Datorövning 1 Introduktion till Matlab Fördelningar

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Datorövning 1 Introduktion till Matlab Fördelningar"

Transkript

1 Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-12 Datorövning 1 Introduktion till Matlab Fördelningar I denna datorövning ska du först få en liten introduktion till Matlab, som är ett matematiskt beräkningsverktyg. Det används på alla datorövningarna i kursen. Vi fortsätter sedan att utforska begreppen sannolikhet och fördelningar genom numeriska exempel i Matlab. Du behöver en Matlab-installation som inkluderar Statistics Toolbox. De extra filer du behöver finns att ladda ner från kursens hemsidawww.maths.lth.se/matstat/kurser/fms065/ 1 Förberedelseuppgifter 1. Läs instruktionerna för datorövningen samt Kapitel och 4.1 i boken. 2. Förvissa dig om att du förstår vad sannolikhets- och täthets-funktioner är och hur de förhåller sig till fördelningsfunktionen. 3. Givet ett stickprov {x 1,...,x n } från en slumpvariabel X, hur kan du konstruera den empiriska fördelningsfunktionen? Vad är den empiriska fördelningsfunktionen? 4. Förklara vad som menas med -kvantilen i en fördelning. 2 Matlab de första stegen (Hoppa över detta om du redan är van vid Matlab) Matlab 1 tillåter användaren att kombinera numeriska beräkningar med avancerad grafik. Kortare kommandon kan köras interaktivt, men för mer komplicerade problem är det möjligt att skriva program och definiera egna funktioner. I tillägg till Matlab finns flera s.k. Toolboxes (verktygslådor) för olika tillämpningar, t.ex. signalbehandling, reglerteori och finita elementmetoder. Under datorövningarna kommer vi att använda, bland annat, Statistics Toolbox. Matriser och vektorer i Matlab Matlab kan användas som en avancerad miniräknare: de vanligaste funktionerna är fördefinierade. Vid Matlab-prompten (>>), kan du t.ex. beräkna sin(ô/2) + e 2 genom att skriva >> sqrt(1.19^2-1)+sin(pi/2)+exp(2) och resultatet dyker upp. Uppgift: Beräkna ovanstående uttryck i Matlab. 1 Mer information om Matlab finns påhttp://www.mathworks.com/

2 ii När du vill veta mer om de fördefinierade funktionerna i Matlab är help-kommandot användbart. Det är en god idé att använda det under övningarna, även om det inte står uttryckligen i handledningen. Börja med >> help help Sedan kan du, t.ex. skriva >> help log för att få reda på vilken bas Matlab använder för logaritmfunktionen. Matlab är en förkortning av Matrix laboratory, och matriser och vektorer är karakteristiskt för Matlab. Alla data är lagrade i vektorer och matriser. (Med vektor menar vi en rad- eller kolonn-matris.) Matrisen ( ) 2 0 A = 3 1 skrivs in i Matlab på följande sätt: >> A = [2 0; 3 1] En radvektor kan t.ex. skrivas på följande sätt: >> v=[ ] och en kolonnvektor: >> vv=[0; 0.1; 0.2; 0.3] Kommandotlength (eller size) ger storleken på vektorn eller matrisen: >> vlength=length(v) >> vvlength=length(vv) >> ASize=size(A) Vi kan plocka ut enskilda element ur vektorer och matriser på följande vis. Säg att vi vill komma åt värdet av det fjärde elementen i vektornvoch dessutom värdena på de tre första elementen. Det gör vi på följande vis: >> v(4), v(1:3) eller, tillsammans: >> v([4 1:3]) Elementen i en vektor kan sorteras i stigande ordning: >> u=[ ] >> usorted=sort(u) Att hantera variabler och data Vi har nu definierat ett antal variabler och en lista på de variabler som finns i Matlabs minne fås med kommandotwho. Kommandotwhos ger samma lista men utökad med storleken på variablerna. Uppgift: Kör båda kommandona. Känner du igen variablerna i listan? Vi avslutar sessionen med att ta bort variablerna. Alla variablerna tas bort med kommandotclear. Använd help clear för att ta reda på hur du tar bort bara vissa variabler.

