Upplägg Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation

Storlek: px
Starta visningen från sidan:

Download "Upplägg Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation"

Transkript

1 Itgt v Uvrsum Är v samma? Föräsg 4: Draks kvato Uägg Itrodukto t ämgsugtra Draks kvato oh dss btyds Ekvatos aramtrar ågra räkxm Käda brstr Davs: Kat 4 (sd 66-86) 1

2 Obs! Suttta kommr att ha tt uägg som kar dssa ämgsugtr. Atså: Först tt ata bgr att örkara kortattat, sda ågra ssärågor Om ma år bra oäg å ämgsugtra ka ma kara tta uta att s örsöka sg å ssärågora! Oh otra att ma år ha båd kursbökr oh öräsgsatkgar md sg å tta Frak Drak Pojär om SETI Gomdrv dt örsta modra SETI-rojktt1960 (Projkt Ozma) md tt radotsko Wst Vrga Prstrad Drakkvato1961, som dskussosudrag vd d örsta SETI-kors E av skaara bakom dt brömda Arbomddadt, som skkads t stjärho M13 ovmbr 1974 Draks kvato I Draks kvato II R R Uskattg av atat tgta, kommurad vsator Vtrgata just u Värdt å bror å sju aramtrar högrdt Obs! Dt s ra atratva vrsor av kvato Varj aramtr högrdt (R,,,,,, ) motsvarar tt ta. Gom att rsätta aramtrara md ämga ta oh mutra dm md varadra år ma uskattg Dtta är d da kvato ma bhövr ära sg da kurs! Btyds ör SETI Btyds ör SETI Uskattgar md Draks kvato rå : ( Th GaatCub ) Wow! SETI har bra has att ykas! t sdot! Idag: Iga dtktor trots 50 år av sökad. Th r s mykt ågt? Kask 1 (mäskght sam Vtrgata)? 2

3 Paramtrara I R: Atat soka stjäror Vtrgata som bdas r år : Ad av dssa stjäror som har atr : Mdata jordka atr varj sådat atsystm S sda 77 ErS Paramtrara II : Ad av dssa atr å vka v ustått : Ad av dssa vbäradatr tgs ustått : Ad av d tgsbärad atra där kommurad vsato ustår : Mdvsägd hos kommurad vsato S sda 77 ErS Paramtrara III R: Atat soka stjäror Vtrgata som bdas r år : Ad av dssa stjäror som har atr :Mdata jordka atr varj sådat atsystm Modr astroom ka uskatta dssa Vag örvrrg: Varör br dt tt ata av dtta? R :Ad av dssa atr å vka v ustått :Ad av dssa vbärad atr tgs ustått :Ad av d tgsbärad atra där kommurad vsato ustår : Mdvsägd hos kommurad vsato? Hmmm. Ata Ata kommurad vsator som ustår r tdsht Td Vag örvrrg: Varör br dt tt ata av dtta? R otra: Ma atar här att stjärbdgshastght R(stjäror r år) är kostat ka ss som d ägsta td bakåt td som måst baktas bräkg, trsom vsator som ustod ägr ä td bakåt td t ägr xstrar Atat som bdas r tdsht mdvsägd Mdata vd gv tdukt Räkxm Atag: Två kommurad vsator bdas r årtusd Mdvsägd ör såda vsato är tr årtusd Mdata:2 r årtusd 3 årtusd 6 åt oss tsta dtta gom att stga gom ågra årtusd oh s. 3

4 Räkxm orts. År 0: Iga vsator År 1000: 2 yödda vsator bdas Totat 2 vsator xstrar År 2000: 2 yödda vsator bdas + 2 tusårga vsator s rda Totat 4 vsator xstrar År 3000: 2 yödda vsator bdas + 2 tusårga vsator s rda + 2 tvåtusårga vsator s rda Totat 6 vsator xstrar Räkxm orts. År 4000: 2 yödda vsator bdas + 2 tusårga vsator s rda + 2 tvåtusårga vsator s rda (oh 2 trtusårga vsator gk just udr) Totat 6 vsator xstrar Oh så vdar. Så sart jämvktsägt åtts (tr 3000 år dtta a) kommr bräkg att s dtsk ut udr aa tröjad årtusd, md rsutatt 6 vsator Drak quato auators Dt s måga Drak-kakyatorr å trt! ågra xm: Paramtr I: Soka stjäror Dto är ytad, m här är ågra vaga krtrr: Stjäror md stab bbog zo Huvudsrstjäror (brär vät) Stjäror md tmratur K Ik-varaba stjäror Mtahat som är 50%-200% av sos Ca 10% av aa stjäror Paramtr I: Soka stjäror Totat 100 mjardr stjäror Vtrgata Vtrgata har ådr å a 13 mjardr år 10 stjäror r år gomstt 10% soka stjäror oh 10 stjäror totat r år 1 sok stjära r år Paramtr I: Soka stjäror Stjärora bdads ågot högr takt tdgar Vtrgatas hstora ä dag, m dt har g dramatsk kt å uskattg 4

