är itegrde är kotiuerlig fuktio: väd itegrl.

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT

HEM KURSER SKRIV UT HEM ÄMNE SKRIV UT Matematik HEM KURSER SKRIV UT MA200 - Matematik A 110 poäng inrättad 1994-07 SKOLFS: 1994:9 et för kursen är att ge de matematiska kunskaper som krävs för att ta ställning i vardagliga situationer i privatliv

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }. Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio

Läs mer

Höstlov i Motala 2010

Höstlov i Motala 2010 Höstlv i Mtl 2010 1-5 vbr S prgrt ch läs tt s sr udr årt på: tl.s/ug Bwlig Mtl Bwlighll Öppttidr Mådg 1/11 13.00-16.00 Tisdg 2/11 12.00-16.00 Osdg 3/11 13.00-16.00 Trsdg 4/11 12.00-16.00 Frdg 5/11 12.00-16.00

Läs mer

Mattekonvent. Matematik. Keep calm and do math. Innehåll: Pluggtips Formelsamling Nationella prov. Plugga inför nationella provet med Mattecentrum!

Mattekonvent. Matematik. Keep calm and do math. Innehåll: Pluggtips Formelsamling Nationella prov. Plugga inför nationella provet med Mattecentrum! Keep clm d do mth Mttekoet Plgg iför tioell proet med Mttecetrm Mtemtik Iehåll: Plggtips Formelsmlig Ntioell pro 5 mtteoke.se plggkte.se formelsmlige.se Så lcks d med det tioell proet För tt få t så mcket

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i

Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i Ämne Matematik (före 2011) Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen

Läs mer

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel

TENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,

Läs mer

Innehåll. Kopieringsunderlag Breddningsdel Formelblad

Innehåll. Kopieringsunderlag Breddningsdel Formelblad Innehåll Information till lärare inför breddningsdelen i det nationella kursprovet i Matematik kurs A våren 1999...1 Inledning...1 Tidsplan våren 1999...1 Nyheter i kursprovet för Matematik kurs A vårterminen

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48)

LEDNINGAR TILL PROBLEM I KAPITEL 3 (1-48) LEDIGR TILL ROLEM I KITEL 3-48) L 3. α Mg ntg tt den hög lådns mss ä M. Filägg åd lådon! Filäggningsfiguen, som skll innehåll pktiskt tget ll infomtion som ehövs fö tt lös polemet, viss hä. Kontktkften

Läs mer

SKOLRESA. På Gotland!

SKOLRESA. På Gotland! 2016 * SKOLRESA På Gotld! Skolpkt I pktt igå följd: Båt t/, luch/middg v på övft. Butf Viby Hm-KippbyViby Hm. Logi i um/tugo md hlpio. Fi té hl vitl till Kippby Somm- & Vttld. Eklt pivät fö hl kl! Miigolf

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)

Läs mer

Något om funktionsföljder/funktionsserier

Något om funktionsföljder/funktionsserier mtemtis metoder E, del D, FF Något om futiosföljder/futiosserier. Putvis och liformig overges Vi etrtr reellvärd futioer med gemesm defiitiosmägd D IR, M D. Me (äst) llt går helt logt för omplevärd futioer

Läs mer

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab

Löpsedel: Integraler. Block 4: Integraler. Lärobok. Exempel (jfr lab) Exempel (jfr lab) Integrering i Matlab Löpsedel: Integrler Block : Integrler Grundidé, numerisk kvdrtur Noggrnnet, teoretiskt Prktisk feluppskttning med ricrdsonextrpoltion Adptiv kvdrtur Noggrnnet, inverkn v mätfel/vrundningsfel Lärook Kp

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov

Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov År Startvecka 2013 2 Planering för matematik 2a OBS: Provdatumen är endast förslag, kontakta läraren innan du kommer och vill ha prov Vecka Lektion (2h) Datum Kapitel Avsnitt 2 Ti 08-jan Kap 1: Räta linjen

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

BML131, Matematik I för tekniskt/naturvetenskapligt basår

BML131, Matematik I för tekniskt/naturvetenskapligt basår BML131 ht 2013 1 BML131, Matematik I för tekniskt/naturvetenskapligt basår Syfte och organisation Matematiken på basåret läses i två obligatoriska kurser; under första halvan av hösten BML131 (Matematik

Läs mer

5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006.