3 iii Grafik I den här delen ska du göra några enkla figurer i Matlab. Efteråt kommer du att kunna rita en figur över en funktion x f (x). Som exempel, låt oss välja f (x) = sin x för 0 < x < 4Ô. Skapa först variablerna x respektive y: >> x=0:0.05:4*pi % Detta efter procenttecknet är en kommentar, skriv % inte av den. >> y=sin(x) % x=0, 0.05, 0.1, 0.15,..., 4pi Två vektorer av samma längd kan ritas mot varandra så här: >> plot(x,y) Ett grafikfönster dyker nu upp (om det inte redan fanns ett) som figuren ritas i. Figuren heter figure(1). Man kan ha flera grafikfönster. Vill du att nästa figur ska komma i ett nytt fönster, istället för att rita över den första figuren, så kan du skapa ett nytt grafiktfönster med kommandotfigure(2). Man kan ge flera optioner till plot-kommandot, t.ex., färg: >> plot(x,y, r ) % Röda streck Vi kan också välja att rita ut de enskilda punkterna som stjärnor istället för att dra linjer mellan dem: >> plot(x,y, * ) Man kan också kombinera optionerna. Se help plot för att ta reda på vad följande kommando borde göra. Kolla sedan att det blev så också: >> plot(x,y, md- ) Man kan använda kommandotaxis för att titta på en bestämd det av figuren. Pröva med >> axis([ ]) Vad hände? Det är ofta lättare at tolka en figur om man lägger till en grid: ta reda på hur kommandotgrid används och lägg till en grid till din figur. Det aktuella figuren töms med kommandotclf. Det tomma fönstret blir kvar. Vill du ta bort det också ska du använda close istället. 3 Relativa frekvenser och fördelningar I denna del ska vi använda numeriska exempel i Matlab för att studera koncepten sannolikhet och fördelning. Målet är att du ska få en intuitiv känsla för sannolikhetsresonemang, snarare än att konfronteras med teori. Data-undersökning För att illustrera syftet använder vi artificiella data som är simulerade från en statistisk fördelning. Detta i motsats till verkliga data där det inte finns några etiketter som säger vilken fördelning det är. Trots att vi vet hur data genererades är det ändå användbart och man använder ofta simulerade data i skattningar och test i mer komplicerade situationer. För att skaffa dig ett slumpmässigt dataset med 50 värden, skriv

4 iv >> data=randn(1,50) Uppgift: Vilken fördelning kommer ditt slumpmässigs stickprov från (använd help randn)? Skriv ner täthetsfunktionen. En god regel, när man står inför ettt nytt datamaterial, är att rita upp det på några olika sätt. Vi börjar med att göra ett histogram: >> hist(data) Uppgift: Se det ut som du väntade dig? Jämför med täthetsfunktionen. Använd nu kommandot >> figure(2) % Ritar i ett nytt förnster >> plot(data,.- ) och relatera det till histogrammet. Uppgift: Jämför histogrammet med plot-en. Hur syns egenskaperna hos data i histogrammet, och tvärtom? Ett annat sätt är att rita de sorterade data, med ordningsnumret på y-axeln: >> plot(sort(data),1:length(data),.- ) % Ersätter förra ploten med ny. I det här sortens figur kan vi t.ex. avläsa hur många av observationerna som är mindre än eller lika med ett visst tal. Uppgift: Välj x = 1.1 och försök avgöra i figuren (det går att zooma) hur många av värdena som är mindre än eller lika med 1.1. När antalet observationer i stickprovet stiger kan vi tolka kvoten som sannolikheten att få ett värde mindre än eller lika med x. Kvoten kan beräknas så här: >> ratio = sum(data<=1.1)/length(data) Uppgift: Stämmer det med din uppskattning från figuren? För att förstå hurdata<=1.1 fungerar så jämför vi det med ursprungsdata: >> data >> data<=1.1

5 v Figur 1: Empirisk fördelningsfunktion, ett exempel Vad är det som händer? Uppgift: Pröva med några andra värden på x. Hur borde andelen ändra sig? Jämför med figuren. Den omvända proceduren, hitta det värde x som motsvarar en given sannolikhet, dvs en given kvantil, är ofta viktigare. Vi återkommer till det lite senare. Vi kan naturligtvis låta datorn välja ett stort antal värden att undersöka och sedan försöka få en överblick. Detta är implementerat i den specialskrivna Matlab-funktionenempcdf (finns att ladda ner från hemsidan). Funktionen ger två vektorer: x innehåller de valda värdena, medan andelarna finns i ratio. (Om du vill se koden kan du skriva type empcdf) Resultatet kan visas i en ny figur: >> [x,ratio]=empcdf(data); >> figure(3); >> plot(x,ratio,. ) >> grid on Figuren bör likna Figur 1 i handledningen (och din egenfigure(2), bortsett från y-skalan och antal punkter). Den visar hur värdena är fördelade och denna typ av figur kallas empirisk fördelningsfunktion (empirical distribution function 2. För ett värde på x-axeln, t.ex. 1.1, hittar vi, på y-axeln, andelen värden som är mindre än eller lika värdet på x-axeln. Uppgift: Kolla att det stämmer med det du fick fram tidigare. Större stickprov. Fördelningsfunktionen för en slumpvariabel Låt oss nu studera ett större datamaterial, t.ex observationer från samma fördelning som tidigare. Vi simulerar data och ritar dem i en ny figur: 2 Fördelningsfunktioner kallas ofta cumulative distribution functions; Det är därför vår funktion heter empcdf, empirical cumulativedistribution function.