5 Paramtr II: Ad soka stjäror md atr Hur uskattas dtta? Drkt dtkto Astromtrska mtod Dormtod Fotomtrska mtod Gravtatossktr S öräsg 3! Sutsats: > 0.4 Udr gräs trsom dt ortarad s tkska robm md att htta ågmassva atr (av jords massa oh ägr) Paramtr III: Mdata jordka atr sådaa systm Rymdtskot Kr (asrat t 2016) sökr av mst stjäror md otomtrska mtod jakt å xoatr Sutsats (rmär): 0.1 Paramtr IV: Ad av sådaa atr å vka v ustår Drak sjäv gssad 1.0 Argumt ör ära 1.0: vt å jord ustod så sart örutsättgara var ämga Argumt ör << 1.0: vt å jord vrkar bara ha ustått gåg Om v sku utäka v å Mars oh kud vsa att dt ustått obrod av vt å jord sku dt atyda att t är örsumbart t Samma sak gär ör utäkt av skuggbosär å jord M uägt: Ig rktg möjght att uskatta Paramtr V: Ad atr md v å vka tgt v ustår Drak sjäv gssad 0.01 Argumt ör ågt : E mjard artr har xstrat å jord oh bara har utvkat tgs Argumt ör 1: vts ökad komxtt kask sutäd atd dr t tgs (Obs! Bvs sakas ) Paramtr VI: Ad atr md tgt v som kommurar övr trstära avståd Drak sjäv gssad 0.1 otra: avsktg kommukato t ödvädg Mäskght har oavsktgt skytat md s ärvaro gom radosädgar a 100 år Vka stjäror ka ha åtts av våra sädgar? htt://trotd.org/hom/mor/ghto/ htt:// 5

6 Paramtr VII: Tysk vstd ör såda vsato 100 år? 1000 år? år? E mjo år? Mr? Ctra råga:förtar vsator amäht sg sjäva, örtar d varadra r utåas d av adra kosmska aror? Räkxm I: D otmstska aroah R kar Frak Draks ursrugga uskattg å 1960-tat R: 1 sok stjäror r år Vtrgata : 1.0 ( 100% has ör atr) : 1 (1jordk at r systm) 1.0 ( 100% has ör v) : 1.0 ( 100% has ör tgt v) : 0.1 ( 10% kommurad vsator) : (Cvsator vr år) Mutra vsator Vtrgata som v sku kua kommura md! Räkxm II: D ssmstska aroah R R: 1 soka stjäror r år Vtrgata : 0.2 ( 20% has ör atr) : 0.1 (0.1 jordka atr r systm) ( 0.1% has ör v) : 0.001( 0.1 % has ör tgt v) : 0.1 ( 10% kommurad vsator) : 1000 (Cvsator vr 1000 år) Mutra vsator ägr ä 1 V är trog samma Vtrgata Käda brstr I: A xrsso that a ma aythg mas othg (Mha Crhto) Krtk:Etrsom ra av aramtrvärda måst örb gssgar ts utomjordsk vsato vrkg utäkts, ka vara atrå 0 t måga mjardr Vagt mothugg: Ekvato bart täkt att stmura dskusso krg möjght att utäka adra vsator, t ör vtskaga uskattgar Käda brstr II: as wkowt Draks kvato är avsdd ör av v som kar vårt, oh vsato som är k xtraorg av vår g Md adra ord: Iga trstära, tgta gasmo r högrdmsoa varsr Käda brstr III: Koosrg Da orm av Draks kvato atar att vsator vr oh dör å s g hmat Sabb udg rståd koor, som s tur dar u sg Vtrgata ka vara u av tgt v trots att Draks kvato atydr <1 6

7 Käda brstr IV: vstd ka vara åg, m d kommurad as kort Mäskosäktts ädsta radosgara har u ått a 100 jusår bort stjäror om da rad, m d sta sgara är ads ör svaga Kratgast dag: mtär radar, TV M radoutsädgar är rda å tbakagåg (atmr säds va kab) Radoas vsatos hstora kask mykt kort? Käda brstr V: vstd ka vara kort, m d kommurad as åg Fyr ka ysa äv om yrvaktar är död Avarad vsator som hotas av utrotg kask v öra stt kosmska arv vdar gom ågvad, automatska yrar Ota örsökr ma aväda vts utvkg å jord som utgågsukt ör värd å aramtrara oh Probm: Etrsom v bara har jord oh vsorm att göra statstk å har v gtg g ag om ross här vart tysk r xtrmt osaok Käda brstr VI: Statsts o o Käda brstr VI: Statsts o o orts. Vagt mothugg: M om v u är så xtrmt osaoka, är dt då t kostgt att v trots at står här? j ör v ka bara obsrvra dt uta där dt gk väg (oavstt hur måga stra tärgskast som krävds av uvrsum) Dtta är tt xm å tt atrosktrsomag(s kommad öräsgar) äsg ör ästa öräsg Wbb: Kat 1-4 Obs! Dtta är 140 sdor! Börja td! 7