5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006. Institutionen för Matematik, KTH, Olle Stormark. 5B1147 Envariabelanalys, 5 poäng, för E1 ht 2006. Detta är en grundläggande kurs i differential - och integralkalkyl för funktioner av en variabel. Enligt

Läs mer

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden.

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden. Armi Hlilovic: EXRA ÖVNINGAR ylors ormelör evribeluktioer AYLORS FOREL FÖR FUNKIONER AV EN VARIABEL ylors ormel väds bl vid i umerisk beräkigr ii optimerig och iii härledigr iom olik tekisk och mtemtisk

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER rmi Hliloic: EXTR ÖVNINGR EGENVÄRDEN och EGENVEKTORER Defiitio. Egeektor och egeärde för e lijär bildig Låt V r ett ektorrum och T : V V e lijär bildig frå V till V. Om det fis e ollskild ektor och e sklär

Läs mer

Schrödingerekvationen i 3 dim: Väteatomen.

Schrödingerekvationen i 3 dim: Väteatomen. Föläsig : Schödigkvtio i di: Vätto. Lösts v Schödig 96. Fökl spktllij få vätt och vis däd tt S. fg!!! Schödig kv i D: Ψ(, t) U( )Ψ(, t) i Ψ(, t) t Solikhtstolkig: Ψ(, t) d Noig: Ψ(, t ) d Sttioä tillståd:

Läs mer

INTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM )

INTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM ) Armi Hlilovic: EXTA ÖVIGA Cuchys itegrlriterium ITEGALKITEIET ( äve lls CAUCHYS ITEGALKITEIUM ) POSITIVA SEIE Defiitio E serie är ositiv om 0 för ll Eftersom delsummor v e ositiv serie bildr e väde ositiv

Läs mer

Mål Aritmetik. Provet omfattar sidorna 6 41 och (kap 1 och 7) i Matte Direkt år 8.

Mål Aritmetik. Provet omfattar sidorna 6 41 och (kap 1 och 7) i Matte Direkt år 8. Mål Aritmetik Provet omfattar sidorna 6 41 och 206-223 (kap 1 och 7) i Matte Direkt år 8. Repetition: Repetitionsuppgifter 1 och 7, läxa 1-6 och 27-28 (s. 226 233 och s. 262-264) samt andra övningsuppgifter

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Am Hllovc: EXTRA ÖVNINGAR Besvde sttst BESKRIVANDE STATISTIK GRUNDBEGREPP Följde egepp väds oft vd esvg v ett sttstst mtel: LÄGESMÅTT medelväde, med och tpväde: Låt D[,,, v e tllst som esve ett sttstst

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =

Läs mer

Ämne - Matematik (Gymnasieskola före ht 2011)

Ämne - Matematik (Gymnasieskola före ht 2011) Ämne - Matematik Ämnets syfte Gymnasieskolans utbildning i matematik bygger vidare på kunskaper motsvarande de eleverna uppnår i grundskolan och innebär breddning och fördjupning av ämnet. Utbildningen

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmin Hliloic: EXR ÖVNINGR Linjär bildningr LINJÄR VBILDNINGR INLEDNING: Fnktioner =bildningr Beteckningr och grndbegrepp Definition En fnktion eller bildning från en mängd till en mängd B är en regel som

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

Undervisningsplanering i Matematik Kurs E (Poäng 50)

Undervisningsplanering i Matematik Kurs E (Poäng 50) Undervisningsplanering i Matematik Kurs E (Poäng 50) Kurskod: MA1205 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande

Läs mer

6 Strukturer hos tidsdiskreta system

6 Strukturer hos tidsdiskreta system 6 Sukue hos idsdiske ssem 6. Gudsuku Vi h se e idsdiske ssem i de fles fll k eskivs v diffeesekvioe [ ] [ ] [ ] De k uligvis häd de ol sseme eså v fle seie- elle pllellkopplde delssem, me de föäd ie esoemge.