6 vi >> data=randn(1,2000); >> [x,ratio]=empcdf(data); >> figure(4); >> plot(x,ratio,. ) >> grid on Med många observationer närmar sig resultatet fördelningsfunktionen, dvs, för en slumpvaribel X, funktionen F X (x) = P(X x). I vårt fall valdes X från en normalfördelning; vi hade X N(0, 1). Vi ritar in den teoretiska fördelningsfunktionen,normcdf, i samma figur som den empiriska: >> figure(4) >> hold on % Fortsätt rita fler saker i samma figur. >> plot(x,normcdf(x), r ) >> hold off % Sluta rita i samma figur. För alla fördelningsfunktioner F X, har vi att F X (x) 1 när x och att F X (x) 0 när x. Uppgift: Tolka figuren. Vad är det på x- och y-axlarna? Skatta medianen ur figuren. Kvantiler Begreppet kvantil är viktigt. Kvantilen kan definieras på olika sätt men vi (och många andra) använder följande definition: kvantilen är det tal x som uppfyller P(X x ) = 1 där är ett tal mellan 0 och 1 (vanliga val är: 0.05, 0.01, 0.001). Uppgift: Skatta kvantilen x 0.05 där = 0.05 ur din figur (figure(4)), med hjälp av definitionen (1). Jämför med det exakta värdet, som kan fås mednorminv(1-0.05). (1) Andra fördelningar Några vanliga fördelningsfunktioner har egna namn, eftersom de visat sig användbara för att modellera slumpmässiga fenomen. Några av dem finns implementerade i Statistics Toolbox. Du har redan stött på fördelningsfunktionen när X N(0, 1) som normcdf. Gumbel-fördelning En viktig fördelning som vi kommer att möta igen i kursen är Gumbel-fördelningen (även kallad Extremvärdesfördelning typ I eller Dubbel exponentialfördelning). En Gumbel-fördelad slumpvariabel X har fördelningsfunktionen F X (x) = exp( e (x b)/a ), < x <. Här är b en lägesparameter och a > 0 är en skalparameter. Låt oss rita några Gumbel-fördelningar:

7 vii >> figure % nytt figur-fönster >> x=15:0.05:70; % ; i slutet hindrar utskrift >> a=7; b=30; F1=exp(-exp(-(x-b)/a)); >> a=7; b=35; F2=exp(-exp(-(x-b)/a)); >> plot(x,f1, b,x,f2, r ) >> grid on Uppgift: Verkar det rimligt att b är en lägesparameter? Vad händer med fördelningen när du ändrar b? Uppgift: Experimentera med att istället hålla b fixt och ändra a. Vad händer? Den maximala vattenföringen i ett visst vattendrag kan anses vara Gumbel-fördelad med a = 7 m 3 /s och b = 30 m 3 /s. Uppgift: Rita upp fördelningsfunktionen och använd den till att bestämma sannolikheten att årlig maximal vattenföring överstiger 50 m 3 /s. Uppgift: Hur stort är 100-årsfloden i detta vattendrag?

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Laboration 1: Beskrivande statistik

Laboration 1: Beskrivande statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 1: Beskrivande statistik 1 Syfte Syftet med den här laborationen

Läs mer

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 1 MATEMATISK STATISTIK AK FÖR F OCH FYSIKER, FMS012/MASB03, VT15 Laboration 1: Grundläggande sannolikhetsteori, simulering och dataanalys

Läs mer

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL

SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Matematisk Statistik SF1901 Sannolikhetsteori och statistik: HT 2014 Lab 1 för CSAMHS, CINEKI, och CL Introduktion Detta är handledningen till Laboration 1, ta med en en utskriven kopia av den till laborationen.

