om X har följande sannolikhetsfunktion λ λ . Då gäller a) väntevärdet E(X) = λ b) variansen σ = λ och därmed c) standardavvikelsen σ = λ

Storlek: px
Starta visningen från sidan:

Download "om X har följande sannolikhetsfunktion λ λ . Då gäller a) väntevärdet E(X) = λ b) variansen σ = λ och därmed c) standardavvikelsen σ = λ"

Transkript

1 Arm Hallovc: ETRA ÖVNINGAR ossofördlg OISSONFÖRDELNING ossofördlg aväds oftast för att bsrva atalt hädlsr som träffar obrod av varadra udr tt gvt tdstrvall E ossofördlad stoasts varabl a ata av fölad värd,,, 3, c-gatva hltal ftrsom atalt hädlsr udr gv tdsprod Exmplvs atalt udr som ommr tll tt ösystm llr atalt datapat som ommr tll srvr a modllras som ossofördlad stoastsa varablr Dfto Låt vara dsrt stoasts varabl vars värdmägd är,,,, V sägr att är ossofördlg md paramtr och btcar o om har fölad saolhtsfuto,,,, 3 Amärg: aramtr ossofördlg allas oftast för tstt Egsapr: Låt vara ossofördlad sv md paramtr, dvs o Då gällr a vätvärdt E b varas σ och därmd c stadardavvls σ Vtgt ötor Om,,, är obrod ossofördlad sv md paramtrar,,,, då är summa, ocså ossofördlad sv md paramtr 3 Adra trvall Låt o vara sv som bsrvr atalt hädlsr som träffar udr vss tdsprod av lägd L Alltså hädlsr träffar gomstt udr tdsprod av lägd L och därmd t hädlsr träffar gomstt udr tdsprod av lägd L t Låt Y vara atalt hädlsr udr tdsprod L t Då är Y o t, md adra ord t t Y,,,, 3 4 Sambadt mlla ossofördlg och xpotalfördlg Om atalt hädlsr Kt udr tdsprod av lägd t är ossofördlad, K t o t, så är td T mlla två osutva hädlsr xpotalfördlad, T xp dvs t T t 5 Approxmato md ormalfördlg Om > 5 då a ossofördlad sv o approxmras md ormalfördlg N µ, σ där µ och σ av 5

2 Arm Hallovc: ETRA ÖVNINGAR ossofördlg Uppgft Låt vara ossofördlad, o3 Bstäm a <5 b c >3 Lösg: a < b [ ] 439 c >3 3 [ 3] Uppgft Låt vara ossofördlad, o9 Bstäm a 8 b 4 c > Svar: a 376 b 5496 c, Uppgft 3 Låt Kt btca atalt udr som aommr tll tt systm tdstrvallt,t, där t btcar atal mutr V atar att aomst är ossofördlad och att dt gomstt aommr udr pr mut Bstäm saolhtra för fölad hädlsr: a 3 udr aommr tdstrvallt vars lägd är mutr b Ig ud aommr tdstrvallt vars lägd är 3 sudr 5 m c Högst 5 udr aommr tdstrvallt vars lägd är 3 mutr Lösg a Först bstämmr v aomsttstt för mutr I gomstt aommr udr pr mut och därför udr tdsprod av m aommr gomstt *4 udr Låt Y vara sv som bsrvr aomst udr mutr Då är Y o o Därför Y b Y o o 5 o t Y t av 5

3 Arm Hallovc: ETRA ÖVNINGAR ossofördlg c Y3 o t o 3 o6 Y 3 5 pppp3p4p Uppgft 4 å tt otor fs tr tlfor Atalt aommad samtal för rsptv tlfo är ossofördlad sv md rsptv paramtrar tsttr, 3 och 5 samtal pr tmm Bstäm saolht att udr 8-tmmars arbtsdag aommr totalt mst 7 samtal tll otort Lösg: Summa av ossofördlad sv är ossofördlad sv Udr 8 tmmar aommr tll otort totalt 8*35 8 samtal gomstt Låt btca dt totala atalt samtal som aommr tll otort udr 8 tmmar Då är o8 7 < 7 dsrt fördlg 69 F 69 Dt är tdsrävad att bräa F 69 md mräar, därför approxmrar v ossomd ormalfördlg Y N µ, σ där µ 8 och σ Φ 69 ΦY 69 Φ Φ Svar: 9 9% TEORIFRÅGOR Uppgft T Låt vara osso-fördlad sv md paramtr, dvs o Då gällr p Bvsa att p Lösg: * p, vlt sull bvsas Amärg I övrgåg * har v avät d äda forml Uppgft T Låt vara osso-fördlad sv md paramtr, dvs o Då gällr p Bvsa att E Lösg: E x p *, vlt sull bvsas, subst - 3 av 5

