Sensorer och elektronik. Analys av mätdata

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Sensorer och elektronik. Analys av mätdata"

Transkript

1 Sesorer och elektrok Aalys av mätdata

2 Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys

3 Mätfel Alla mätresultat är behäftade med e vss osäkerhet på grud av mätfel. Mätfelet är skllade mella det uppmätta värdet och det saa värdet.

4 Noggrahet och precso God oggrahet ebär att mätvärdea lgger ära det saa värdet. Precso är ett mått på hur stor sprdge mella mätvärdea är. Ju större sprdg, desto sämre precso.

5 Systematska och slumpmässga mätfel Systematska fel påverkar oggrahete. Slumpmässga fel påverkar precsoe. frekves systematskt fel sat värde slumpmässga fel mätvärde

6 Systematska fel Orsaker tll systematska fel Kalbrergsfel Belastgsfel: mätge påverkar mätobjektet Mätsystemet ka påverkas av adra varabler ä de uppmätta. Eempel: e töjgsgvare påverkas av temperature.

7 Slumpmässga fel Slumpmässga varabler orsakas av varabler som te ka kotrolleras uder mätprocesse. Eempelvs ka elektrok ka vara käslg för temperaturädrgar. Om temperature te kotrolleras kommer då det uppmätta värdet att fluktuera då temperature fluktuerar. Adra orsaker tll slumpmässga fel ka vara brus resstorer eller störgar pga. yttre elektromagetska fält.

8 Begrepp om saolkhetslära Utfall: resultat av ett slumpmässgt försök Utfallsrum (Ω): mägde av alla utfall Hädelse: e mägd av utfall Saolkhete P(A) för e hädelse A är ett tal som uppfyller: 1. 0 P( A) 1. P( Ω) = 1 3. P ( A B) = P( A) + P( B) om A och B är oförelga

9 Området om rektagel eda markerar utfallsrummet Ω. Hädelsera A och B är oförelga. A B

10 Om A och B te är oförelga P( A B) = P( A) + P( B) P( A B) A A B B

11 Slumpmässg varabel E slumpmässg (stokastsk) varabel är e fukto deferad på ett utfallsrum. Eempel: E fukto som avbldar utfallet etta på talet 1, tvåa på talet osv. vd tärgskast är e slumpmässg varabel. Dea varabel atar ågot av värdea 1,,3,4,5 eller 6 med saolkhetera 1/6.

12 Frekvesfukto Saolkhete att e slumpmässg varabel X skall lgga ett tervall mella a och b ges av frekvesfuktoe f (probablty desty fucto) P ( a < X < b) = f ( ) d Frekvesfuktoe är cke egatv samt ormerad f ( ) d = 1 b a

13 Vätevärde, varas och stadardavvkelse Vätevärdet E(X) av e slumpmässg varabel X ges av Varase ges av Stadardavvkelse ges av E ( X ) = f ( ) d ( ) ) X E( X ) = ( E( X )) V ( X ) = E f ( ) d σ = V (X )

14 Normalfördelge Frekvesfuktoe för e ormalfördelad slumpmässg varabel med vätevärde µ och stadardavvkelse σ ges av 1 ( µ ) f ( ) ep = σ π σ

15 Cetrala gräsvärdessatse Medelvärdet av stycke slumpmässga lka fördelade varabler med vätevärde µ och varas σ är appromatvt ormalfördelat med vätevärde µ och varas σ /. Appromatoe blr bättre ju större är.

16 Lägesmått och sprdgsmått E skattg av vätevärdet är 1 stckprovsmedelvärdet = E skattg av varase (stckprovsvaras) 1 då vätevärdet µ är kät är s = ( µ ) Om vätevärdet te är kät uta v aväder oss av e skattg av vätevärdet så ges stckprovsvarase av 1 s = ( ) = 1 1 = 1

17 Kofdestervall Ett tervall som täcker över vätevärdet med saolkhete 1-α kallas ett kofdestervall för vätevärdet på kofdesvå 1-α.