Läs mer

Laboration 1: Introduktion till R och Deskriptiv statistik

Laboration 1: Introduktion till R och Deskriptiv statistik STOCKHOLMS UNIVERSITET 13 februari 2009 Matematiska institutionen Avd. för matematisk statistik Gudrun Brattström Laboration 1: Introduktion till R och Deskriptiv statistik Denna första datorlaboration

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Introduktion till Matlab

Introduktion till Matlab Introduktion till Matlab Inledande matematik, I1, ht10 1 Inledning Detta är en koncis beskrivning av de viktigaste delarna av Matlab. Till en början är det enkla beräkningar och grafik som intresserar

Läs mer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer

Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Lunds universitet Matematikcentrum Matematisk statistik Matematisk statistik allmän kurs, MASA01:B, HT-14 Laborationer Information om laborationerna I andra halvan av MASA01 kursen ingår två laborationer.

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Laboration: Grunderna i MATLAB

Laboration: Grunderna i MATLAB Laboration: Grunderna i MATLAB 25 augusti 2005 Grunderna i MATLAB Vad är MATLAB? MATLAB är ett interaktivt program för vetenskapliga beräkningar. Som användare ger du enkla kommandon och MATLAB levererar

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Datorövning 2 Fördelningar inom säkerhetsanalys

Datorövning 2 Fördelningar inom säkerhetsanalys Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade

Läs mer

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall.

I den här datorövningen ser vi hur R kan utnyttjas för att kontrollera modellantaganden och beräkna konfidensintervall. UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin Statistik för ingenjörer 1MS008 VT 2011 DATORÖVNING 2: SKATTNINGAR OCH KONFIDENSINTERVALL 1 Inledning I den här datorövningen ser vi hur R kan

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

En introduktion till MatLab

En introduktion till MatLab Chalmers tekniska högskola En introduktion till MatLab Gustafsson Gabriel gabgus@student.chalmers.se Johansson Việt Simon simoj@student.chalmers.se Författare: Norell Pontus npontus@student.chalmers.se

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Anders Heyden Matematikcentrum Lunds Universitet Matematisk Modellering p.1/37 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 TMV157-2014/2015 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB

TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson. Introduktion till MATLAB TEKNISKA HÖGSKOLAN Matematik Fredrik Abrahamsson Introduktion till MATLAB Introduktion till MATLAB sid. 2 av 12 Innehåll 1 Vad är MATLAB? 3 1.1 Textens syfte..................................... 3 2 Grundläggande

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

Föreläsning 4, Matematisk statistik för M

Föreläsning 4, Matematisk statistik för M Föreläsning 4, Matematisk statistik för M Erik Lindström 1 april 2015 Erik Lindström - erikl@maths.lth.se FMS012 F4 1/19 Binomialfördelning Beteckning: X Bin(n, p) Förekomst: Ett slumpmässigt försök med

Läs mer

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES-

DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- DATORÖVNING 6: CENTRALA GRÄNSVÄRDES- SATSEN OCH FELMARGINALER I denna datorövning ska du använda Minitab för att empiriskt studera hur den centrala gränsvärdessatsen fungerar, samt empiriskt utvärdera

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU STUDIO 1 LMA515b - 2016/2017 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU LABORATION 1 MVE011-2012/2013 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska högskolor

Läs mer

DATORÖVNING 2: SIMULERING

DATORÖVNING 2: SIMULERING UPPSALA UNIVERSITET Matematiska institutionen Måns Thulin - thulin@math.uu.se Matematisk statistik Statistik för ingenjörer VT 2013 DATORÖVNING 2: SIMULERING Innehåll 1 Inledning 1 2 Inledande exempel

Läs mer

( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3.

( ) i xy-planet. Vi skapar ( ) med alla x koordinater och en ( ) med alla y koordinater. Sedan plottar vi punkterna med kommandot. , x 2, x 3. Envariabelanalys med Matlab Under denna kurs kommer vi framförallt att använda Matlab som verktyg i Envariabelanalys. Bl.a skall vi se hur man mha Matlab kan vi rita kurvor i xy-planet, rita grafer till

Läs mer

Funktioner och grafritning i Matlab

Funktioner och grafritning i Matlab CTH/GU LABORATION 3 MVE11-212/213 Matematiska vetenskaper 1 Inledning Funktioner och grafritning i Matlab Först skall vi se lite på (elementära) matematiska funktioner i Matlab, som sinus och cosinus.