om X har följande sannolikhetsfunktion λ λ . Då gäller a) väntevärdet E(X) = λ b) variansen σ = λ och därmed c) standardavvikelsen σ = λ

om X har följande sannolikhetsfunktion λ λ . Då gäller a) väntevärdet E(X) = λ b) variansen σ = λ och därmed c) standardavvikelsen σ = λ Arm Hallovc: ETRA ÖVNINGAR ossofördlg OISSONFÖRDELNING ossofördlg aväds oftast för att bsrva atalt hädlsr som träffar obrod av varadra udr tt gvt tdstrvall E ossofördlad stoasts varabl a ata av fölad värd,,,

Läs mer

Digital signalbehandling Sampling och vikning på nytt

Digital signalbehandling Sampling och vikning på nytt Ititutio ör data- och lktrotkik Digital igalbhadlig Samplig och vikig på ytt 00-0-6 Bgrpp amplig och vikig har viat ig lit våra att hatra å till vida att dt har kät vårt att tolka vad om hädr md igal om

Läs mer

Kommentarer till övningen om Jespers glasögon

Kommentarer till övningen om Jespers glasögon r t v ö E m f m o st o ö s a s r p s J 14 omm a 20 r t a m as stud Lärarh ajb M t add Evmatrat kommr md färda struktor t vra. Övara är avsdda att få vra att ära s om och rfktra kr ämt koomsk utsattht om

Läs mer

Har du sett till att du:

Har du sett till att du: jua b r t t u a lr r l a r r a å l g P rä t r g u s p u m h a c tt val? t bo s F Rock w S Du har tt stort asvar! Som fastghtsägar m hyra gästr llr campg trägår är u otrolgt vktg aktör! Självklart för att

Läs mer

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter

FÖRELÄSNING 13: Analoga o Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga filter = tidskontinuerliga filter FÖRELÄSNING 3: Aaloga o Digitala filtr. Kausalitt. Stabilitt. Aaloga filtr Idala filtr Buttrworthfiltr (kursivt här, kommr it på tta, m gaska bra för förståls) Kausalitt t och Stabilitt t Digitala filtr

Läs mer

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system

Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology

Läs mer

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.

Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B. Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 5 Ndlko Grbi (mtrl. rå Bgt Madrsso

Läs mer

Investering = uppoffring av konsumtion i dag för högre konsumtion i framtiden

Investering = uppoffring av konsumtion i dag för högre konsumtion i framtiden Ivstrg = uppoffrg av osumto dag för högr osumto framtd Vad är förtagsooms vstrg? Rsurs som a aväds udr låg td. Asaffgar udr tdsprod som mdför btalgar udr flra tdsprodr framåt. Ivstrgar förtagsprsptv. Dl

Läs mer

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4

Föreläsning 6. Signalbehandling i multimedia - ETI265. Kapitel 4 Sigalbhadlig i multimdia - ETI65 Förläsig 6 Sigalbhadlig i multimdia - ETI65 Kapitl 4 Fourirtrasorm av aalog sigal, FT Fourirtrasorm av digital sigal, DTFT ortsättig LTH 4 Ndlko Grbi (mtrl. rå Bgt Madrsso)

Läs mer

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter

D 45. Orderkvantiteter i kanbansystem. 1 Kanbansystem med två kort. Handbok i materialstyrning - Del D Bestämning av orderkvantiteter Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 45 Orderkvatteter kabasystem grupp av materalstyrgsmetoder karakterseras av att behov av materal som uppstår hos e förbrukade ehet mer eller mdre

Läs mer

A LT B A R Y TO N. enkelt

A LT B A R Y TO N. enkelt A LT SOPRAN sahlt nklt B A R Y TO N Innhåll: Amn - låt rns lja råda 2 Du ljuvast n Gud har männs kär Gud ll oss väl 6 Halluja 7 Hlg 8 följr dg Gud 9 Julat Do 10 Kom, öppna dn dörr 11 r 12 Må dn väg gå

Läs mer

Borel-Cantellis sats och stora talens lag

Borel-Cantellis sats och stora talens lag Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi

Läs mer

Tunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0

Tunnling. Förra gången: Spridning mot potentialbarriär. B T T + R = 1. Föreläsning 9. Potentialmodell (idealiserad): U = U B U = 0 Förläsig 9. Förra gåg: Sridig ot ottialarriär. Pottialodll (idalisrad): U U ( ) 0, 0 L, för övrigt ψ( ) ik ik ifallad U = U ψ( ) F trasittrad ik rflktrad U = 0 0 L Iuti arriär 0 < < L: ( fall) ) E U ψ

Läs mer

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:

Statistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik: Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad

Läs mer

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }.

