Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Fördelningen för populationen som stickprovet togs ifrån är känd så nära som på ett antal parametrar, t.ex: N med okända"

Transkript

1 we Mezel, 7 Parametrska metoder Fördelge för poplatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda Icke-parametrska metoder ta atagade om de derlggade fördelge!,,5,,5, -5, -,5,,5 5, 7,5

2 parametrsk ckeparametrsk -Sample t-test: kräver ormalfördelg för de derlggade poplatoera Oe-ay NOV: kräver ormalfördelg för alla grpper, ordalskalor (storleksordg fs, me dffereser sakar betydelse: t.ex. storlek av T-tröjor) dessa data ka dock ragordas styrka ka vara mdre jämfört med parametrska test

3 poplato ormalfördelad -Sample t-test (-Sample z-test) Pared t-test poplato te ormalfördelad -Sample Sg test -Sample lcoxo test lcoxo-sged ak test allmä fördelg symmetrsk fördelg -Sample Sg test på dfferesera -Sample lcoxo på dfferesera -Sample t-test Ma- -test : wlcox.test Oe-ay NOV Krskal-alls test : krskal.test

4 p P( X H H a : p.5 ~ : p.5 eller ) p.5 eller p.5 Testvarabel: M atalet värde som är större ä ~ M krt (,.5) der : mycket stora eller mycket små värde för M p värdet elgt bomalfördelge p P( H X M ) P( X M ) sdgt med x x x ta x x x x x x x x x x x x x Sherw, C.M.. Mrrors as potetal evrometal erchmet for dvdally hosed laboratory mce. ppl. m. ehav. Sc. 87: 95-.

5 H : p.5 H stckprov : M M 6,.5 der H p P M P M P M P a : p.5 M tvåsdgt tvåsdgt test test Dstrbto Dstrbtoder Plot H omal; =6; p=,5,, =. Probablty,,5,,6,6 Det värdet v fck är alltså mycket osaolkt der H P-värdet: det observerade värdet, eller ä mera

6 M M z (,, p N M ~ p), sn N, der H p, p p der H z måste därför vara N(,) -fördelad krt z tvåsdgt v förkastar H om z verkar te vara N(,)-fördelad.

7 prövar om medae för e fördelg är lka med ett hypotetskt värde gör detsamma som Sg test, me fördelge av de derlggade poplatoe måste vara symmetrsk ragordg räkas t, som för måga cke-parametrska test Exempel: V har följade värde: -, -6,, -, -, -7, 5,6, -, -, -5, -, -, Om v t.ex. testar om = smmeras alla rag värde abs rag -,, 6-6, 6, 9,, -,, ,, -7, 7, 5,6 5,6 8,, 5 krt m, 6 lower tal pper tal tabell tvåsdgt -,, -,, -5, 5, 7 -,, -,,

8 H : Om medae av e symmetrsk fördelg var borde + - vara gefär lka stora. H förkastas är t.ex. OS!: H lågt värde!... eftersom =m( +, - ) =5 osaolkt att det blr så om fördelge är symmetrsk =

9 sn E, V der H totala ragsmma E z V E V krt z tvåsdgt större ä stämmer, v testar j + två parade stckprov (t. ex före/efter) är de detska (H ) praktskt taget detsamma som Oe-Sample lcoxo test, se ere Exempel: agst måad Lareyses, I.,. lst, L. De Temmerma, C. Lemmes ad. Celemas.. Cloal varato metal accmlato ad bomass prodcto a poplar coppce cltre. I. Seasoal varato leaf, wood ad bark cocetratos. Evro. Pollto : 85-9.

10 g Nov Dff abs rag 8,, -,, 6, 6, -6, 6, 9 6,5 5,,,,6 5,6 -,, 9,5,5 -,, 8, 5,5-7, 7, 8,,7 5,6 5,6 8,,,, 5 7,9 9,9 -,, 8,, -,, 8,9, -5, 5, 7,6,7 -,,, 6,8 -,,

11 rag krt m, 6 lower tal pper tal tabell tvåsdgt 5 7 a : : 8 9 5

12 värde sample bdrag tll eller eller värde sample bdrag tll

13 mella fördelgara för poplato respektve poplato tabell P med taled oe tabell P med taled two o krt o krt :, m :

14 värde sample bdrag tll rag v tgår frå lcoxos ragsmma 6 6 som fört z m N, m ( ta"tes" ) krt z tvåsdgt

15 a k

16 k V H smma av alla rag k V testvarabel lkar V: medelvärdet över alla rag för motsvarar SST k stckprov medelvärdet över alla rag NOV för grpp Smma över alla rag H gäller alla gefär lka V lte V H k V motsvarar k SST NOV testvarabel H förkastas om H (alltså äve V) är stor, så fall avvker j grppmedelvärdea frå det gemesamma medelvärdet. Om gäller är testvarabel H gefär - fördelad, om alla är desstom tllräcklgt stora ( 5 stor: krt H ( f ) f k pper tal

17 Expermet: flytade på fskaras vkt: Vkte av fsk

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket?