Läs mer

Linjära ekvationssystem i Matlab

Linjära ekvationssystem i Matlab CTH/GU LABORATION 2 MVE11-212/213 Matematiska vetenskaper Linjära ekvationssystem i Matlab 1 Inledning Först skall vi se lite på matriser, vilket är den grundläggande datatypen i Matlab, sedan skall vi

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas

DN1212, Numeriska metoder & grundläggande programmering. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas DN1212, Numeriska metoder & grundläggande programmering för P1. Laboration 1 del 1-3 (frivilliga delar) Del 1-3 (dvs upg 1.1-1.17) behöver inte redovisas Introduktion till UNIX och MATLAB Del 1: UNIX och

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

Matriser och vektorer i Matlab

Matriser och vektorer i Matlab CTH/GU LABORATION 3 TMV206-2013/2014 Matematiska vetenskaper 1 Inledning Matriser och vektorer i Matlab I denna laboration ser vi på hantering och uppbyggnad av matriser samt operationer på matriser En

Läs mer

Sannolikhet och statistik med Matlab. Måns Eriksson

Sannolikhet och statistik med Matlab. Måns Eriksson Sannolikhet och statistik med Matlab Måns Eriksson 1 Inledning Det här kompiet är tänkt att användas för självstudier under kursen Sannolikhet och statistik vid Uppsala universitet. Målet är att använda

Läs mer

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström

STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström STOCKHOLMS UNIVERSITET 2001-10-22 MATEMATISKA INSTITUTIONEN Avd. Matematisk statistik Anders Björkström GRUNDLÄGGANDE MATLAB-TRÄNING för den som aldrig har arbetat med Matlab förut A. Matlabs allmänna

Läs mer

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1.

OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. OBS! Snabbinsatt Matlab-intro vissa fönsterhanteringsdetaljer kan vara fel men gör gärna Matlab-uppgifterna. DN1240, Numeriska metoder för OPEN1. Laboration 0 del 1-3 (frivilliga delar) Del 1-3 (dvs upg

Läs mer

ATT RITA GRAFER MED KOMMANDOT "PLOT"

ATT RITA GRAFER MED KOMMANDOT PLOT MATLAB, D-plot ATT RITA GRAFER MED KOMMANDOT "PLOT" Syntax: Vi börjar med det enklaste plot-kommandot i matlab,,där x är en vektor x- värden och y en vektor med LIKA MÅNGA motsvarande y-värden. Anta att

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

1 Inledning. 2 Att logga in och ta sig in i MATLAB. 3 MATLABs grundfunktioner

1 Inledning. 2 Att logga in och ta sig in i MATLAB. 3 MATLABs grundfunktioner LUNDS UNIVERSITET MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 0: KORT INTRODUKTION TILL MATLAB MATEMATISK STATISTIK AK, MAS 101:A, VT-01 1 Inledning Som titeln anger är denna lilla skrift endast avsedd

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2011/2012 Matematiska vetenskaper 1 Inledning Introduktion till Matlab Version för IT-programmet Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på de flesta tekniska

Läs mer

(x) = F X. och kvantiler

(x) = F X. och kvantiler Föreläsning 5: Matstat AK för M, HT-8 MATEMATISK STATISTIK AK FÖR M HT-8 FÖRELÄSNING 5: KAPITEL 6: NORMALFÖRDELNINGEN EXEMPEL FORTKÖRARE Man har mätt hastigheten på 8 bilar som passerade en korsning i

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)

BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska

Läs mer

GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola

GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola GNU Octave 2.1.72 under Cygwin Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola 1 1 Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som

Läs mer

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB

DN1240, Numeriska metoder. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB DN1240, Numeriska metoder för O1. Laboration 0 (frivilliga delar) (dvs uppgifterna behöver inte redovisas) Introduktion till UNIX och MATLAB Del 1: UNIX och kontoadministration Uppgift 1.1 Ni bör jobba

Läs mer

Matematisk Modellering

Matematisk Modellering Matematisk Modellering Föreläsning 1 Magnus Oskarsson Matematikcentrum Lunds Universitet Matematisk Modellering p.1/34 Denna föreläsning (läsvecka 1) Vad handlar kursen om, mål, kurskrav, ide. Matematisk

Läs mer

Kapitel 4. Programmet MATLAB

Kapitel 4. Programmet MATLAB Kapitel 4. Programmet MATLAB MATLAB (namnet härlett ur MATrix LABoratory) är ett matematikprogram baserat på matrisalgebra, som blivit mycket använt för fysikaliska och tekniska tillämpningar. Den ursprungliga

Läs mer

Kom igång med Stata. Introduktion

Kom igång med Stata. Introduktion Kom igång med Stata Introduktion Stata är det vanligaste statistikprogrammet bland de på institutionen som bedriver mycket kvantitativ forskning. Det är relativt enkelt att lära sig, samtidigt som det