18 Eempel på kofdestervall Atag att v har gjort mätgar av e ormalfördelad varabel med käd stadardavvkelse σ. Ma ka vsa att z = är e ormalfördelad varabel med vätevärde oll och stadardavvkelse 1. Alltså gäller med saolkhet 1-α att α / < eller aorluda uttryckt gäller med σ saolkhet 1-α att z < µ < z α / + α / σ / µ µ z < z σ / σ α /

19 Saolkhete att z lgger mella - och α/ är 1-α. Om f(z) är frekvesfuktoe för e ormalfördelad varabel med vätevärde 0 och varas 1 så gäller det att z z α/ z α / f ( z) dz = α

20 Kofdestervall (forts) Om ma te käer stadardavvkelse aväder ma skattge s samt att t = är t-fördelad med -1 frhetsgrader. Ett kofdestervall för vätevärdet på kofdesvå 1-α är då s / µ s tα / < µ < + tα/ s

21 Ljär regresso Atag att v har stycke par av datapukter (, y ) och att v vll apassa e rät lje y = a+ b tll dessa pukter. Atag att avvkelsera frå de räta lje är slumpmässga och ormalfördelade. Mmera summa av de kvadratska avvkelsera frå de räta lje Q = ( a + b y ) = 1

22 y y=a+b ( )( ) ( ) = y y a ( )( ) ( ) = y y b

23 Korrelatoskoeffcet Ett värde på 1 svarar mot att alla pukter lgger på e rät lje med postv lutg och ett värde på 1 svarar mot att alla pukter lgger på e rät lje med egatv lutg. ( )( ) ( ) ( ) / = = = = y y y y y r

24 Apassg av cke-ljära fuktoer b Om v vll apassa e fukto y = ae tll mätdata är det eklast att logartmera bägge sdor ly=la b och seda aväda ljär regresso. Om v vll apassa e fukto y = a+ b/ tll mätpuktera ( y ) är det eklast att sätta och seda apassa lje y = a+ b tll puktera (, y ), =1/

25 Komberad mätosäkerhet Atag att v gör e mätg där resultatet R beror av resultate av mätgar av st varabler, dvs. R = f ( 1,,..., ) Varje varabel är behäftad med e mätosäkerhet w. Mätosäkerhete för hela mätges resultat ges av Gauss formel w R R 1 1/ 1 R R ( w ) + ( w ) ( w ) =

26 Osäkerhet pga. slumpmässga fel Ett mått på osäkerhete hos e estaka mätg pga. slumpmässga fel (precso lmt) är halva bredde av ett kofdestervall, som ges av t- fördelge P = ts, där t beror på kofdesvå och atalet frhetsgrader (- 1).

27 Osäkerhet pga. systematska fel Mätosäkerhete pga systematska fel (bas lmt) beskrvs av halva bredde B av ett tervall som täcker det saa värdet med e vss saolkhet (coverage).

28 Kombato av slumpmässga och systematska mätosäkerheter De totala mätosäkerhete pga. systematska och slumpmässga fel ges av ( B P ) 1/ w = +

29 Felkategorer I ett mätsystem fs det ofta måga felkällor. De olka fele brukar delas upp tre kategorer: Kalbrergsfel: osäkerhet stadarder, osäkerhet och slumpmässghet kalbrerge Datasamlgsfel: slumpmässg varato av de uppmätta varabel, belastgsfel, fel A/D omvadlare, slumpmässga fel vsareheter. Datareduktosfel: fel apassgar och ljärsergar, dervergar av mätdata.

30 Mätosäkerhetsaalys 1. Idetfera de oberoede varablera och defera sambadet mella testresultatet och dessa oberoede varabler.. Gör e lsta över alla felkällor för varje uppmätt varabel. Dela de esklda fele kategorera kalbrergsfel, datasamlgsfel samt datareduktosfel. 3. Uppskatta de esklda fele var för sg. I detta steg uppskattas osäkerhetera pga slumpmässga och systematska fel (precso lmt och bas lmt)

31 Mätosäkerhetsaalys (forts.) 4. Beräka mätosäkerhetera pga slumpmässga och systematska fel för varje varabel steg 1 mha RSS-formel. ts P S S B B m m = = = = = 1/ 1 1/ 1

32 Mätosäkerhetsaalys (forts.) 5. Beräka osäkerhete pga slumpmässga och systematska fel resultatet mha Gauss formel. 6. Beräka de totala mätosäkerhete. ( B P ) 1/ w = +

Lycka till och trevlig sommar!