4 Arm Hallovc: ETRA ÖVNINGAR ossofördlg Amärg I övrgåg * har v avät d äda forml Uppgft T3 svår: Låt vara föld av bomalfördlad sv sådaa att Ata att p är r ostat då Vsa att går mot ossofördlg dvs vsa att lm Bvs Låt vara tt fxt tal V har lm lm p p m m m VSB Förlarg av *: Om, ftrsom är tt fxt tal, har v uttryct *, ad * p p Uppgft T4 Låt o och o vara två obrod osso-fördlad sv Vsa att Z o Md adra ord: summa av osso-fördladstoastsa varablr är ocså osso-fördlad sv Bvs V sa vsa att Z p Z fölad fall: och, och, och,, och Därför 4 av 5

5 Arm Hallovc: ETRA ÖVNINGAR ossofördlg och Z och är obrod * Eftrsom o och o har v frå * Z v förlägr md bomalsats Dtta btydr att Z är ossofördlg md paramtr VSB 5 av 5

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik: Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad

Läs mer

KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )

KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL ) Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som

Läs mer

Investering = uppoffring av konsumtion i dag för högre konsumtion i framtiden

Investering = uppoffring av konsumtion i dag för högre konsumtion i framtiden Ivstrg = uppoffrg av osumto dag för högr osumto framtd Vad är förtagsooms vstrg? Rsurs som a aväds udr låg td. Asaffgar udr tdsprod som mdför btalgar udr flra tdsprodr framåt. Ivstrgar förtagsprsptv. Dl

Läs mer

re (potensform eller exponentialform)

re (potensform eller exponentialform) Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r

Läs mer

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( ) 6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så

Läs mer

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.

i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning. TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:

Läs mer

TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel

TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,

Läs mer

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12

Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12 KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armi alilovi: EXTRA ÖVNINGAR omoga lijära diffrtialkvatior OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Lijär diffrtialkvatio (DE) md kostata koffiitr är kvatio av följad tp ( ) (

Läs mer

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)

KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.) Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn

Läs mer

Digital signalbehandling Sampling och vikning på nytt

Digital signalbehandling Sampling och vikning på nytt Ititutio ör data- och lktrotkik Digital igalbhadlig Samplig och vikig på ytt 00-0-6 Bgrpp amplig och vikig har viat ig lit våra att hatra å till vida att dt har kät vårt att tolka vad om hädr md igal om

Läs mer

Centrala gränsvärdessatsen

Centrala gränsvärdessatsen Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska

Läs mer

Tentamen TEN1, HF1012, 1 juni Matematisk statistik Kurskod HF1012 Skrivtid: 8:00-12:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 1 juni Matematisk statistik Kurskod HF1012 Skrivtid: 8:00-12:00 Lärare och examinator : Armin Halilovic Ttm TEN, HF, jui 7 Mtmtis sttisti Kursod HF Srivtid: 8:-: Lärr och mitor : Armi Hlilovic Hjälpmdl: Bifogt formlhäft "Formlr och tbllr i sttisti " och miirär v vil tp som hlst. Förbjud hjälpmdl: Tlfo, lptop

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (

Läs mer

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }. Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio

Läs mer

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de

Läs mer

Institutionen för data- och elektroteknik 1999-11-30. samplingsvillkoret f. Den diskreta fouriertransformen ges av

Institutionen för data- och elektroteknik 1999-11-30. samplingsvillkoret f. Den diskreta fouriertransformen ges av Istitutio för data- och ltroti 999--3 Digital sigalbhadlig f Implmtrig av FFT- och IFFT-rutir Vi har här tidigar i digital sigalbhadlig studrat tidsdisrt fourirtrasform, DFT och mölightra att aväda Fast

Läs mer

Tentamen i Statistik, STA A11/A14 (8 poäng) 24 augusti 2005, klockan

Tentamen i Statistik, STA A11/A14 (8 poäng) 24 augusti 2005, klockan Karlstads uvrstt Isttuto för formatostkolog vdlg för Statstk Ttam Statstk, ST /4 (8 poäg) 4 august 5, klocka 85-35 Tllåta hjälpmdl: Bfogad formlsamlg (md approxmatosschma) och tabllsamlg (dssa skall rturras)

Läs mer

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).

Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1). Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns

Läs mer

Har du sett till att du:

Har du sett till att du: jua b r t t u a lr r l a r r a å l g P rä t r g u s p u m h a c tt val? t bo s F Rock w S Du har tt stort asvar! Som fastghtsägar m hyra gästr llr campg trägår är u otrolgt vktg aktör! Självklart för att

Läs mer

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna

Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga

Läs mer

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology

Läs mer

Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)

Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7) Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera

Läs mer

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat Sigal- och Bildbhadlig FÖREÄSNING 6 -trasform - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta systm. Vi ska s hur d hägr ihop md TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig.

Läs mer

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2

NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2 Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,

Läs mer

Matematisk statistik

Matematisk statistik Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som

Läs mer

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1

1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1 Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +

Läs mer

EKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer.

EKVATIONER MED KOMPLEXA TAL A) Ekvationer som innehåller både ett obekant komplext tal z och dess konjugat z B) Binomiska ekvationer. Arm Hallovc: EXTRA ÖVNINGAR Bomska ekvatoer EKVATIONER MED KOMPLEXA TAL A Ekvatoer som ehåller både ett obekat komplext tal och dess kojugat B Bomska ekvatoer. A Ekvatoer som ehåller både och För att lösa

Läs mer

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar

arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +

Läs mer

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:

Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt: Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 10. Digital signalbehandling. Kapitel 7. Digitala FourierTransformen DFT. LTH 2011 Nedelko Grbic (mtrl. från Bengt Mandersson) Digital sigalbhadlig ESS040 Förläsig 0 Digital sigalbhadlig ESS040 Kapitl 7 Digitala FourirTrasform DFT LTH 0 dlo Grbic (mtrl. frå Bgt Madrsso Istitutio för ltro- och iformatiosti Lud Uivrsity 53 Digital

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand

Läs mer

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten

2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:

Läs mer

Formler och tabeller i statistik

Formler och tabeller i statistik KTH STH, Campus Hage Formler och tabeller statstk Arm Hallovc Formler och tabeller statstk Medelvärde och varas = = = ( ) = = = Medelvärde och varas för ett frekvesdelat materal = k = f = k = f ( ) Vätevärde

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED

ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4. TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

Betygsgränser: För (betyg Fx).

Betygsgränser: För (betyg Fx). Tetame TEN, HF2, 4 jui 2 Matematis statisti Kursod HF2 Srivtid: 3:-7: : Lärare och examiator : Armi Halilovic Hjälmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile ty

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR Amn Hallovc: EXTA ÖVNINGA Nablaopeato SAMMANATTNING OM GADIENT DIVEGENS OTATION NABLAOEATO Ofta föeomande uttc och opeatoe 3 : GADIENT DIVEGENS OTATION V betata funtone med etanguläa oodnate Låt f vaa

Läs mer

Beställare: FFAB genom Shany Poijes Antal sidor: 12. Projekt: Varav bilagor: 6. Projektansvarig: Niklas Jakobsson Datum:

Beställare: FFAB genom Shany Poijes Antal sidor: 12. Projekt: Varav bilagor: 6. Projektansvarig: Niklas Jakobsson Datum: Rap p rt R1 778-1 Bställar: FFAB Shay Pijs Atal sidr: 12 Prjt: 1778 Vara bilar: 6 Prjtasari: Nilas Jabss Datu: 217-6-13 K Drai sl i sta, Sparbasä, H ärst Bräi a trafibullr iför dtaljpla 1 Prjtbsrii Austibyrå

Läs mer

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar

Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B. Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik

F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik 0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.