Läs mer

Laboration 2: Sannolikhetsteori och simulering

Laboration 2: Sannolikhetsteori och simulering Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 2 Matematisk statistik AK för Π och E, FMS012, HT14/VT15 Laboration 2: Sannolikhetsteori och simulering Syftet med den här laborationen

Läs mer

GNU Octave 2.1.50 Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola

GNU Octave 2.1.50 Spara grafik i postscriptfiler. Per Jönsson, NMS, Malmö högskola GNU Octave..5 Spara grafik i postscriptfiler Per Jönsson, NMS, Malmö högskola Gnuplot Octave använder Gnuplot för att visa grafik. Gnuplot är ett mycket kraftfullt programpaket som både kan visa grafiken

Läs mer

Mer om slumpvariabler

Mer om slumpvariabler 1/20 Mer om slumpvariabler Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/2 2013 2/20 Dagens föreläsning Diskreta slumpvariabler Vilket kretskort ska man välja? Väntevärde

Läs mer

Datorövning 5 Exponentiella modeller och elasticitetssamband

Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövning 5 Exponentiella modeller och elasticitetssamband Datorövningen utförs i grupper om två personer. I denna datorövning skall ni använda Minitab för att 1. anpassa och tolka analysen av en exponentiell

Läs mer

En introduktion till och första övning i @Risk5 for Excel

En introduktion till och första övning i @Risk5 for Excel LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg / Lars Wahlgren VT2012 En introduktion till och första övning i @Risk5 for Excel Vi har redan under kursen stiftat bekantskap med Minitab

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera

Läs mer

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6):

Nedan redovisas resultatet med hjälp av ett antal olika diagram (pkt 1-6): EM-fotboll 2012 några grafer Sport är en verksamhet som genererar mängder av numerisk information som följs med stort intresse EM i fotboll är inget undantag och detta dokument visar några grafer med kommentarer

Läs mer

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler

Enkel linjär regression: skattning, diagnostik, prediktion. Multipel regression: modellval, indikatorvariabler UPPSALA UNIVESITET Matematiska institutionen Jesper ydén Matematisk statistik 1MS026 vt 2014 DATOÖVNING MED : EGESSION I den här datorövningen studeras följande moment: Enkel linjär regression: skattning,

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

Instruktioner till arbetet med miniprojekt II

Instruktioner till arbetet med miniprojekt II Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt II ENERGIFÖRBRUKNING FÖRE OCH EFTER ISOLERING AV HUS Instruktioner till arbetet med miniprojekt

Läs mer

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15

F14 Repetition. Måns Thulin. Uppsala universitet thulin@math.uu.se. Statistik för ingenjörer 6/3 2013 1/15 1/15 F14 Repetition Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 6/3 2013 2/15 Dagens föreläsning Tentamensinformation Exempel på tentaproblem På kurshemsidan finns sex gamla

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Innehåll 1 2 Diskreta observationer Kontinuerliga observationer 3 Centralmått Spridningsmått Vad är statistik?

Läs mer

4. Kunna orientera sig mellan de olika fönstren

4. Kunna orientera sig mellan de olika fönstren Datorövning 1 Statistikens Grunder 1 Syfte 1 Lära sig läsa in data i SAS 2 Importera data från Excel 3 Lära sig skriva ut data med proc print 4 Kunna orientera sig mellan de olika fönstren Exempel Att

Läs mer

Handbok KSystemLog. Nicolas Ternisien

Handbok KSystemLog. Nicolas Ternisien Nicolas Ternisien 2 Innehåll 1 Använda KSystemLog 5 1.1 Inledning........................................... 5 1.1.1 Vad är KSystemLog?................................ 5 1.1.2 Funktioner......................................

Läs mer

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg

Introduktion till programmering D0009E. Föreläsning 1: Programmets väg Introduktion till programmering D0009E Föreläsning 1: Programmets väg 1 Vad är en dator? En maskin vars beteende styrs av de innehållet (bitmönster) som finns lagrade i datorns minne (inte helt olikt förra

Läs mer

2 Dataanalys och beskrivande statistik

2 Dataanalys och beskrivande statistik 2 Dataanalys och beskrivande statistik Vad är data, och vad är statistik? Data är en samling fakta ur vilken man kan erhålla information. Statistik är vetenskapen (vissa skulle kalla det konst) om att

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Datorövning 4 Poissonregression

Datorövning 4 Poissonregression Lunds tekniska högskola Matematikcentrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövning 4 Poissonregression När man hanterar två eller fler variabler är man ofta intresserad