Definition 1a: En talföljd är en reell (eller komplex) funktion vars definitionsmängd är mängden av naturliga tal {0,1,2,3,4, }. Armi Halilovic: EXTRA ÖVNINGAR TALFÖLJDER Dfiitio a: E talföljd är rll (llr koml) fuktio vars dfiitiosmägd är mägd av aturliga tal {0,,,,4, } Eml f ( ) = +, = 0,,,, är talföljd + Ma brukar utvidga dfiitio

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

6.14 Triangelelement (CST Constant Strain Triangle)

6.14 Triangelelement (CST Constant Strain Triangle) Övning 4 riangmnt ickard Shn -- FEM för Ingnjörstiämpningar, SE rshn@kth.s 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E-modu E Poissons ta På tunn påt md fria tor kan man göra antagand om

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7)

Väntevärde för stokastiska variabler (Blom Kapitel 6 och 7) Matemats statst för STS vt 004 004-04 - 0 Begt Rosé Vätevärde för stoastsa varabler (Blom Kaptel 6 och 7 1 Vätevärde för e dsret stoasts varabel Låt vara e dsret s.v. med saolhetsfuto p ( elgt eda. Saolhetera

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) TEKNISKA ÖGSKOLAN I LUND Istitutio ör ltrovtsap Ttam i Digital Sigalbhadlig ESS ETI/ETI75 -- Tid: 8. - 3. Sal: MA F-J älpmdl: Formlsamlig, Rädosa. Motivra atagad. D olia ld i lösigara sa ua ölas. Rita

Läs mer

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT

Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type

Läs mer

6.14 Triangelelement (CST Constant Strain Triangle)

6.14 Triangelelement (CST Constant Strain Triangle) Övning 4 FEM för Ingnjörstiämpningar ickard Shn 9 6 rshn@kth.s FEM anas md triangmnt 9 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E modu E Poissons ta På tunn påt kan man oftast göra antagand

Läs mer

Översiktsplan. Antagen 2013-05-28

Översiktsplan. Antagen 2013-05-28 Övrsktspa 2013 Atag 2013-05-28 Bdr på framsda: Bjärsgård Vy Rösa / Lyckås mot Södrås Hrrvads Kostr Bokskog Skärad St Ptr kyrka Hästar på bt Skärå Foto: Brt Hagbrg Ihå I h å 4 Idg Kppas kommu, tt drgoat

Läs mer

Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)

Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p) Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:

Läs mer

GOSPEL PÅ SVENSKA 2. Innehåll

GOSPEL PÅ SVENSKA 2. Innehåll GOSPEL PÅ SVENSKA 2 Innehåll Kom oh se 7 Lovsung vår Gud 8 Barmhärtige Gud 10 Igen 11 är min Herde 1 Ditt Ord estår 16 redo 18 När delar 21 Herre hör vår ön 2 Vår ader 2 ör mig 26 O Herre längtar 28 Hallelua,

Läs mer

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)

Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig) Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland

Läs mer

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )

Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( ) 6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så

Läs mer

Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1)

Begreppet rörelsemängd (eng. momentum) (YF kap. 8.1) Begreppet rörelsemägd (eg. mometum) (YF kap. 8.1) Defto (Newto!): E partkel med massa m och hastghet ഥv har rörelsemägd ഥp = m ഥv. Vektor med samma rktg som hastghete! Newto II: ሜF = m dvlj = d dt dt d

Läs mer

1. Test av anpassning.

1. Test av anpassning. χ -metode. χ -metode ka avädas för prövig av hypoteser i flera olika slag av problem: om e stokastisk variabel följer e viss saolikhetsfördelig med käda eller okäda parametrar. om två stokastiska variabler

Läs mer

Uppskatta ordersärkostnader för tillverkningsartiklar

Uppskatta ordersärkostnader för tillverkningsartiklar Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad

Läs mer

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)

Tentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp) KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),

Läs mer

Mening med ditt liv G/H. o n G/H

Mening med ditt liv G/H. o n G/H =132 J f s s Meg ed d v /H s s s Kr-ur Svesso 1.De vr e gåg e - e po so yc-e v - e vr för 2.To-år - e gc så sbb för-b, h ev - de v - e så - so h / s s ss s s s s J J f b J f J p o o o J p o o o b s s s

Läs mer

Opp, Amaryllis (Fredmans sång nr 31)

Opp, Amaryllis (Fredmans sång nr 31) Opp, marylls (Fredmans sång nr 1) Text musk: Carl Mchael Bellman rr: Eva Toller 05 Tenor 1 1Opp, Tag - ma - ryl - ls, vak - na mn ll -! äd - ret stl -, d re - var dra-gen; bör - jar -gen, Tenor 2 Basso

Läs mer

Blåsen nu alla (epistel nr 25)

Blåsen nu alla (epistel nr 25) lås al (epstel nr 25) ext musk: Carl Mchael ellman oprano 4 3 rr: Eva oller 2004 lto or 4 3 4 3 lå - s Fåg - r - al - tt - ta, hör öl - jor - fs - kar - sval - ås - kan sprt - ta ur stt går rum; e - gas