Läs mer

Följande begrepp används ofta vid beskrivning av ett statistiskt material:

Följande begrepp används ofta vid beskrivning av ett statistiskt material: Am Hllovc: EXTRA ÖVNINGAR Besvde sttst BESKRIVANDE STATISTIK GRUNDBEGREPP Följde egepp väds oft vd esvg v ett sttstst mtel: LÄGESMÅTT medelväde, med och tpväde: Låt D[,,, v e tllst som esve ett sttstst

Läs mer

Sommarpraktik - Grundskola 2017

Sommarpraktik - Grundskola 2017 Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening

Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot

Läs mer

Sensorer, effektorer och fysik. Analys av mätdata

Sensorer, effektorer och fysik. Analys av mätdata Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är

Läs mer

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2

Tentamen TMV210 Inledande Diskret Matematik, D1/DI2 Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)

Läs mer

Föreläsning 5 pn-övergången II: Spänning&ström

Föreläsning 5 pn-övergången II: Spänning&ström Förläsig 5 -övrgåg : Säig&ström Laddigar vid jämvikt Yttr ålagd säig Laddigar md ålagd säig Diffusiosströmmar Kort diod 2013-04-11 Förläsig 5, Komotfysik 2013 1 Komotfysik - Kursövrsikt Biolära Trasistorr

Läs mer

4.1 Förskjutning Töjning

4.1 Förskjutning Töjning Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära

Läs mer

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad

Läs mer

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om

Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity Förläsig : Digital Sigalbhadlig ESS4 Digital sigalbhadlig ESS4 3 ISBN -3-873-5 ISBN -3-87374- Digital Sigal Procssig: Pricipls, Algorithms, ad Applicatios.

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig

Läs mer

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic

Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita

Läs mer

Lösning till TENTAMEN

Lösning till TENTAMEN Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO050 005 el A Strömslära EXAMINATOR Mats Jarlros

Läs mer

Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)

Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p) Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:

Läs mer

Sensorer och elektronik. Analys av mätdata

Sensorer och elektronik. Analys av mätdata Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet

Läs mer

Algebra och geometri 5B Matlablaboration

Algebra och geometri 5B Matlablaboration Mariana Dalarsson, ME & Johan Svnonius, IT Algra och gomtri 5B46 - Matlalaoration 6-- Kurs: 5B46 Handldar: Karim Daho Uppgift Enligt uppgiftn gällr följand vationr: p ( x) + x a + ax + a x a (.) 7 f (

Läs mer

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?

TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk

Läs mer

BILAGA 1 UTREDDA ALTERNATIV NY KORTEBOVÄGEN OCH ANSLUTNING TILL FALKÖPINGSVÄGEN SAMRÅDSUNDERLAG

BILAGA 1 UTREDDA ALTERNATIV NY KORTEBOVÄGEN OCH ANSLUTNING TILL FALKÖPINGSVÄGEN SAMRÅDSUNDERLAG BILAGA UTREDDA ALTERNATIV NY KRTVÄGEN CH ANSLUTNING TILL FALKÖPINGÄGEN SAMRÅDSUNDERLAG 7--7 SAMMANFATTNING Vättrhm AB vill bya ut bostädr å Stradä, å östra sida om järvä som år mlla Jököi oh Falköi. För

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso

Läs mer

Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07

Tentamen i MATEMATISK STATISTIK Datum: 8 Juni 07 Tentamen MATEMATISK STATISTIK Datum: 8 Jun 0 Kurser: MATEMATIK OCH MATEMATISK STATISTIK 6H3000 (TEN2), 6L3000 (TEN2), MATEMATIK2 MED MATEMATISK STATISTIK 6H2208 (TEN2) MATEMATISK STATISTIK 6A2111 (TEN1);

Läs mer

Visst är det skönt med lite varmare

Visst är det skönt med lite varmare HELA DENNA SIDA ÄR EN ANNONS FRÅN ENERGI- OCH KLIMATRÅDGIVARNA I HÄLSINGLAND Iformatio om rgi och miljö frå Ergi- och klimatrådgivara i Hälsiglad Valt md ffktr lägr ä fyra år Har du frågor krig rgi och

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)

Läs mer

Föreläsningsanteckningar till Linjär Regression

Föreläsningsanteckningar till Linjär Regression Föreläsgsateckgar tll Ljär Regresso Kasper K S Aderse 3 oktober 08 Statstsk modell Ofta söks ett sambad y fx mella e förklarade eller oberoede varabel x och e resposvarabel eller beroede varabel y V betrakter

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid: Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,