Läs mer

Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av. Fastställandedatum. Styrelsen för utbildningsvetenskap

Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av. Fastställandedatum. Styrelsen för utbildningsvetenskap DNR LIU-2009-00464 1(5) Matematik (1-15 hp) Programkurs 15 hp Mathematics (1-15) 92MA11 Gäller från: Fastställd av Styrelsen för utbildningsvetenskap Fastställandedatum 2012-01-09 2(5) Huvudområde Matematik

Läs mer

Att större akuta reparationer. Ansvarsfrihet fiir styrelsen

Att större akuta reparationer. Ansvarsfrihet fiir styrelsen Åmöte Smtillighete Bkbdet 24 ktbe 2012 Plt :Håktpkl mtl 1 Vl v dtide ch eketee ii tämm Till dde vlde Mget Eic ch till eketee vlde Mgu Tte 2 Vl v juteigmä Till juteigmä vlde Åke Glud ch Cut Gutv 3 Mötet

Läs mer

Beställare: Skanska Sverige AB genom Tommie Gutén A ntal sidor: 10. Projektansvarig: Niklas Jakobsson Datum:

Beställare: Skanska Sverige AB genom Tommie Gutén A ntal sidor: 10. Projektansvarig: Niklas Jakobsson Datum: i M3- Riig ä föäig fö E Bäll: S Sig AB g Ti Gé A l i: j: 3 jig: Nil Jb D: 7-- O il Sällig ågäfölg O jbiig Aibyå h S Sig AB g Ti Gé få i ppg äll i löig bli ll fö ppfyll hög illå ljiå h fö y lägh i O il.

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

Kapitel 8. Kap.8, Potentialströmning

Kapitel 8. Kap.8, Potentialströmning Kpitel 8 Kp.8, Voticitet (epetition) Hstighetspotentil Stömfunktionen Supeposition Cikultion -dimensionell kopp Kutt-Joukovskis lftkftsteoem Komple potentil Rottionssmmetisk potentilstömning Rottion v

Läs mer

Vi önskar er ett trevligt Speedwaymöte i Norrköping denna helg

Vi önskar er ett trevligt Speedwaymöte i Norrköping denna helg g E o E E o g Vi öskr r tt trvligt Spwymöt i Norrköpig hlg Su Björk, Support Your Tm o g E o E E o g Vi kämpr ihop! o Välk till prsttio s pssr i på ll Spwyförigr i hl Svrig m mottot VI KÄMPAR IHOP m st

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Vårnatt. l l l l l l 2 4. f f f f 6 l 8 l l l l l 2 4 kz k s k k. l l l l l l 2 l l 4. k k k f k k k j kz kk k

Vårnatt. l l l l l l 2 4. f f f f 6 l 8 l l l l l 2 4 kz k s k k. l l l l l l 2 l l 4. k k k f k k k j kz kk k Soro 1 Soro 2 Ato 1 Ato 2 Teor 1 Teor 2 Bss 1 Bss 2 Pio 1 Pio 2 G =6 Vårtt Keyed by Gör Westig Gor@WestigHisso.et No dymic or temo exressios! Icomete io otes! Wihem Stehmmr yr. Oscr Lewerti f f f f 6 8

Läs mer

Formelsamling Ljud i byggnad och samhälle

Formelsamling Ljud i byggnad och samhälle ormlsamlg jud bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grudläggad akusska dfor oh räkrglr -dmsoll la ljudåg som ubrdr sg os -rkg: Aos Effkärd rms

Läs mer

F F idid - - LLöö 55 7 -- S mil: j: Söö nn0-0- Dgs fö ås s å Bc ch Cl Jun fäg Vi fi md å mängd v yl! g å vy fsdh c s s å fån ngöing l C s c B ch Jun å Gön-fi ch ic-fi Mögl-fi Kn j mbins md nd b. Dmid l

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift.

Datum: xxxxxx. Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Denna. Uppgift Låt u och w. Uppgift 2x. Uppgift. Tentmen i Linjä lgeb HF9 Dtum: Skivtid: timm Eminto: Amin Hlilovic eempel Fö godkänt betg kävs v m poäng Betgsgänse: Fö betg A B C D E kävs 9 6 espektive poäng Kompletteing: 9 poäng på tentmen ge ätt till

Läs mer

FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST

FÄRGLAGD A STENSUNDSVÄGEN BOSTÄDER BILPLATSER GARAGE 86 ST STNSUNSVÄN Ø Ø : Ø OSTÄR S TRO RK ST 3 RK 3 ST RK ST SUMM 7 ST 663 ILPLTSR +. +.3 R 6 ST -3 /. +.7 MRK Lr 5 ST SUMM ST.5 + IV. > VI SO P 3 677 b 3 3 UN SL TRO +.5 + 3.5 + 6. VÄ PL NN g V S +7 +3. +.6.5