Läs mer

Visst är det skönt med lite varmare

Visst är det skönt med lite varmare HELA DENNA SIDA ÄR EN ANNONS FRÅN ENERGI- OCH KLIMATRÅDGIVARNA I HÄLSINGLAND Iformatio om rgi och miljö frå Ergi- och klimatrådgivara i Hälsiglad Valt md ffktr lägr ä fyra år Har du frågor krig rgi och

Läs mer

101. och sista termen 1

101. och sista termen 1 Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +

Läs mer

Korrelationens betydelse vid GUM-analyser

Korrelationens betydelse vid GUM-analyser Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska

Läs mer

Sensorer, effektorer och fysik. Analys av mätdata

Sensorer, effektorer och fysik. Analys av mätdata Sesorer, effektorer och fysk Aalys av mätdata Iehåll Mätfel Noggrahet och precso Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätgar är

Läs mer

Vila vid denna källa (epistel nr 82)

Vila vid denna källa (epistel nr 82) Text oh musk: Carl Mhael Bellm Arr: Eva Toller 2004 opno Alto 1 1V - 2 Hm - 4 5 6 s -, kl - _ vår oh får ll - hngs - frs - så E - du ka ols mtt Alto 2 1V - 2 Hm - 4 5 6 tgt mel, f, n, lg s - kl -, vår

Läs mer

Introduktion till statistik för statsvetare

Introduktion till statistik för statsvetare "Det fis iget så praktiskt som e bra teori" November 2011 Bakgrud Stadardiserig E saolikhetsekvatio Kosekves av stora tales lag Stora tales lag ger att är slumpvariablera X i är oberoede, med e och samma

Läs mer

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist

ENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa

Läs mer

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.

TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4. TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning

Föreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig

Läs mer

Bröderna fara väl vilse ibland (epistel nr 35)

Bröderna fara väl vilse ibland (epistel nr 35) Brödera fara väl vilse ilad (epistel r 35) Text musik: Carl Michael Bellma Teor 1 8 6 Arr: Eva Toller 2008 Teor 2 6 8 Basso 1 8 6.. Basso 2 8 6 1.Brö- der - a fa - ra väl vil - se i-lad om gla - se me

Läs mer

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat

Fyr-fältingen, utvidgad. Signal- och Bildbehandling FÖRELÄSNING 6. Ex) på användning av z-transform: En avancerad hörapparat Sigal- och Bildbhadlig FÖREÄSNING 6 -trasform - varför tar vi upp d? Aväds ofta vid dsig av tidsdiskrta systm. Vi ska s hur d hägr ihop md TDFT och DFT. D tas upp i alla grudkursr/böckr i sigal-bhadlig.

Läs mer

Lösningar och kommentarer till uppgifter i 1.1

Lösningar och kommentarer till uppgifter i 1.1 Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )

Läs mer

Snickerier. Räcken & Stolpar, Snickarglädje, Ett företag inom Södra

Snickerier. Räcken & Stolpar, Snickarglädje, Ett företag inom Södra Trätjr o Proutr so år st på tt us Srr Rä & Stopr, Sräj, Träår, Stopsyst, Iprrt Ett ört o Sör Tstyps yr o ystjr Ao & Sräj 1840-1900 Hus rå är pro är v på r ott v utsöt ystjr o srr. Vor uppör trä tt vär

Läs mer

S0005M V18, Föreläsning 10

S0005M V18, Föreläsning 10 S0005M V18, Föreläsig 10 Mykola Shykula LTU 2018-04-19 Mykola Shykula (LTU) S0005M V18, Föreläsig 10 2018-04-19 1 / 15 Hypotesprövig ett stickprov, σ okäd. Stadardiserig av stickprovsmedelvärdet då σ är

Läs mer

Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation

Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation Upplägg Introduktion till inlämningsuppgifterna Drakes ekvation och dess betydelse Ekvationens parametrar Några räkneexempel Kända

Läs mer

TRE KRONOR ISHOCKEY-VM I DANMARK 4 20 MAJ 2018 FÖLJ DOM SVENSKA VÄRLDSMÄSTARNA PÅ PLATS I KÖPENHAMN!

TRE KRONOR ISHOCKEY-VM I DANMARK 4 20 MAJ 2018 FÖLJ DOM SVENSKA VÄRLDSMÄSTARNA PÅ PLATS I KÖPENHAMN! TRE KRONOR ISHOCKEY-VM I DANMARK 4 20 MAJ 2018 FÖLJ DOM SVENSKA VÄRLDSMÄSTARNA PÅ PLATS I KÖPENHAMN! Splortr är Köpham och Hrig. Tr Kroor splar alla sia matchr i d daska huvudstad. Björk & Boström Sportrsor

Läs mer

TRE KRONOR ISHOCKEY-VM I DANMARK 4 20 MAJ 2018 FÖLJ DOM SVENSKA VÄRLDSMÄSTARNA PÅ PLATS I KÖPENHAMN!