Parametriska metoder. Icke-parametriska metoder. parametriska test. Icke-parametriska test. Location Shift. Vilket test ersätts med vilket? Icke-parametrska test Icke-parametrska metoder Parametrska metoder Fördelge för populatoe som stckprovet togs frå är käd så ära som på ett atal parametrar, t.ex: N med okäda och Icke-parametrska metoder

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4..3 Normalfördelge Bomal- och Possofördelge är två exempel på fördelgar för slumpvarabler som ka ata ädlgt eller uppräkelgt måga olka värde. Sådaa fördelgar sägs vara dskreta. Ofta är ett resultat X frå

Läs mer

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s.

Väntevärde, standardavvikelse och varians Ett statistiskt material kan sammanfattas med medelvärde och standardavvikelse (varians), och s. Vätevärde, stadardavvkelse och varas Ett statstskt materal ka sammafattas med medelvärde och stadardavvkelse (varas, och s. På lkade sätt ka e saolkhetsfördelg med käda förutsättgar sammafattas med vätevärde,,

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Orderkvantiteter vid begränsningar av antal order per år

Orderkvantiteter vid begränsningar av antal order per år Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet

Läs mer

Sensorer, effektorer och fysik. Analys av mätdata

Sensorer, effektorer och fysik. Analys av mätdata Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är

Läs mer

Sensorer och elektronik. Analys av mätdata

Sensorer och elektronik. Analys av mätdata Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet

Läs mer

Kontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier

Kontingenstabell (Korstabell) 2. Oberoende-test. Stickprov beror av slumpen. Vad vi förvf. är r oberoende: kriterier är r oberoende: kriterier . Oberoede-test Kotgestabell (Korstabell) Oberoedet av två rterer för lassfato udersöes xempel: V vll veta om röadet är beroede av ö V tar ett stcprov ur befolge (=50) och lassfcera persoera elgt dessa

Läs mer

Något om beskrivande statistik

Något om beskrivande statistik Något om beskrvade statstk. Iledg I de flesta sammahag krävs fakta som uderlag för att komma tll rmlga slutsatser eller fatta vettga beslut. Exempelvs ka det på ett företag ha uppstått dskussoer om att

Läs mer

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14)

SAMMANFATTNING AV KURS 602 STATISTIK (Newbold kapitel [7], 8, 9, 10, 13, 14) AMMANFATTNING AV KUR 6 TATITIK (Newbold katel [7], 8, 9,, 3, 4) INLEDNING 3 Proortoer 3 Proortoer 4 Poulatosvaras 5 KONFIDENINTERVALL 6 Itutv förklarg 6 Arbetsgåg vd beräkg av kofdestervall 7 Tfall. ök

Läs mer

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z

Z-Testet. Idè. Repetition normalfördelning. rdelning. Testvariabel z Repetitio ormalfördelig rdelig Z-Testet X i. Medelvärdets fördelig:.stadardiserad ormalfördelig: N (, ) X N, X X N (, ) N (,) X N, X N(,) 3. Kvatiler: uwe.meel@math.uu.se Vad gör g r Z-testetZ? H : e ormalfördelad

Läs mer

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04

Lösningsförslag till tentamen i 732G71 Statistik B, 2009-12-04 Prs Lösgsförslag tll tetame 73G7 Statstk B, 009--04. a) 340 30 300 80 60 40 0 0.5.0.5.0 Avståd.5 3.0 3.5 b) r y y y y 4985.75 7.7 830 0 39.335 7.7 0 80300-830 0 3.35 0.085 74.475 c) b y y 4985.75 7.7 830

Läs mer

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen?

b) Om du nu hade oturen att du köpt en trasig dator, vad är sannolikheten att den skulle ha tillverkats i Litauen? UMEÅ UNIVERSITET Isttutoe för matematk och matematsk statstk MSTA, Statstk för tekska fysker A Peter Ato TENTAMEN 005-0-03 ÖSNINGSFÖRSAGTENTAMEN I MATEMATISK STATISTIK Statstk för tekska fysker, 4 oäg.