Läs mer

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm

Ingenjörsmetodik IT & ME 2007. Föreläsare Dr. Gunnar Malm Ingenjösmetodik IT & ME 2007 Föeläse D. Gunn Mlm 1 Dgens föeläsning F10 Mtemtisk modelle v föänding Ex tillväxten v fökylningsvius elle studieskuld Populät kllt äntetl 2 Inledning mtemtisk modelle Kn nvänds

Läs mer

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH

SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION 1. Fredrik Andréasson. Department of Mathematics, KTH SIGNALER OCH SYSTEM II LEKTION 2 / MATEMATISK LEKTION Fredrik Andrésson Deprtment of Mthemtics, KTH Lplcetrnsformen. I förr delkursen studerde vi fouriertrnsformen v en funktion h(t) H(iω) F[h(t)] Vi definierr

Läs mer

Målsättning: modell. Kvinnor kan uppnå fantastisk fysik genom att lyfta tunga vikter och äta bra mat utan att svälta sig själva.

Målsättning: modell. Kvinnor kan uppnå fantastisk fysik genom att lyfta tunga vikter och äta bra mat utan att svälta sig själva. Målättig: dll E plig tä tä kvi bö fku på tt lä ut följd: Kvi k it v ädd fö tug vikt, Få kvi tt i tt d k b ut vtt kppvikt å läg d ä fit, D k it bt fölit ig på våg fö tt utväd i ftg, D bö lägg tö fku på

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs A, kapitel 6 Kompletterande lösningsförslag och ledningar, Matematik 000 kurs A, kapitel Kapitel.1 101, 10, 10 Eempel som löses i boken. 104, 105, 10, 107, 108, 109 Se facit 110 a) Ledning: Alla punkter med positiva

Läs mer

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x) Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?

i) oändligt många lösningar ii) exakt en lösning iii) ingen lösning? TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls

Läs mer

Formelsamling Ljud i byggnad och samhälle

Formelsamling Ljud i byggnad och samhälle ormlsamlg jd bggad oh samhäll Några räkrglr för logarmr: log log log log log log log log log log log log Några grdläggad aksska dfor oh räkrglr -dmsoll la ljdfäl: Aos Effkärd rms för ljdrk k: ~ d jdrkså

Läs mer

26,4 21,8 21,8 21,8 1:27 22,7 22,4 19,4 21,7 18,3 18,6 23,1 19,8 26,2 17,7 15,9 1:45 15,5 24,4 16,3 15,5 1: ,2 10,3 18,6 1:28.

26,4 21,8 21,8 21,8 1:27 22,7 22,4 19,4 21,7 18,3 18,6 23,1 19,8 26,2 17,7 15,9 1:45 15,5 24,4 16,3 15,5 1: ,2 10,3 18,6 1:28. .,,,,,,,,, :,, r. ÅKSVÄG SPLLKR RÄ OR R L TUK il l n t T O LB.. T ti ÖS LTUK OTO R-R STO,,, :,,,,,,,,,,,,,,, RG lu j ÄG LSV TUULHUKKUJ,,,,, risnäs,,, :,,,,,,,,,,,, risnäs,,,,,,, :, :,,,,,,,,,,,,,,,,,,,,,,,,,,

Läs mer

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n. 27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u

Läs mer

Bröderna fara väl vilse ibland (epistel nr 35)

Bröderna fara väl vilse ibland (epistel nr 35) Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me

Läs mer

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära.

I detta avsnitt ska vi titta på den enklaste formen av ekvationer de linjära. STUDIEAVSNITT EKVATIONER I de vsni sk vi i på den enklse fomen v ekvione de linjä. ALGEBRAISK LÖSNING AV EKVATIONER Meoden nä mn löse ekvione v fös gden, llså ekvione som innehålle -eme men ej eme v pen,,...

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Höst- och vinter- STUNDER 2012/2013. Tävla & vinn. Årets julklapp! Snow Electric 31 895:- Se även paket- erbjudandet på sista sidan.