TRE KRONOR ISHOCKEY-VM I DANMARK 4 20 MAJ 2018 FÖLJ DOM SVENSKA VÄRLDSMÄSTARNA PÅ PLATS I KÖPENHAMN! TRE KRONOR ISHOCKEY-VM I DANMARK 4 20 MAJ 2018 FÖLJ DOM SVENSKA VÄRLDSMÄSTARNA PÅ PLATS I KÖPENHAMN! Splortr är Köpham och Hrig. Tr Kroor splar alla sia matchr i d daska huvudstad. Björk & Boström Sportrsor

Läs mer

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b].

Anmärkning: I några böcker använder man följande beteckning ]a,b[, [a,b[ och ]a,b] för (a,b), [a,b) och (a,b]. MÄNGDER Stadardtalmägder: N={0,, 2, 3, } mägde av alla aturliga tal (I ågra böcker N={,2,3, }) Z={ 3, 2,,0,, 2, 3, 4, } mägde av alla hela tal m Q={, där m, är hela tal och 0 } mägde av alla ratioella

Läs mer

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering

Databaser - Design och programmering. Databasdesign. Kravspecifikation. Begrepps-modellering. Design processen. ER-modellering Databaser desig och programmerig Desig processe Databasdesig Förstudie, behovsaalys ER-modellerig Kravspecifikatio För att formulera e kravspecifikatio: Idetifiera avädare Studera existerade system Vad

Läs mer

26,4 21,8 21,8 21,8 1:27 22,7 22,4 19,4 21,7 18,3 18,6 23,1 19,8 26,2 17,7 15,9 1:45 15,5 24,4 16,3 15,5 1: ,2 10,3 18,6 1:28.

26,4 21,8 21,8 21,8 1:27 22,7 22,4 19,4 21,7 18,3 18,6 23,1 19,8 26,2 17,7 15,9 1:45 15,5 24,4 16,3 15,5 1: ,2 10,3 18,6 1:28. .,,,,,,,,, :,, r. ÅKSVÄG SPLLKR RÄ OR R L TUK il l n t T O LB.. T ti ÖS LTUK OTO R-R STO,,, :,,,,,,,,,,,,,,, RG lu j ÄG LSV TUULHUKKUJ,,,,, risnäs,,, :,,,,,,,,,,,, risnäs,,,,,,, :, :,,,,,,,,,,,,,,,,,,,,,,,,,,

Läs mer

TNA001 Matematisk grundkurs Övningsuppgifter

TNA001 Matematisk grundkurs Övningsuppgifter TNA00 Matematisk grudkurs Övigsuppgiter Iehåll: Uppgit Uppgit 8 Uppgit 9 6 Uppgit 7 5 Uppgit 55 60 Facit sid. 8-0 Summor, Biomialsatse, Iduktiosbevis Ivers uktio Logaritmer, Expoetialuktioer Trigoometri

Läs mer

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering

Databaser - Design och programmering. Programutveckling. Programdesign, databasdesign. Kravspecifikation. ER-modellen. Begrepps-modellering Databaser desig och programmerig Desig processe ER-modellerig Programutvecklig Förstudie, behovsaalys Programdesig, databasdesig Implemetatio Programdesig, databasdesig Databasdesig Koceptuell desig Koceptuell

Läs mer

F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i

F & 34 ø øl ø øl ø V. ø øl ø. &øl ø# øl ø øl ø ? F. &speg - lar Hår - ga - ber - get. ? ú ø ú ø ú ø. Hårga-Låten. som - mar - nat - ten, i L L L L V Hm l är blek VSpel man n är HårgaLåt L L L mar nat t, n g matt, L Text: Carl Peter Wckström Sats: Robert Sund (.2) L L # Ljus L nans vat t sg be satt L # Hm l är blek Spel man L n L är V mar

Läs mer

Drivsystemelektronik \ Drivsystemautomation \ Systemintegration \ Service. Handbok. Tillverkning av kablar Kablar för synkrona servomotorer

Drivsystemelektronik \ Drivsystemautomation \ Systemintegration \ Service. Handbok. Tillverkning av kablar Kablar för synkrona servomotorer Drvsystemelektrok \ Drvsystemautomato \ Systemtegrato \ Servce Hadbok Tllverkg av kablar Kablar ör sykroa servomotorer Utgåva 12/2011 19301677 / SV SEW-EURODRIVE Drvg the world Iehållsörteckg 1 Krmpverktyg...

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 249 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 249 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 10-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

Recept och inspiration

Recept och inspiration Rcpt ch ispirati Allrum da sapar ya, g möjlightr. Vi sm utvclar Allrum älsar it bara st sm smaar mr. Vi gillar mat i alla dss frmr där ritigt bra st a få lyfta sma. Så du blir särt it förvåad övr att smari

Läs mer

7.2 Vägg med isolering (1D)

7.2 Vägg med isolering (1D) Övnng 6 Värmtransport, rmoastctt Rckard Shn -- FEM för Ingnjörstämpnngar, SE rshn@kth.s 7. Vägg md sorng (D) En vägg bfnnr sg födsjämvkt (stady stat) n vntrdag. Väggn bstår av cm yttrmatra och cm sorng.