Läs mer

Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret

Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret Konsolfönster i Windows Momentet ingår i kursen PDA DTR1206 Lab 1 DOS http://www.cwdata.se Konsolfönstret Med ett kommandobaserat gränssnitt menas ett helt textbaserat gränssnitt. Istället för att klicka

Läs mer

MATLAB handbok Introduktion

MATLAB handbok Introduktion Department of Physics Umeå University 30 juni 2014 MATLAB handbok Introduktion Marina Wallin Martin Hansson Per Sundholm 1 INTRODUKTION TILL MATLAB 1 1 Introduktion till Matlab Något man som Teknisk fysiker

Läs mer

Introduktion till MATLAB

Introduktion till MATLAB Introduktion till MATLAB Om laborationen Övningarna går ut på att bekanta sig med MATLAB och se hur man löser olika typer av problem. Arbetet är självständigt. Hoppa över sådant ni tycker verkar för lätt

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 8p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

TAMS28 DATORÖVNING 1-2015 VT1

TAMS28 DATORÖVNING 1-2015 VT1 TAMS28 DATORÖVNING 1-2015 VT1 Datorövningen behandlar simulering av observationer från diskreta och kontinuerliga fördelningar med hjälp av dator, illustration av skattningars osäkerhet, analys vid parvisa

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2

Datorövning Matlab/Simulink. Styr- och Reglerteknik för U3/EI2 Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 0803/ Thomas Munther Datorövning Matlab/Simulink i Styr- och Reglerteknik för U3/EI Laborationen förutsätter en del förberedelser

Läs mer

Histogram, pivottabeller och tabell med beskrivande statistik i Excel

Histogram, pivottabeller och tabell med beskrivande statistik i Excel Histogram, pivottabeller och tabell med beskrivande statistik i Excel 1 Histogram är bra för att dem på ett visuellt sätt ger oss mycket information. Att göra ett histogram i Excel är dock rätt så bökigt.

Läs mer

Syftet med veckans övningar. Något om MATLAB. Vecka 1 matte D del C

Syftet med veckans övningar. Något om MATLAB. Vecka 1 matte D del C Vecka 1 matte D del C handlar om olika typer av integraler. Metoden går tillbaka till antiken; genom triangulering kan man beräkna arean av oregelbundna polygoner. Har men en figur med krokiga begränsningslinjer

Läs mer

Datorövning 2 Diskret fördelning och betingning

Datorövning 2 Diskret fördelning och betingning Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 2 Diskret fördelning och betingning Syftet med den här laborationen

Läs mer

Laboration Fuzzy Logic

Laboration Fuzzy Logic BILAGA B Laboration Fuzzy Logic Lär dig simulera ett program! ABB INDUSTRIGYMNASIUM Fuzzy Logic Wikingsons Wåghalsiga Wargar Projekt ABB VT 2006 Västerås Innehåll 1 Introduktion... 3 2 Uppgiften... 3 2.1

Läs mer

DATORÖVNING 3: MER OM STATISTISK INFERENS.

DATORÖVNING 3: MER OM STATISTISK INFERENS. DATORÖVNING 3: MER OM STATISTISK INFERENS. START Logga in och starta Minitab. Se till att du kan skriva Minitab-kommandon direkt i Session-fönstret (se föregående datorövning). CENTRALA GRÄNSVÄRDESSATSEN

Läs mer

Miniprojektuppgift i TSRT04: Femtal i Yatzy

Miniprojektuppgift i TSRT04: Femtal i Yatzy Miniprojektuppgift i TSRT04: Femtal i Yatzy 22 augusti 2016 1 Uppgift I tärningsspelet Yatzy används fem vanliga sexsidiga tärningar. Deltagarna slår tärningarna i tur och ordning och försöker få vissa

Läs mer

4.4. Mera om grafiken i MATLAB

4.4. Mera om grafiken i MATLAB 4.4. Mera om grafiken i MATLAB Larry Smarr, ledare för NCSA (National Center for Supercomputing Applications i University of Illinois, brukar i sina föredrag betona betydelsen av visualisering inom den

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29

LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK 2007-08-29 UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Statistik för Teknologer, 5 poäng (TNK, ET, BTG) Peter Anton, Per Arnqvist Anton Grafström TENTAMEN 7-8-9 LÖSNINGSFÖRSLAG TILL TENTAMEN

Läs mer

4.3. Programmering i MATLAB

4.3. Programmering i MATLAB 4.3. Programmering i MATLAB MATLAB används ofta interaktivt, dvs ett kommando som man skriver, kommer genast att utföras, och resultatet visas. Men MATLAB kan också utföra kommandon som lagrats i filer,