Höst- och vinter- STUNDER 2012/2013. Tävla & vinn. Årets julklapp! Snow Electric 31 895:- Se även paket- erbjudandet på sista sidan. STUNDER 2012/2013 Tävl & vi på www.tibtik. Åt jlklpp! Sow Elti 31 Höt- o vit- 895:- S äv pkt- bjddt på it id. www.tibtik. www.tibtik. MADE IN SWEDEN Åt t md Sti Vill 12 + 85 Svk klik md Bi & Sttto-moto,

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

Matematisk statistik

Matematisk statistik Teme TEN, HF, -5-4 Memis sisi Kusod HF Sivid: 8:5-:5 Läe: Ami Hlilovic Hjälmedel: Bifog fomelhäfe "Fomle och belle i sisi " och miiäe v vile som hels Siv m och esoumme å vje bld De emesl få ej behålls

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

INGENJÖRSMATEMATISK FORMELSAMLING

INGENJÖRSMATEMATISK FORMELSAMLING Sätyck u femte upplaga av fomle och tabelle fö aolikhetläa och tatitik, idoa 89-4. Toe Gutafo 004. INGENJÖRSMATEMATISK FORMELSAMLING Toe K. Gutafo Kombiatoik 89 90 Kombiatoik 6 KOMBINATORIK Atal pemutatioe

Läs mer

Instuderingsfrågor i Funktionsteori

Instuderingsfrågor i Funktionsteori Instuderingsfrågor i Funktionsteori Anvisningar. Avsikten med dessa instuderingsfrågor är att ge Dig möjlighet att fortlöpande kontrollera att Du någorlunda behärskar kursens teori. Om Du märker att Du

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

Vilka varor och tjänster samt länder handlar svenska företag med? - och varför?

Vilka varor och tjänster samt länder handlar svenska företag med? - och varför? Emj www.mf.smj Smällsm fö u Emf uvcl d slml sm mlm ll läudvs smällsus. Syf ä lv övd fösåls fö u smällsm fu. Ml båd s c s fösåls fö u d s u Sv. Ml bså v fy s övd uf sm bdl usdl, bsmd, fsmd c ffl m. Uf bsvs

Läs mer

Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på XXXXXXXXX.

Reklamplatser som drar till sig uppmärksamhet och besökare till din monter på XXXXXXXXX. PLATS ÖR EVENT LOO Reklmpltser som drr till sig uppmärksmhet och esökre till din monter på XXXXXXXXX. Älvsjö 203 informtion Specifiktion för grfiskt mteril rfisk enheten ehöver h tryckfärdig originl senst

Läs mer

REKLAMARTIKLAR TILL BÄSTA PRIS!

REKLAMARTIKLAR TILL BÄSTA PRIS! REKLAMARTIKLAR TILL BÄSTA PRIS! 2016 Innhåll PRONTO At.n. 108 Gummigpp md tyckmknism. Jumbopton. 40 x 13 mm. Fäg: gul, ong, öd, blå, gön, gå, svt/vit, svt. Pnno Tänd Rflx Nyckling Mdi Mäss Elktonic Giv

Läs mer

En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n

En krona dagen om dag ona om r e k n n E E n n k e g o r a d m o a n g E o E E o g o Ambssörr/profilr Jököpigs Sör IF Rlf Eström Björ Norqvist Mukl IFK Uvll IK Ovol HK Coutry Flkbrgs FF Örgryt IS Värmo IK Brg Skoftbys IF GK Kroppskultur Dgrfors IF Gfl IF Äglholms FF Ljugskil

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 270 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 270 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 14-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Möt Privata Affärers och Placeringsguidens aktiva läsekrets

Möt Privata Affärers och Placeringsguidens aktiva läsekrets 2014 Möt Pvt Affäs och Pcngsgudns ktv äskts Und 2013 stod nnonsön på Sto Pcngskvän nskt mot nskt md 1 500 v vå mst pcngsntssd äs. Sto Pcngskvän Bok n hkvä md Pvt Affäs och Pcngsgudns ktv äskts Pvt Affä

Läs mer

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING Avdelningen för ämnesdidaktik och matematik (DMA) Avdelningen för kvalitetsteknik, maskinteknik och matematik (KMM) MATEMATISK FORMELSAMLING UPPLAGA (Utkast aug, 0) Innehåll Notation, mängdlära och logik........................

Läs mer