Läs mer

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x

Medelvärde. Repetition. Median. Standardavvikelse. Frekvens. Normerat värde. z = x x Medelvärde Reetto mb9 Medelvärdet är summa av alla observatoer dvderat med deras atal. x 873+85+8385+83+8+83+8087+808+80 = 70 70 = 89 9 Meda Medae är de mttersta observatoe. = 8 Eller medelvärdet av de

Läs mer

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?

Statistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet? Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel

Läs mer

Centrala gränsvärdessatsen

Centrala gränsvärdessatsen Arm Hallovc: EXTRA ÖVNINGAR Cetrala gräsvärdessatse Cetrala gräsvärdessatse Vätevärdet och varase för e ljär kombato av stokastska varabler beräkas elgt följade: S Låt c, c,, c vara kostater,,,, stokastska

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

Genomsnittligt sökdjup i binära sökträd

Genomsnittligt sökdjup i binära sökträd Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De

Läs mer

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng

TENTAMEN I MATEMATISK STATISTIK. Statistik för lärare, 5 poäng UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 04--6 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 9.00-15.00 Tllåta hjälpmedel: Utdelad

Läs mer

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden

F19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

4.2.3 Normalfördelningen

4.2.3 Normalfördelningen 4.2.3 Normalfördelige Biomial- och Poissofördelige är två exempel på fördeligar för slumpvariabler som ka ata ädligt eller uppräkeligt måga olika värde. Sådaa fördeligar sägs vara diskreta. Ofta är ett

Läs mer

Lycka till och trevlig sommar!

Lycka till och trevlig sommar! UMEÅ UNIVERSITET Isttutoe för matematsk statstk Statstk för lärare, MSTA38 Lef Nlsso TENTAMEN 07-05-3 TENTAMEN I MATEMATISK STATISTIK Statstk för lärare, 5 poäg Skrvtd: 09.00-5.00 Tllåta hjälpmedel: Tabellsamlg,

Läs mer

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ)

Normalfördelningens betydelse. Sannolikhet och statistik. Täthetsfunktion, väntevärde och varians för N (µ, σ) Normalfördeliges betydelse Empirisktse gur: måga storheter approximativt ormalfördelade Summa av måga ugefär oberoede och ugefär likafördelade s.v. är approximativt ormalfördelad CGS Exempel: mätfel =

Läs mer

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej

Intervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda

Läs mer

0 Testvariabel t, x s n. Lite historia om t-testett. testet. Ett stickprov: Hur räknar r. testet. ett stickprov

0 Testvariabel t, x s n. Lite historia om t-testett. testet. Ett stickprov: Hur räknar r. testet. ett stickprov -ee Le hora om -ee ee ude -e "ude," peudom om aväd av Wllam Goe (bld) Jobbade på Gue brggere Dubl börja av 9-ale allmä beecka alla e om aväder - fördelge om -e uwe.mezel@mah.uu.e Defo för f r -fördelge

Läs mer

Variansberäkningar KPI

Variansberäkningar KPI STATISTISKA CENTRALBYRÅN Slutrapport (9) Varasberäkgar KPI Varasberäkgar KPI Iledg Grov varasskattg Detaljerade varasskattgar av tuga produktgrupper 5 Rätekostader 5 Charter 6 Böcker 8 Utrkesflyg 0 Iträdesbljetter

Läs mer

Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl

Tentamen STA A15 delkurs 1 (10 poäng): Sannolikhetslära och statistisk slutledning 3 november, 2005 kl Tetame STA A5 delkurs ( poäg): Saolkhetslära och statstsk slutledg 3 ovember 5 kl. 8.5-3.5 Tllåta hjälpmedel: Räkedosa bfogade formel- och tabellsamlgar vlka skall retureras. Asvarg lärare: Ja Rudader

Läs mer

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2 Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +

Läs mer

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).

Antalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1). Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse

Läs mer

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9

2004 Rune Norberg. Måste elimineras! Hur då? Kapitel 9. Variation Olika typer av data. 2004 Rune Norberg. Kapitel 9 Fe l i t ill verki ge ept Okt Nov Dec ept Okt Nov Dec Högskola Dalara Översikt tatistisk processtyrig Itroduktio till tatistisk Processtyrig (P) aolikhet Normalfördelig Några adra fördeligar Variatio Olika

Läs mer

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar

TMS136: Dataanalys och statistik Tentamen 2013-10-26 med lösningar TMS36: Dataaalys och statistik Tetame 03-0-6 med lösigar Examiator och jour: Mattias Sude, tel. 0730 79 9 79 Hjälpmedel: Chalmersgodkäd räkare och formelsamlig formelsamlig delas ut med teta). Betygsgräser:

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 2) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del ) Pukt- och itervallskattig (LLL Kap 10) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Istitutioe för matematisk statistisk Statistiska metoder, 5 poäg MSTA36 Peter Ato LÖSNINGSFÖRSLAG 005-10-6 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistiska metoder, 5 poäg

Läs mer

F10 ESTIMATION (NCT )

F10 ESTIMATION (NCT ) Stat. teori gk, ht 2006, JW F10 ESTIMATION (NCT 8.1-8.3) Ordlista till NCT Iferece Parameter Estimator Estimate Ubiased Bias Efficiecy Cofidece iterval Cofidece level (Studet s) t distributio Slutledig,

Läs mer

Digital signalbehandling Fönsterfunktioner

Digital signalbehandling Fönsterfunktioner Istitutioe för data- och elektrotekik Digital sigalbehadlig Fösterfuktioer 2-2-7 Fösterfuktioer aväds för att apassa mätserie vid frekvesaalys via DFT och FFT samt vid dimesioerig av FIR-filter via ivers

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 17/ till och med 18/ Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 17/ till och med 18/ Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, fri övergåg iom 1 tim till stadsbussara (valfritt atal resor

Läs mer

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy

Mycket i kapitel 18 är r detsamma som i kapitel 6. Mer analys av policy Blanchard kaptel 18-19 19 Växelkurser, räntor r och BNP Mycket kaptel 18 är r detsamma som kaptel 6. Mer analys av polcy F11: sd. 1 Uppdaterad 2009-05-04 IS-LM den öppna ekonomn IS-LM den öppna ekonomn

Läs mer

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin

Föreläsning G70, 732G01 Statistik A. Föreläsningsunderlagen är baserade på underlag skrivna av Karl Wahlin Föreläsig 6 732G70, 732G01 Statistik A Föreläsigsuderlage är baserade på uderlag skriva av Karl Wahli Kapitel 6 Iferes om e populatio Sid 151-185 Puktskattig och itervallskattig Statistisk iferes om populatiosmedelvärde

Läs mer

Lösning till TENTAMEN

Lösning till TENTAMEN Isttutoe för Sjöfart oh Mar Tekk ös tll TENTAMEN 0706 KURSNAMN Termodyamk oh strömslära ROGRAM: am Sjöejörsrorammet åk / läserod KURSBETECKNING //auusterode SJO050 005 el A Strömslära EXAMINATOR Mats Jarlros

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Exempel etc., del II MS-A0509 Grudkurs i saolikhetskalkyl och statistik Exempel etc., del II G. Gripeberg Aalto-uiversitetet 14 februari 014 G. Gripeberg (Aalto-uiversitetet) MS-A0509 Grudkurs i saolikhetskalkyl och statistikexempel

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1) Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,

Läs mer

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel.

Tidtabell. 208/209 Skellefteå - Skelleftehamn Sommar, från och med 16/6 till och med 17/8 2014. www.skelleftebuss.se Tel. Iformatio Dessa biljetter ka köpas på busse; - Ekelbiljett, ige fri övergåg till stadsbussara. - Rabattkort, rabatterade resor med ca 20 %, valfritt atal resor frå 6 resor och uppåt. - Periodkort, gäller

Läs mer

Flexibel konkursriskestimering med logistisk spline-regression

Flexibel konkursriskestimering med logistisk spline-regression Matematsk statstk Stockholms uverstet Flexbel kokursrskestmerg med logstsk sple-regresso Erk vo Schedv Examesarbete 8: Postadress: Matematsk statstk Matematska sttutoe Stockholms uverstet 6 9 Stockholm

Läs mer

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar)

Hambley avsnitt 12.7 (även 7.3 för den som vill läsa lite mer om grindar) 1 Föreläsig 6, Ht 2 Hambley avsitt 12.7 (äve 7.3 för de som vill läsa lite mer om gridar) Biära tal Vi aväder ormalt det decimala talsystemet, vilket har base 10. Talet 2083 rereseterar då 2 10 3 0 10

Läs mer

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k

1. (a) Eftersom X och Y har samma fördelning så har de även samma väntevärde och standardavvikelse. E(X 2 ) = k LÖSNINGAR TILL Matematisk statistik, Matematikcetrum Tetame: 5 kl 8 Luds tekiska högskola FMS, FMS, FMS, FMS 5, MAS 9 Matematisk statistik för ED, F, I, FED och fysiker. a Eftersom X och Y har samma fördelig