Lycka till och trevlig sommar! UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 07-05-3 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 09.00-5.00 Tllåta hjälpmedel: Tabellsamlg,

Läs mer

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen?

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen? UMEÅ UNIVERSITET Isttutoe för matematk och matematsk statstk MSTA, Statstk för tekska fysker A Peter Ato TENTAMEN 005-0-03 ÖSNINGSFÖRSAGTENTAMEN I MATEMATISK STATISTIK Statstk för tekska fysker, 4 oäg.

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de

Läs mer

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14) AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök

Läs mer

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2 Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +

Läs mer

Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl

Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl Tetame STA A5 delkurs ( poäg): Saolkhetslära och statstsk slutledg 3 ovember 5 kl. 8.5-3.5 Tllåta hjälpmedel: Räkedosa bfogade formel- och tabellsamlgar vlka skall retureras. Asvarg lärare: Ja Rudader

Läs mer

Något om beskrivande statistik

Något om beskrivande statistik Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

Centrala gränsvärdessatsen

Centrala gränsvärdessatsen Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

En kvalitetskontroll - Snustillverkaren Fiedler & Lundgren kvalitetstestas Av: Andreas Timglas

En kvalitetskontroll - Snustillverkaren Fiedler & Lundgren kvalitetstestas Av: Andreas Timglas E kvaltetskotroll - Sustllverkare Fedler & Ludgre kvaltetstestas Av: Adreas Tmglas Uppsats statstk 10 poäg Nvå: 61-80 Vt 2008 Hadledare: Björ Holmqust Abstract Ths paper am to descrbe the varato ad develop

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II Stickprov MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig del II G Gripeberg Aalto-uiversitetet 4 februari 04 Estimerig 3 Kofidesitervall 4 Hypotesprövig 5 Korrelatio och regressio G Gripeberg

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Enkel linjär regression

Enkel linjär regression Ekel ljär regresso Ekel ljär regresso Kap Ekel ljär regressosmodell: = β + β + ε Sstematsk del Stokastsk (slumpmässg) del där är beroede varabel, de varabel som v vll förklara eller predktera De kallas

Läs mer

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04 Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad

Sannolikhetslära. c 2015 Eric Järpe Högskolan i Halmstad Saolikhetslära c 201 Eric Järpe Högskola i Halmstad Saolikhetslära hadlar om att mäta hur saolikt (dvs hur ofta ) ma ka förväta sig att ågot iträffar. Därför sorterar saolikhetslära uder de matematiska

Läs mer

Flexibel konkursriskestimering med logistisk spline-regression

Flexibel konkursriskestimering med logistisk spline-regression Matematsk statstk Stockholms uverstet Flexbel kokursrskestmerg med logstsk sple-regresso Erk vo Schedv Examesarbete 8: Postadress: Matematsk statstk Matematska sttutoe Stockholms uverstet 6 9 Stockholm

Läs mer

Jag läser kursen på. Halvfart Helfart

Jag läser kursen på. Halvfart Helfart KOD: Kurskod: PC106/PC145 Kurs 6: Persolighet, hälsa och socialpsykologi (15 hp) Datum: 3/8 014 Hel- och halvfart VT 14 Provmomet: Socialpsykologi + Metod Tillåta hjälpmedel: Miiräkare Asvarig lärare:

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl

Tentamen i statistik för STA A13, 1-10 poäng Deltentamen II, 5p Lördag 9 juni 2007 kl Avdelige för atioalekoomi och Tetame i för STA A13, 1-10 poäg Deltetame II, 5p Lördag 9 jui 007 kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig

Läs mer

Variansberäkningar KPI

Variansberäkningar KPI STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

Mätfelsbehandling. Lars Engström

Mätfelsbehandling. Lars Engström Mätfelsbehandlng Lars Engström I alla fyskalska försök har de värden man erhåller mer eller mndre hög noggrannhet. Ibland är osäkerheten en mätnng fullständgt försumbar förhållande tll den precson man

Läs mer

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor

Mätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Sammafattig, del II G. Gripeberg Aalto-uiversitetet 13 februari 015 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistik

Läs mer

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan

Inledande matematisk analys (TATA79) Höstterminen 2016 Föreläsnings- och lekionsplan Iledade matematisk aalys TATA79) Hösttermie 016 Föreläsigs- och lekiospla Föreläsig 1 Logik, axiom och argumet iom matematik, talbeteckigssystem för hetal, ratioella tal, heltalspoteser. Lektio 1 och Hadledigstillfälle

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor

Konsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 20 januari 2007, kl. 09.00-13.00 0.01.007 Tetame i Statistik, STA A13 Deltetame, 5p 0 jauari 007, kl. 09.00-13.00 Tillåta hjälpmedel: Bifogad formel- och tabellsamlig (skall retureras) samt miiräkare. Asvarig lärare: Haah Hall Övrigt:

Läs mer

Linjär Algebra. Linjära ekvationssystem. Ax = b. Viktiga begrepp. Linjära ekvationssystem. Kolumnerna i A. Exempel. R (A) spänns upp av t.ex.

Linjär Algebra. Linjära ekvationssystem. Ax = b. Viktiga begrepp. Linjära ekvationssystem. Kolumnerna i A. Exempel. R (A) spänns upp av t.ex. Ljära ekvatossystem Ljär Algebra obekata & ekvatoer a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b Ljära ekvatossystem där A -matrs och b -vektor Vktga

Läs mer

Bilaga 1 Formelsamling

Bilaga 1 Formelsamling 1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste

Läs mer

Formelsamling i statistik

Formelsamling i statistik Formelamlg tattk Vero 4. 004-0-9 Ittutoe för formatotekolog och meder 004-0-9 Iehåll: eteckgar... 3 ekrvade tattk... 4. CETRL- OCH SPRIDIGSMÅTT... 4. STDRDVÄGIG...6.3 ORRELTIO OCH REGRESSIO... 7 3 Saolkhetteor...

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

Tentamen Metod C vid Uppsala universitet, , kl

Tentamen Metod C vid Uppsala universitet, , kl Tetame Metod C vid Uppsala uiversitet, 160331, kl. 08.00 12.00 Avisigar Av rättigspraktiska skäl skall var och e av de tre huvudfrågora besvaras på separata pappersark. Börja alltså på ett ytt pappersark

Läs mer

Tentamen i Flervariabelanalys F/TM, MVE035

Tentamen i Flervariabelanalys F/TM, MVE035 Tetame i Flervariabelaalys F/TM, MV35 8 3 kl. 8.3.3. Hjälpmedel: Iga, ej räkedosa. Telefo: Oskar Hamlet tel 73-8834 För godkät krävs mist 4 poäg. Betyg 3: 4-35 poäg, betyg 4: 36-47 poäg, betyg 5: 48 poäg

Läs mer

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23

MA2018 Tillämpad Matematik III-Statistik, 7.5hp, 2014-08-23 1 MA018 Tillämpad Matematik III-Statistik, 7.5hp, 014-08-3 Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Tentamen 19 mars, 8:00 12:00, Q22, Q26

Tentamen 19 mars, 8:00 12:00, Q22, Q26 Avdelige för elektriska eergisystem EG225 DRIFT OCH PLANERING AV ELPRODUKTION Vårtermie 25 Tetame 9 mars, 8: 2:, Q22, Q26 Istruktioer Skriv alla svar på det bifogade svarsbladet. Det är valfritt att också

Läs mer

Programmering Emme-makro rvinst_ic.mac version 2

Programmering Emme-makro rvinst_ic.mac version 2 Uppdragsr: 10109320 2008-08-27 Seh Svalgård PM Programmerig Emme-makro rvis_ic.mac versio 2 Iehållsföreckig Förusäigar...2 Beräkigsuryck...2 Daabaser...4 Marisplaser...4 Aropsparamerar...6 Udaa...6 L:\705x\_SAMSAM\3_Dokume\36_PM\PM

Läs mer

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider...