Läs mer

Räkneövning i Termodynamik och statistisk fysik

Räkneövning i Termodynamik och statistisk fysik Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn

Läs mer

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,

1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x, Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

Digital signalbehandling

Digital signalbehandling Istitutio ör lktro- och iormatiostkik LH, Lud Uivrsity örläsig : Sigalbhadlig ESS4 Sigalbhadlig sigalbhadlig A/D sig. bhadl. D/A Lågpassiltr Lågpassiltr ESS4 9 Samplig krts Rkostruktio Sigal Procssig:

Läs mer

ÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION

ÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION SVENSKA KRAFTNÄT / ENETJÄRN NATUR AB Riskaalys Stamätstatio Sösätra UPPDRAGSNUMMER 1270858000 ÖVERSIKTLIG ANALYS AV OLYCKSRISKER FÖR OMGIVNINGEN FRÅN NY STAMNÄTSTATION Ikom till Stockholms stadsbyggadskotor

Läs mer

Del 1 Teoridel utan hjälpmedel

Del 1 Teoridel utan hjälpmedel inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst

Läs mer

Orderkvantiteter i kanbansystem

Orderkvantiteter i kanbansystem Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem E grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentmen TEN, HF, mj 8 Mtemtis sttisti Kursod HF Srivtid: 4:-8: Lärre och emintor : Armin Hlilovic Hjälmedel: Bifogt formelhäfte ("Formler och teller i sttisti " och miniränre v vilen ty som helst Förjudn

Läs mer

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25

Tentamenn. som har. del II. Handbook av Råde. Del I. Modul 1. fasporträttt. x 2 är en 0, x. Sida 1 av 25 SF676, am 5 aug 7 Isiuio för mamaik, KH SF676, Diffrialkvaior md illämpigar am isdag 5 aug 7 Skrivid: 8:-: Eamiaor: Krisia Bjrklöv För godkä (bg E krävs r godkäda modulrr frå dl I Varj moduluppgif bsår

Läs mer

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista

Läs mer

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna.

(a) Skissa täthets-/frekvensfunktionen och fördelningsfunktionen för X. Glöm inte att ange värden på axlarna. 1 0,5 0 LÖSNINGAR till tetame: Statistik och saolikhetslära (LMA120) Tid och plats: 08:30-12:30 de 6 april 2016 Hjälpmedel: Typgodkäd miiräkare, formelblad Betygsgräser: 3: 12 poäg, 4: 18 poäg, 5: 24 poäg.

Läs mer

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?

Vad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren? Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok

Läs mer

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén

Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:

Läs mer

Enkätsvar Sommarpraktik Gymnasiet 2016

Enkätsvar Sommarpraktik Gymnasiet 2016 Enkätsvar Sommarpraktik Gymnasit 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr int och 5

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär

Läs mer

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def

============================================================ vara en given funktion som är definierad i en punkt. i punkten a och betecknas f (a) def Armi Hliloic: EXTRA ÖVNINGAR Dririgsrglr DERIVERINGSREGLER ============================================================ DERIVATANS DEFINITION Diitio Låt y ( r gi uktio som är iird i pukt ( ( Om gräsärdt

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik MSTA3, Saolikhetsteori A, 5 p 5--7 Tetame i matematisk statistik Saolikhetsteori A, 5 poäg Skrivtid: 9.-5.. Tillåta hjälpmedel: Tabellsamlig, ege miiräkare. Studetera får behålla tetamesuppgiftera. På

Läs mer

Upplägg Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation

Upplägg Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation Itgt v Uvrsum Är v samma? Föräsg 4: Draks kvato Uägg Itrodukto t ämgsugtra Draks kvato oh dss btyds Ekvatos aramtrar ågra räkxm Käda brstr Davs: Kat 4 (sd 66-86) 1 Obs! Suttta kommr att ha tt uägg som

Läs mer

Opp, Amaryllis (Fredmans sång nr 31)

Opp, Amaryllis (Fredmans sång nr 31) Opp, marylls (Fredmans sång nr 1) Text musk: Carl Mchael Bellman rr: Eva Toller 05 Tenor 1 1Opp, Tag - ma - ryl - ls, vak - na mn ll -! äd - ret stl -, d re - var dra-gen; bör - jar -gen, Tenor 2 Basso

Läs mer