Läs mer

Informationsåtervinning på webben Sökmotorernas framtid

Informationsåtervinning på webben Sökmotorernas framtid Iformatosåtervg på webbe Sökmotoreras framtd Semarum 4-9- Iformatosåtervg på webbe Sökmotoreras framtd Ge sprato tll forskg att skapa ya affärsmölgheter smart avädg av sökverktyg de ega orgasatoe Belysa

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

Beräkna standardavvikelser för efterfrågevariationer

Beräkna standardavvikelser för efterfrågevariationer Handbok materalstyrnng - Del B Parametrar och varabler B 41 Beräkna standardavvkelser för efterfrågevaratoner och prognosfel En standardavvkelse är ett sprdnngsmått som anger hur mycket en storhet varerar.

Läs mer

F10: Strömreglering (PE-Kap 3)

F10: Strömreglering (PE-Kap 3) F10: Strömreglerg PE-Kap 3 Allmät om trömreglerg V har tgare tttat om hatgat på trömreglerg och lte mer etalj på varvtalreglerg. Varvtalreglerg av eletra maer bygger tor omfattg på valg reglerteor och

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsig 5 732G04 Surveymetodik 732G19 Utredigskuskap I Dages föreläsig Klusterurval Estegs klusterurval Tvåstegs klusterurval Klusterurval med PPS 2 Klusterurval De urvalsdesiger som diskuterats hittills

Läs mer

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl

Tentamen i Statistik, STA A13 Deltentamen 2, 5p 5 juni 2004, kl Karlstads uiversitet Istitutioe för iformatiostekologi Avdelige för statistik Tetame i Statistik, STA A13 Deltetame, 5p 5 jui 004, kl. 09.00-13.00 Tillåta hjälpmedel: Asvarig lärare: Övrigt: Bifogad formel-

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsig 5 732G70 Statistik A Egeskaper hos stickprovsstatistikora Stickprovsmedelvärde Stickprovssumma Stickprovsadel Lägesmått Spridig Medelfel EX VarX 2 2 E X Var X E P Var P X X 1 1 P Eftersom respektive

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08

TENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08 TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 6. Regression & Korrelation. (LLL Kap 13-14) Inledning till Regressionsanalys Fnansell Statstk (GN, 7,5 hp,, HT 8) Föreläsnng 6 Regresson & Korrelaton (LLL Kap 3-4) Department of Statstcs (Gebrenegus Ghlagaber, PhD, Assocate Professor) Fnancal Statstcs (Basc-level course, 7,5 ECTS,

Läs mer

KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL )

KONFIDENSINTERVALL FÖR MEDIANEN (=TECKENINTERVALL ) Arm Hallovc: EXTRA ÖVNINGAR Tecetervall KONFIDENSINTERVALL FÖR MEDIANEN (TECKENINTERVALL ) För att bestämma ett ofdestervall för medae tll e otuerlg s.v. ξ aväder v ett stcprov ξ ξ ξ3 ξ av storlee som

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I

MS-A0409 Grundkurs i diskret matematik Sammanfattning, del I MS-A0409 Grudkurs i diskret matematik Sammafattig, del I G. Gripeberg Aalto-uiversitetet 2 oktober 2013 G. Gripeberg (Aalto-uiversitetet) MS-A0409 Grudkurs i diskret matematiksammafattig, del 2Ioktober

Läs mer

En kvalitetskontroll - Snustillverkaren Fiedler & Lundgren kvalitetstestas Av: Andreas Timglas

En kvalitetskontroll - Snustillverkaren Fiedler & Lundgren kvalitetstestas Av: Andreas Timglas E kvaltetskotroll - Sustllverkare Fedler & Ludgre kvaltetstestas Av: Adreas Tmglas Uppsats statstk 10 poäg Nvå: 61-80 Vt 2008 Hadledare: Björ Holmqust Abstract Ths paper am to descrbe the varato ad develop

Läs mer

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall:

LÖSNINGAR TILL. Räkningar: (z i z) 2 = , Δ = z = 1 n. n 1. Konfidensintervall: LÖSNINGAR TILL Matematisk statistik Tetame: 2014 10 28 kl 14 00 19 00 Matematikcetrum FMS 086 Matematisk statistik för B, K, N och BME, 7.5 hp Luds tekiska högskola MASB02 Matematisk statistik för kemister,

Läs mer

Experimentella metoder 2014, Räkneövning 5

Experimentella metoder 2014, Räkneövning 5 Expermentella metoder 04, Räkneövnng 5 Problem : Två stokastska varabler, x och y, är defnerade som x = u + z y = v + z, där u, v och z är tre oberoende stokastska varabler med varanserna σ u, σ v och

Läs mer

En jämförande studie av GLM, Jungs metod och Tweedie-modell för premiesättning av multiplikativ tariff.