Enkel slumpvandring. Sven Erick Alm. 9 april 2002 (modifierad 8 mars 2006) 2 Apan och stupet 3 2.1 Passagesannolikheter... 3 2.2 Passagetider... Ekel slumpvadrig Sve Erick Alm 9 april 2002 (modifierad 8 mars 2006) Iehåll 1 Iledig 2 2 Apa och stupet 3 2.1 Passagesaolikheter............................... 3 2.2 Passagetider....................................

Läs mer

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29

Tentamen del 2 i kursen Elinstallation, begränsad behörighet ET1020 2014-08-29 Tetame del 2 i kure Elitallatio, begräad behörighet ET1020 2014-08-29 Tetame omfattar 60 poäg. För godkäd tetame kräv 30 poäg. Tillåta hjälpmedel är räkedoa amt bifogad formelamlig Beräkigar behöver bara

Läs mer

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007

Lösning till tentamen för kursen Log-linjära statistiska modeller 29 maj 2007 STOCKHOLMS UNIVERSITET MS 3150 MATEMATISKA INSTITUTIONEN TENTAMEN Avd. Matematisk statistik 29 maj 2007 Lösig till tetame för kurse Log-lijära statistiska modeller 29 maj 2007 Uppgift 1 a Modelle uta ågra

Läs mer

Sammanfattning formler och begrepp, första delen av två

Sammanfattning formler och begrepp, första delen av två Ekoomsk sask, del kurs 6 ael agwall;, vårerme 5 ockholm chool of Ecoomcs ammafag formler och begre, försa dele av vå amle sckrov objek,,,...,, av oulaoes N. Om Varje objek har lka sor saolkhe a väljas

Läs mer

En jämförande studie av GLM, Jungs metod och Tweedie-modell för premiesättning av multiplikativ tariff.

En jämförande studie av GLM, Jungs metod och Tweedie-modell för premiesättning av multiplikativ tariff. atematk tattk Stockholm uvertet E ämförade tude av GL, Jug metod och Teede-modell för premeättg av multplkatv tarff. El Laro Eamearete 4: Potal addre: atematk tattk Dept. of athematc Stockholm uvertet

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U.

Veckoblad 2. Kapitel 2 i Matematisk statistik, Blomqvist U. Vecoblad 2 Kaptel 2 Matemats statst, Blomqvst U. ya begrepp: oberoende händelser, betngad sannolhet, Bayes formel.. är man sall lösa problem, där sntt mellan händelser ngår, an det ofta vara tll hjälp

Läs mer

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.

2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad. Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK LÖSNINGSFÖRSLAG TILL UPPGIFTER I PROBLEMSAMLINGEN I MATEMATISK STATISTIK Versio 9 december 4 Fel i lösigara mottages tacksamt till mattsso@math.kth.se. Notera att lösigara på vissa ställe utyttjar adra,

Läs mer

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator

Design mönster. n n n n n n. Command Active object Template method Strategy Facade Mediator Desig möster Desig möster Commad Active object Template method Strategy Facade Mediator Commad Ett av de eklaste desig möstre Me också mycket avädbart Ett grässitt med e metod Comm ad do()

Läs mer

Välkommen in i konfirmandens egen bibel!