Läs mer

TENTAMEN I MATEMATISK STATISTIK

TENTAMEN I MATEMATISK STATISTIK UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för Teknologer, 5 poäng MSTA33 Ingrid Svensson TENTAMEN 2004-01-13 TENTAMEN I MATEMATISK STATISTIK Statistik för Teknologer, 5 poäng Tillåtna

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

jsp?d=&a=827474&sb2231i0=1_

jsp?d=&a=827474&sb2231i0=1_ Ingenjörsrollen Från DNs kultursidor http://www.dn.se/dnet/jsp/polopoly. jsp?d=&a=827474&sb2231i0=1_827 474 Jag läste till en examen i teknisk fysik på KTH för att jag trodde att matematiken och siffrorna

Läs mer

Regressionsmodellering inom sjukförsäkring

Regressionsmodellering inom sjukförsäkring Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.

Läs mer

Föreläsning 1. 732G60 Statistiska metoder

Föreläsning 1. 732G60 Statistiska metoder Föreläsning 1 Statistiska metoder 1 Kursens uppbyggnad o 10 föreläsningar Teori blandas med exempel Läggs ut några dagar innan på kurshemsidan o 5 räknestugor Tillfälle för individuella frågor Viktigt

Läs mer

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1.

SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. SF1520, Numeriska Metoder och Grundläggande Programmering för K2 Lab1. Denna labb är tänkt att öva datorhantering och öva inledande Matlab. Eftersom förkunskaperna varierar finns en del frivilliga uppgifter

Läs mer

Datorövning 1 Statistik med Excel (Office 2010, svenska)

Datorövning 1 Statistik med Excel (Office 2010, svenska) Datorövning 1 Statistik med Excel (Office 2010, svenska) I processövningen som ni ska genomföra ingår det att konstruera samt sammanställa en enkät. Denna sammanställning ska göras med hjälp av programmet

Läs mer

DATORINTRODUKTION. Laboration E850-2000 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren

DATORINTRODUKTION. Laboration E850-2000 ELEKTRO. UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren UMEÅ UNIVERSITET Tillämpad fysik och elektronik Ulf Holmgren 2000-03-17 specialversion inför kursstart Elektronik och mätteknik 2000 DATORINTRODUKTION Laboration E850-2000 ELEKTRO Personalia: Namn: Kurs:

Läs mer

Du kan söka hjälp efter innehåll eller efter namn

Du kan söka hjälp efter innehåll eller efter namn Du kan söka hjälp efter innehåll eller efter namn Skalärer x = 2 y = 1.234 pi, inf Ex: Skriver du >> x+100*pi Så blir svaret ans = 316.1593 (observera decimalpunkt.) Vektorer v = [1 2 3 4] radvektor u

Läs mer

Instruktioner till arbetet med miniprojekt I

Instruktioner till arbetet med miniprojekt I Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt I Instruktioner till arbetet med miniprojekt I Innan ni börjar arbeta vid Datorlaboration 2

Läs mer

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten.

lära dig tolka ett av de vanligaste beroendemåtten mellan två variabler, korrelationskoefficienten. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS035: MATEMATISK STATISTIK FÖR M DATORLABORATION 5, 11 MAJ 2012 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de

Läs mer

Kort om programmering i Matlab

Kort om programmering i Matlab CTH/GU 25/26 Matematiska vetenskaper Kort om programmering i Matlab Inledning Redan första tillfället gjorde ni ett litet program. Ni skrev ett script eller en skriptfil som beräknade summan 5 i 2 = 2

Läs mer

DATORÖVNING 4: DISKRETA

DATORÖVNING 4: DISKRETA IDA/Statistik 2008-09-25 Annica Isaksson DATORÖVNING 4: DISKRETA SANNOLIKHETSFÖRDELNINGAR. I denna datorövning ska du illustrera olika sannolikhetsfördelningar samt beräkna sannolikheter i dessa m h a

Läs mer

8 Inferens om väntevärdet (och variansen) av en fördelning

8 Inferens om väntevärdet (och variansen) av en fördelning 8 Inferens om väntevärdet (och variansen) av en fördelning 8. Skattning av µ och Students T-fördelning Om σ är känd, kan man använda statistikan X µ σ/ n för att hitta konfidensintervall för µ. Om σ inte

Läs mer

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april

GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare. Karlstads universitet 19-20 april GeoGebra i matematikundervisningen - Inspirationsdagar för gymnasielärare Karlstads universitet 19-0 april Exempel på elevaktiviteter framtagna i skolutvecklingsprojektet IKT och lärande i matematik 1

Läs mer