En jämförande studie av GLM, Jungs metod och Tweedie-modell för premiesättning av multiplikativ tariff. atematk tattk Stockholm uvertet E ämförade tude av GL, Jug metod och Teede-modell för premeättg av multplkatv tarff. El Laro Eamearete 4: Potal addre: atematk tattk Dept. of athematc Stockholm uvertet

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1

Armin Halilovic: EXTRA ÖVNINGAR. ) De Moivres formel ==================================================== 2 = 1 Arm Hallovc: EXTRA ÖVNINGAR KOMPLEXA TAL x + y, där x, y R (rektagulär form r(cosθ + sθ (polär form r (cos θ + s θ De Movres formel y O x + x y re θ (potesform eller expoetell form θ e cosθ + sθ Eulers

Läs mer

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08

Primär- och sekundärdata. Undersökningsmetodik. Olika slag av undersökningar. Beskrivande forts. Beskrivande forts. 2012-11-08 Prmär- och sekundärdata Undersöknngsmetodk Prmärdataundersöknng: användnng av data som samlas n för första gången Sekundärdata: användnng av redan nsamlad data Termeh Shafe ht01 F1-F KD kap 1-3 Olka slag

Läs mer

Ur KB:s samlingar Digitaliserad år 2013

Ur KB:s samlingar Digitaliserad år 2013 Ur KB:s samlngar Dgtalserad år 01 CENTRATORS Fläktar :)- Exhaustorer L;- Hand- / Masknkrt Aktebolaget C E N T RAT Stockholm O R N0 0000. Handfläkt. Ctrators ctrfugalfläktar eåçhaustorer. V Ctrfugalñäktarne

Läs mer

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in. Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt

Läs mer

Kopplingar med Operationsförstärkaren

Kopplingar med Operationsförstärkaren Kopplgar med Operatonsförstärkaren Icke-erterande spänngsförstärkare Följare (Buffert) Transmpedans Inerterande spänngsförstärkare Transkonduktans Strömsförstärkare Icke-erterande spänngsförstärkare Spänngsförstärkare

Läs mer

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff

FÖRDJUPNINGS-PM. Nr 6. 2010. Kommunalt finansierad sysselsättning och arbetade timmar i privat sektor. Av Jenny von Greiff FÖRDJUPNINGS-PM Nr 6. 2010 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Av Jenny von Greff Dnr 13-15-10 Kommunalt fnanserad sysselsättnng och arbetade tmmar prvat sektor Inlednng Utförsäljnng

Läs mer

F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i

F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i L L L L V Hm l är blek VSpel man n är HårgaLåt L L L mar nat t, n g matt, L Text: Carl Peter Wckström Sats: Robert Sund (.2) L L # Ljus L nans vat t sg be satt L # Hm l är blek Spel man L n L är V mar

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 5

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 5 Fiasiell Statistik (GN, 7,5 hp,, HT 8) Föreläsig 5 HYPOTESPRÖVNING (LLL Kap 11) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course, 7,5 ECTS,

Läs mer

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:

Rättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller: Matematisk Statistik Provmomet: Ladokkod: Tetame ges för: Tetame TT091A KMASK14H 7,5 högskolepoäg Nam: (Ifylles av studet) Persoummer: (Ifylles av studet) Tetamesdatum: 2 jui 2015 Tid: 9:00-13:00 Hjälpmedel:

Läs mer

FÖRSÖKSPLANERING. och utvärdering av försöksresultat med den matematiska statistikens metoder. av Jarl Ahlbeck

FÖRSÖKSPLANERING. och utvärdering av försöksresultat med den matematiska statistikens metoder. av Jarl Ahlbeck FÖRSÖKSPLNERING och utvärderg av försöksresultat med de matematska statstkes metoder av Jarl hlbeck Åbo kadem Laboratoret för alägggstekk I a sstem whch varable quattes chage, t s of terest to eame the

Läs mer

Kvalitetssäkring med individen i centrum

Kvalitetssäkring med individen i centrum Kvaltetssäkrng med ndvden centrum TENA har tllsammans med äldreboenden Sverge utvecklat en enkel process genom vlken varje enskld ndvd får en ndvduell kontnensplan baserad på hans eller hennes unka möjlgheter

Läs mer

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal.