Välkommen in i konfirmandens egen bibel! L Välkoe kofrades ege bbel! Upptäck Bbel tllsaas ed kofrade! Lbrs ya kofradutgåva av Bbel har två huvudpersoer: Jesus so är Bbels kära och stjära och de uga äska so ärar sg Bbel och tro. Ordet kofrad äs

Läs mer

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9 Fe l i t ill verki ge ept Okt Nov Dec ept Okt Nov Dec Högskola Dalara Översikt tatistisk processtyrig Itroduktio till tatistisk Processtyrig (P) aolikhet Normalfördelig Några adra fördeligar Variatio Olika

Läs mer

Formler, grundläggande statistik

Formler, grundläggande statistik Formler, grudläggade aiik Medelvärde N X μ σ Sadardavvikele, populaio Sadardavvikele, ickprov Sadardavvikele, räkevälig z Z-poäg z z r Pearo korrelaio, urpruglig r Pearo korrelaio, räkeväligare Oe ample

Läs mer

Strukturell utveckling av arbetskostnad och priser i den svenska ekonomin

Strukturell utveckling av arbetskostnad och priser i den svenska ekonomin Strukturell utvecklg av arbetskostad och prser de sveska ekoom Alek Markowsk Krsta Nlsso Marcus Wdé WORKING PAPER NR 06, MAJ 0 UTGIVEN AV KONJUNKTURINSTITUTET KONJUNKTURINSTITUTET gör aalyser och progoser

Läs mer

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp

Övningstentamen i MA2018 Tillämpad Matematik III-Statistik, 7.5hp Övigstetame i MA08 Tillämpad Matematik III-Statistik, 7.5hp Hjälpmedel: Räkedosa och medföljade formelsamlig! Täk på att dia lösigar ska utformas så att det blir lätt för läsare att följa dia takegågar.

Läs mer

Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige. http://www.math.su.

Postadress: Internet: Matematisk statistik Matematiska institutionen Stockholms universitet 106 91 Stockholm Sverige. http://www.math.su. ËØÓ ÓÐÑ ÙÒ Ú Ö Ø Ø Å Ø Ñ Ø Ø Ø Ø ÁÒ Ø ÓÒ Ò ÒÚ Ö ÒÔ ÒÔ ÖÚ ÓÖÖ Ð Ø ÓÒ ÒÑ ÐÐ Ò ØÖ Ò Ð Ö Ð ÒÊÓÓ Ü Ñ Ò Ö Ø ¾¼½½ Postadress: Matemats statst Matematsa sttutoe Stocholms uverstet 06 9 Stocholm Sverge Iteret:

Läs mer

Systemdesign fortsättningskurs

Systemdesign fortsättningskurs Systemdesig fortsättigskurs Orgaisatio Föreläsare Potus Boström Assistet? Tider mådagar och tisdagar kl. 8-10 Börjar 3.9 och slutar 16.10 Rum B3040 Orgaisatio Iga föreläsigar 24.9, 25.9, 1.10 och 2.10

Läs mer

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter?

(a) om vi kan välja helt fritt? (b) om vi vill ha minst en fisk av varje art? (c) om vi vill ha precis 3 olika arter? Lösigar Grudläggade Diskret matematik 11054 Tid: 1.00-17.00 Telefo: 036-10160, Examiator: F Abrahamsso 1. I de lokala zoo-affäre fis 15 olika fiskarter med mist 0 fiskar utav varje art). På hur måga sätt

Läs mer

MS-A0409 Grundkurs i diskret matematik I

MS-A0409 Grundkurs i diskret matematik I MS-A0409 Grudkurs i diskret matematik I G. Gripeberg Mägder och logik Relatioer och fuktioer Aalto-uiversitetet oktober 04 Kombiatorik etc. G. Gripeberg (Aalto-uiversitetet MS-A0409 Grudkurs i diskret

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Tetame i matematisk statistik Uppgift : På e arbetsplats skadades % av persoale uder ett år. 60% av alla skadade var mä. 0% av alla aställda var kvior. Är det maliga eller kviliga aställda som löper störst

Läs mer

Föreläsning F3 Patrik Eriksson 2000

Föreläsning F3 Patrik Eriksson 2000 Föreläsig F Patrik riksso 000 Y/D trasformatio Det fis ytterligare ett par koppligar som är värda att käa till och kua hatera, ite mist är ma har att göra med trefasät. Dessa kallas stjärkopplig respektive