Läs mer

Prologen. The Mexican Connection: e n

Prologen. The Mexican Connection: e n Th Mxica Coctio: P Origiaidé och författar: Magus Str Pduktio: Rgfabrik och Rävsp Md hjäp av: Adrs Gibrig, Tov Gibrig, Dat Agstrad, Micha Lck, Matthias Lch So stod högt på him. It tt mo syts och dt var

Läs mer

1. Hur gammalt är ditt barn?

1. Hur gammalt är ditt barn? Förskoleekät 2017 Filtrerigsvillkor: Villkor: 1: Svarsalterativ Björkduge (Fråga: Vilke förskola går ditt bar i?) 1. Hur gammalt är ditt bar? 0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 1-2 22% 3-4 50% 5-6

Läs mer

Ekosteg. En simulering om energi och klimat

Ekosteg. En simulering om energi och klimat Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr

Läs mer

Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation

Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation Intelligent liv i Universum Är vi ensamma? Föreläsning 4: Drakes ekvation Fråga från Institutionen för Astronomi Hur fick ni reda på att den här kursen existerade? Skriv ned svaret på en lapp och lämna

Läs mer

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH

ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning

Läs mer

1 Armin Halilovic: EXTRA ÖVNINGAR

1 Armin Halilovic: EXTRA ÖVNINGAR Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger

Läs mer

FRÖN. i parken, skogen, eller vid huset där du bor. Här har jag gjort en blomma och öron till min hare av askfrön. askfrö. askblad

FRÖN. i parken, skogen, eller vid huset där du bor. Här har jag gjort en blomma och öron till min hare av askfrön. askfrö. askblad KRISTINA DIGMAN FRÖN Frö ka se ut på tuse sätt. Somliga är så små och lätta att de kappt sys, adra är stora och tuga. Kastajer, ötter, kärora i äpplet eller apelsie du äter, de är frö allihop! Det fis

Läs mer

Snickerier. Räcken & Stolpar, Snickarglädje, Hyllplan, Trädgård, Stolpsystem. Trädetaljer och Produkter som håller stilen på ditt hus

Snickerier. Räcken & Stolpar, Snickarglädje, Hyllplan, Trädgård, Stolpsystem. Trädetaljer och Produkter som håller stilen på ditt hus Srr Trätr Prutr s år st på tt us Rä & Stpr, Srä, Hyp, Träår, Stpsyst Ett ört Sör-r Tstyps yr ystr A & Srä 1840-1900 Hus rå är pr är v på r tt v utsöt ystr srr. Vr uppör trä tt vär räss uppsr räsr. Isprt

Läs mer

Institutionen för data- och elektroteknik 1999-11-30. samplingsvillkoret f. Den diskreta fouriertransformen ges av

Institutionen för data- och elektroteknik 1999-11-30. samplingsvillkoret f. Den diskreta fouriertransformen ges av Istitutio för data- och ltroti 999--3 Digital sigalbhadlig f Implmtrig av FFT- och IFFT-rutir Vi har här tidigar i digital sigalbhadlig studrat tidsdisrt fourirtrasform, DFT och mölightra att aväda Fast

Läs mer

Sensorer och elektronik. Analys av mätdata

Sensorer och elektronik. Analys av mätdata Sesorer och elektrok Aalys av mätdata Iehåll Mätfel Några begrepp om saolkhetslära Läges- och sprdgsmått Kofdestervall Ljär regresso Mätosäkerhetsaalys Mätfel Alla mätresultat är behäftade med e vss osäkerhet

Läs mer

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00

TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00 TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n.

27. NATURLJUD. o k k o k k k. p k k k kz k k o k k k k k k n k k k. k o k. a f4 Fredrik: kk k. k dk. a f4 4 j. k n. k n k k. k n k n k n. 27. NATURLJUD 171 a f4 Fredri: 4 o o p z o o Hysch-hysch! Tys-ta u! Ett ljus som är-mar sej! O ja, det är di-tör. Göm er på stört! Å Pirater: a f4 4 j m 4 j j m l l d d u om-mer visst di - tör! Å ej, u

Läs mer

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts:

Webprogrammering och databaser. Begrepps-modellering. Exempel: universitetsstudier Kravspec. ER-modellen. Exempel: kravspec forts: Webprogrammerig och databaser Koceptuell datamodellerig med Etitets-Relatiosmodelle Begrepps-modellerig Mål: skapa e högivå-specifikatio iformatiosiehållet i database Koceptuell modell är oberoede DBMS