Stort massflöde Liten volym och vikt Hög verkningsgrad. Utföranden Kolv (7) Skruv (4) Ving (4) Roots (1,5) Radial (2-4) Axial (1,3) Diagonal. Komressorer F1 F Skillad mot fläktar: Betydade desitetsförädrig, ryk mäts ormalt som absolut totaltryk. vå huvudgruer av komressorer: Förträgigskomressorer urbokomressorer Egeskaer Lågt massflöde Höga

Läs mer

Innehåll. Finlands snyggaste modellserie är redo för sommaren

Innehåll. Finlands snyggaste modellserie är redo för sommaren SVENSKA 2015 03 04 06 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Innehåll Fnlands snyggaste modellsere är redo för sommaren Yamarnmodelsere 79 Day Cruser 68 Day Cruser 68 Cabn/Cabn DS 65 Day Cruser

Läs mer

Linjär Algebra. Linjära ekvationssystem. Ax = b. Viktiga begrepp. Linjära ekvationssystem. Kolumnerna i A. Exempel. R (A) spänns upp av t.ex.

Linjär Algebra. Linjära ekvationssystem. Ax = b. Viktiga begrepp. Linjära ekvationssystem. Kolumnerna i A. Exempel. R (A) spänns upp av t.ex. Ljära ekvatossystem Ljär Algebra obekata & ekvatoer a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b a x + a x + a 3 x 3 + + a x = b Ljära ekvatossystem där A -matrs och b -vektor Vktga

Läs mer

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1

Del A. x 0 (1 + x + x 2 /2 + x 3 /6) x x 2 (1 x 2 /2 + O(x 4 )) = x3 /6 + O(x 5 ) (x 3 /6) + O(x 4 )) = 1 + } = 1 UPPSALA UNIVERSITET Matematiska istitutioe Sigstam, Styf Svar till övigsteta ENVARIABELANALYS 0-0- Svar till övigsteta. Del A. Bestäm e ekvatio för tagete till kurva y f x) x 5 i pukte där x. Skissa kurva.

Läs mer

Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system

Interpolation. Interpolation. Teknisk-vetenskapliga beräkningar 1. Några tillämpningar. Interpolation. Basfunktioner. Definitioner. Kvadratiskt system Ierpolao Några llämpgar Ierpolao odelluoer som saserar gva puer Amerg rörelser,.e. ead lm Blder ärger salg Gra Dsre represeao -> ouerlg Peder Joasso Ierpolao V äer puer,.., V söer e uo P så a P P erpolerar

Läs mer

Föreläsning 3. 732G04: Surveymetodik

Föreläsning 3. 732G04: Surveymetodik Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall

Läs mer

ANVISNING FÖR BROMSDYNAMOMETER- MÄTNING

ANVISNING FÖR BROMSDYNAMOMETER- MÄTNING Ktrll v tug frds tryckluftsrmsr vd esktg ILAGA A ANVISNING FÖR ROMSDYNAMOMETER- MÄTNING Fstställde v rmsrs restd med rmsdymmeter Vd regelud sekter fstställs rmssystemets restd tug frd ch slävgr med rmsdymmetermätgr.

Läs mer

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y

Sammanfattning. Härledning av LM - kurvan. Efterfrågan, Z. Produktion, Y. M s. M d inkomst = Y >Y. M d inkomst = Y F12: sd. 1 Föreläsnng 12 Sammanfattnng V har studerat ekonomn påp olka skt, eller mer exakt, under olka antaganden om vad som kan ändra sg. 1. IS-LM, Mundell Flemmng. Prser är r konstanta, växelkurs v

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematik tatitik KTH Formelamlig i matematik tatitik Vårtermie 07 Kombiatorik! = k k! ( k)!. Tolkig: mägd med elemet. = atalet delmägder av torlek k ur e k Stokatika variabler V (X) = E X (E (X)) C (X;

Läs mer

Kopplingar med Operationsförstärkaren

Kopplingar med Operationsförstärkaren Kopplgar med Operatonsförstärkaren - Icke-erterande spänngsförstärkare - Följare (Buffert) - Transmpedans - Inerterande spänngsförstärkare - Transkonduktans - Strömsförstärkare Icke-erterande spänngsförstärkare