Läs mer

CONSTANT FINESS SUNFLEX

CONSTANT FINESS SUNFLEX Luex terrassarkiser. Moterigs- och bruksavisig CONSTNT FINESS SUNFLEX 5 6 Markises huvudkopoeter och ått Placerig av kobikosol rklockor och justerig Parallelljusterig vädig och skötsel Huvudkopoeter och

Läs mer

Försöket med trängselskatt

Försöket med trängselskatt STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då

Läs mer

Leica Lino. Noggranna, självavvägande punkt- och linjelasers

Leica Lino. Noggranna, självavvägande punkt- och linjelasers Leica Lio Noggraa, självavvägade pukt- och lijelasers Etablera, starta, klart! Med Leica Lio är alltig lodat och perfekt apassat Leica Lios projekterar lijer eller pukter med millimeterprecisio och låter

Läs mer

Funktionsteori Datorlaboration 1

Funktionsteori Datorlaboration 1 Fuktiosteori Datorlaboratio 1 Fuktiosteori vt1 2013 Rekursiosekvatioer och komplex aalys Syftet med datorövige Öviges ädamål är att ge ett smakprov på hur ett datoralgebrasystem ka avädas för att att lösa

Läs mer

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6

Uppgift 1 (max 5p) Uppgift 2 (max 5p) Exempeltenta nr 6 ppgf (max 5p) Exempelena nr 6 ppgfen går u på a förklara några cenrala begrepp nom kursen. Svara korfaa men kärnfull och ange en förklarng på e fåal menngar som ydlg beskrver var och e av de fem begreppen.

Läs mer

Lektion 3 Kärnan Bindningsenergi och massdefekt

Lektion 3 Kärnan Bindningsenergi och massdefekt Lektio 3 Kära Bidigseergi och assdefekt Några begre och beteckigar Nuklid Nukleo Isotoer Isobarer Masstal A Atouer Z E ato ed ett bestät atal rotoer och eutroer. Beteckas ofta A ed skrivsättet Z Xx där

Läs mer

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som

Geometriska summor. Aritmetiska summor. Aritmetiska talföljder kallar vi talföljder som. Geometriska talföljder kallar vi talföljder som Aritmetiska summor Aritmetiska talföljder kallar vi talföljder som, 4, 6, 8, 10, 1, 14, 000, 1996, 199, 1988, 0.1, 0., 0.3, 0.4, för vilka differese mella på varadra följade tal kostat. Aritmetiska summor

Läs mer

Har du sett till att du:

Har du sett till att du: jua b r t t u a lr r l a r r a å l g P rä t r g u s p u m h a c tt val? t bo s F Rock w S Du har tt stort asvar! Som fastghtsägar m hyra gästr llr campg trägår är u otrolgt vktg aktör! Självklart för att

Läs mer

Fouriertransformen. Faltning, filtrering och sampling

Fouriertransformen. Faltning, filtrering och sampling Faltig Fouriertrasforme Faltig, filtrerig och samplig Givet två sigaler f och g och deras respektive spektra f`, g`, hur bildar ma e tredje sigal såda att dess spektrum är lika med summa f` + g`. Lätt!

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

Kompletterande kurslitteratur om serier

Kompletterande kurslitteratur om serier KTH Matematik Has Thuberg 5B47 Evariabelaalys Kompletterade kurslitteratur om serier I Persso & Böiers.5.4 itroduceras serier, och serier diskuteras också i kapitel 7.9. Ia du läser vidare här skall du

Läs mer

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.

Remiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter. 1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses

Läs mer

7 Sjunde lektionen. 7.1 Digitala filter

7 Sjunde lektionen. 7.1 Digitala filter 7 Sjude lektioe 7. Digitala filter 7.. Flera svar Ett lijärt tidsivariat system ka karakteriseras med ett flertal svar, t.ex. impuls-, steg- och amplitudsvare. LTI-system ka ju äve i de flesta fall beskrivas

Läs mer

. Om man har n stycken valsituationer med k valmöjligheter var, är det totala antalet valmöjligheter k.