Läs mer

Universitetet: ER-diagram e-namn

Universitetet: ER-diagram e-namn Databaser Desig och programmerig Fortsättig på relatiosmodelle: Normaliserig fuktioella beroede ormalformer iformatiosbevarade relatiosschemauppdelig Varför ormalisera? Metod att skydda oss frå dum desig

Läs mer

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Fråga från förra gången Planeter som slungas fram och tillbaka mellan stjärnorna i ett dubbelstjärnesystem: Moeckel & Veras 2012,

Läs mer

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation. Fråga från förra gången. Upplägg

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation. Fråga från förra gången. Upplägg Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Fråga från förra gången Planeter som slungas fram och tillbaka mellan stjärnorna i ett dubbelstjärnesystem: Moeckel & Veras 2012,

Läs mer

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Upplägg Introduktion till inlämningsuppgifterna Drakes ekvation och dess betydelse Ekvationens parametrar Några räkneexempel Kända

Läs mer

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation. Upplägg

Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation. Upplägg Sökandet efter intelligent liv i rymden Föreläsning 4: Drakes ekvation Upplägg Introduktion till inlämningsuppgifterna Drakes ekvation och dess betydelse Ekvationens parametrar Några räkneexempel Kända

Läs mer

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER

HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Armi alilovi: EXTRA ÖVNINGAR omoga lijära diffrtialkvatior OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Lijär diffrtialkvatio (DE) md kostata koffiitr är kvatio av följad tp ( ) (

Läs mer

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2

= α. β = α = ( ) D (β )= = 0 + β. = α 0 + β. E (β )=β. V (β )= σ2. β N β, = σ2 Ljär regresso aolkhet och statstk Regressosaalys VT 2009 Uwe.Mezel@math.uu.se http://www.math.uu.se/ uwe/ Fgur: Mätpukter: x, y Ljär regresso - kalbrerg av e våg Modell för ljär regresso Modell: y α +

Läs mer

Fakta om Zara Larsson

Fakta om Zara Larsson SIDAN 1 Lärarmaterial VAD HANDLAR BOKEN OM? Boke hadlar om artiste och femiiste Zara Larsso. Vi får lära oss mer om Zaras liv, hur och var ho växte upp, är ho bestämde sig för att ho ville bli sågerska

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik

F4 Matematikrep. Summatecken. Summatecken, forts. Summatecken, forts. Summatecknet. Potensräkning. Logaritmer. Kombinatorik 0-0-5 F Matematrep Summateet Potesräg Logartmer Kombator Summatee Säg att v har ste tal,, Summa av dessa tal (alltså + + ) srvs ortfattat med hälp av summatee: summa då går fr.o.m. t.o.m. Summatee, forts.

Läs mer

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera:

VECKANS LILLA POSTKODVINST á 1.000 kronor Inom nedanstående postkoder vinner följande 219 lottnummer 1.000 kronor vardera: Dragningsresultat vecka 27-2015 Här nedan kan du se om du är en av de lyckliga vinnarna i veckans utlottning i Svenska PostkodLotteriet. När du har vunnit betalar vi automatiskt ut dina vinstpengar till

Läs mer

Uppskatta lagerhållningssärkostnader

Uppskatta lagerhållningssärkostnader B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,

Läs mer

Del 1 Teoridel utan hjälpmedel

Del 1 Teoridel utan hjälpmedel inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst

Läs mer

Föreläsning 10: Kombinatorik

Föreläsning 10: Kombinatorik DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd

Läs mer

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process. Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk

Läs mer

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.

SANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}. rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.

Läs mer

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I

Föreläsning G04 Surveymetodik 732G19 Utredningskunskap I Föreläsg 6 73G04 urveymetodk 73G9 Utredgskuska I Dages föreläsg ortfall Totalbortfall Partellt bortfall Hur hatera bortfall? ortfallsstratumasatse (tvåfasurval) ubsttuto Imuterg Reettosquz ortfall och

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator

Läs mer

Höstvisa. œ œ. œ œ œ œ œ œ œ. œ œ œ nœ # # j œ # œ œ œ j œ œ œ œ Œ. j œ œ œ. œ œ. œ œ œ œ œ œ. œ œ ? # # # œ j œ. J œ. œ œ œ. œ œ œ œ # œ.

Höstvisa. œ œ. œ œ œ œ œ œ œ. œ œ œ nœ # # j œ # œ œ œ j œ œ œ œ Œ. j œ œ œ. œ œ. œ œ œ œ œ œ. œ œ ? # # # œ j œ. J œ. œ œ œ. œ œ œ œ # œ. opran & Höstvisa Musik:Er auro ext: ove ansson rr: Mani Mattson. lt enor &? Vägen - hemvar myketlångoh - ing- en har agmött.nu blir kväl-lar - ky-li- ga oh se - Ing - en mött. lir kväl - lar- se -... as?

Läs mer

ρ. Farten fås genom integrering av (2):

ρ. Farten fås genom integrering av (2): LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt

Läs mer