Läs mer

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik

Uppsala Universitet Matematiska institutionen Matematisk Statistik. Formel- och tabellsamling. Sannolikhetsteori och Statistik Uppsala Uiversitet Matematiska istitutioe Matematisk Statistik Formel- och tabellsamlig Saolikhetsteori och Statistik IT2-2004 Formelsamlig, Saolikhetsteori och Statistik IT-2004 1 Saolikhetsteori 1.1

Läs mer

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid

Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar

Läs mer

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( )

Vinst (k) 1 1.5 2 4 10 Sannolikhet 0.4 0.2 0.2 0.1 0.1 ( ) Tentamen Matematsk statstk Ämneskod-lnje S1M Poäng totalt för del 1 5 (8 uppgfter) Poäng totalt för del 3 (3 uppgfter) Tentamensdatum 9-3-5 Kerstn Vännman Lärare: Robert Lundqvst Mkael Stenlund Skrvtd

Läs mer

Har du sett till att du:

Har du sett till att du: jua b r t t u a lr r l a r r a å l g P rä t r g u s p u m h a c tt val? t bo s F Rock w S Du har tt stort asvar! Som fastghtsägar m hyra gästr llr campg trägår är u otrolgt vktg aktör! Självklart för att

Läs mer

Matematisk statistik

Matematisk statistik Tetame TEN, HF, 8 aug Kursod: HF Srivtid: 8:-: Lärare och examiator: Armi Halilovic Matematis statisti Hjälpmedel: Bifogat formelhäfte ("Formler och tabeller i statisti ") och miiräare av vile typ som

Läs mer

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen

För de två linjerna, 1 och 2, i figuren bredvid gäller att deras vinkelpositioner, θ 1 och θ 2, kopplas ihop av ekvationen Knemak vd roaon av sela kroppar Inledande knemak för sela kroppar. För de vå lnjerna, och, fguren bredvd gäller a deras vnkelposoner, θ och θ, kopplas hop av ekvaonen Θ Θ + β Efersom vnkeln β är konsan

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNSKA HÖGSKOLAN LNKÖPNG nsttutonen ör Fysk, Kem och Bolog Gala Pozna Tentamen mekank TFYA6 Tllåtna Hjälpmedel: Physcs Handbook utan egna antecknngar, aprogrammerad räknedosa enlgt F:s regler. Formelsamlngen

Läs mer

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna

Tillåtna hjälpmedel: Eget handskrivet formelblad (A4), utdelad tabellsamling, miniräknare med tömt minne Studenterna får behålla tentamensuppgifterna UMEÅ UNIVERSITET Ititutioe för matematik tatitik Statitik för lärare, MSTA8 PA LÖSNINGSFÖRSLAG 004-0-8 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statitik för lärare, poäg Tillåta hjälpmedel:

Läs mer

2. Konfidensintervall för skillnaden mellan två proportioner.

2. Konfidensintervall för skillnaden mellan två proportioner. Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele

Läs mer

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar

KTH/ICT IX1501:F7 IX1305:F2 Göran Andersson Statistik: Skattningar KTH/ICT IX50:F7 IX305:F Göra Adero goera@th.e Statiti: Sattigar Statiti Vi all u tudera obervatioer av toatia variabler. Vad blev det för värde? Dea obervatioer alla ett ticprov (ample). Iom tatitie fi

Läs mer

På en landsväg. % Œ. œ œ. j œ # # œ œ j œ. œ J. œ œ œ œ œ. œ œ œ. œ œ# œ œ # œ œ œ œ. œ œ œ œ. œ œ j. œ œ œ j œ Œ ? # # œ œ. œ J. œ œ. œ œ. œ œ.

På en landsväg. % Œ. œ œ. j œ # # œ œ j œ. œ J. œ œ œ œ œ. œ œ œ. œ œ# œ œ # œ œ œ œ. œ œ œ œ. œ œ j. œ œ œ j œ Œ ? # # œ œ. œ J. œ œ. œ œ. œ œ. Sälvklrt g sunger från herlgt köpt noter S ul På lndsväg % 1 På lnds väg n mot kväl l n ly ser ö ver Hpply sngng 1 På lnds väg n mot st n 2 St kväl l 3 Stnn ly ser n kommer ö ver stl t Trd: Puerto Rco

Läs mer

Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds

Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds 22 5 Innehåll:. Rsk & Odds. Rsk Rato.2 Odds Rato 2. Logstsk Regresson 2. Ln Odds 2.2 SPSS Output 2.3 Estmerng (ML) 2.4 Multpel 3. Survval Analys 3. vs. Logstsk 3.2 Censurerade data 3.3 Data, SPSS 3.4 Parametrskt

Läs mer