. Om man har n stycken valsituationer med k valmöjligheter var, är det totala antalet valmöjligheter k. . Saolihetslära. Kombiatori Vad är saolihetslära? Ma a allmät säga att iom saolihetslära försöer ma beräa chaser eller riser. Det a seda vara fråga om chase att via på lotto eller rise att bli sju i e

Läs mer

Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds

Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds 22 5 Innehåll:. Rsk & Odds. Rsk Rato.2 Odds Rato 2. Logstsk Regresson 2. Ln Odds 2.2 SPSS Output 2.3 Estmerng (ML) 2.4 Multpel 3. Survval Analys 3. vs. Logstsk 3.2 Censurerade data 3.3 Data, SPSS 3.4 Parametrskt

Läs mer

Hur månfa indianer...? och andra gåtor Lärarmaterial. Vad handlar boken om? Mål från Lgr 11: Att arbeta med gåtor. Lek med ord och bokstäver

Hur månfa indianer...? och andra gåtor Lärarmaterial. Vad handlar boken om? Mål från Lgr 11: Att arbeta med gåtor. Lek med ord och bokstäver Lärarmaterial sida 1 Författare: Keld Peterse Vad hadlar boke om? Här får ma täka till! Ka du lösa gåtora? Mål frå Lgr 11: Lässtrategier för att förstå och tolka texter samt för att apassa läsige efter

Läs mer

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25

Linköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25 Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om

Läs mer

Ångfärjan eller Oceanpiren? Stadsbyggnadsförvaltningen Inledande lokaliseringsstudie av kongress/hotel center i centrala Helsingborg 2008-04-28

Ångfärjan eller Oceanpiren? Stadsbyggnadsförvaltningen Inledande lokaliseringsstudie av kongress/hotel center i centrala Helsingborg 2008-04-28 Ågfärja eller Oceapire? Stadsbyggadsförvalti Iledade lokaliserigsstudie av kogress/hotel ceter i cetrala Helsigborg 2008-04-28 Bakgrud Utredigar som ligr till uderlag för Stadsbyggadsförvaltis iledade

Läs mer

Torsdag 16 oktober: Klassisk fysik- Modern Fysik -Teknologi (Arne)

Torsdag 16 oktober: Klassisk fysik- Modern Fysik -Teknologi (Arne) Torsdag 16 oktober: Klassisk fysik- Moder Fysik -Tekologi (Are) Iledig I slutet av 1800-talet existerade ett flertal experimetella fakta, som ej kude förklaras med de s.k. Klassiska Fysike. Flera av dessa

Läs mer

Ny lagstiftning från 1 januari 2011

Ny lagstiftning från 1 januari 2011 Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q

Läs mer

Nr Bilaga 1. Det rekommenderade värdet för flödestätheten i ett statiskt magnetiskt fält (0 Hz).

Nr Bilaga 1. Det rekommenderade värdet för flödestätheten i ett statiskt magnetiskt fält (0 Hz). Nr 94 641 Bilaga 1. Det rekommederade värdet för flödestäthete i ett statiskt magetiskt fält (0 Hz). Expoerig Hela kroppe (fortgåede) Magetisk flödestäthet 40 mt Förklarigar till tabelle Äve lägre magetisk

Läs mer

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare.

Linköpings tekniska högskola IKP/Mekaniksystem Mekanisk värmeteori och strömningslära. Exempeltentamen 3. strömningslära, miniräknare. Exempeltetame 3 (OBS! De a te ta m e ga vs i a ku rse delvis bytte i eh å ll. Vis s a u ppgifter s om i te lä gre ä r a ktu ella h a r dä rför ta gits bort, vilket m edför a tt poä gs u m m a ä r < 50.

Läs mer

Kontrakt baserad design. Design by contract

Kontrakt baserad design. Design by contract Kotrakt baserad desig Desig by cotract Motiverig Objekt ka valige ite avädas på ett godtyckligt sätt Metoder ska aropas med vissa parametervärde I rätt ordig Svårt att veta hur ett objekt ka avädas uta

Läs mer