Programmering Emme-makro rvinst_ic.mac version 2
|
|
- Patrik Bo Lindberg
- för 9 år sedan
- Visningar:
Transkript
1 Uppdragsr: Seh Svalgård PM Programmerig Emme-makro rvis_ic.mac versio 2 Iehållsföreckig Förusäigar...2 Beräkigsuryck...2 Daabaser...4 Marisplaser...4 Aropsparamerar...6 Udaa...6 L:\705x\_SAMSAM\3_Dokume\36_PM\PM makroprogrammerig residsviser bil IC versio doc WSP Aalys & Sraegi Sockholm-Globe Besök: Areaväge 7 Tel: Fax: WSP Sverige AB Org r: Syrelses säe: Sockholm
2 Uppdragsr: (7) Förusäigar E Emme/makro med filam rvis_ic.mac har idigare programmeras för beräkigar i Sampers regioala daabaser av residsviser för de bilresor som beräkas i Sampers modell för aioella resor (lågväga resor). Makro rvis_ic.mac versio 2 är e vidareuvecklig av de makro. Uvecklige i versio 2 besår av: 1. Implemeerig av beräkig av skillader i reskosad mella uredigs- och jämförelsealeraive för lågväga bilresor, där kosade besår av lägdberoede reskosad plus eveuella ullar. Kosade beräkas separa för privaresor och jäseresor. 2. Resulae puchas u frå Emme-daabase ill e udaafil. Beräkigsuryck Residsviser Residsvisera beräkas på samma sä som i föregåede versio elig formel eda. U J T = RV G X /60, där ( ( ) ) L:\705x\_SAMSAM\3_Dokume\36_PM\PM makroprogrammerig residsviser bil IC versio doc T RV G = Residsvis resyp uryck i kroor per årsmedeldyg. = {privaresor, jäseresor}. = Residsvärde resyp uryck i kroor per imma. = Bilbeläggigsgrad resyp. Aväds för eveuell omräkig av bilar ill bilresor. X = Aal bilar frå område i ill område j resyp beräkade med Sampers modell för aioella resor. U = Bilresid lågrafik frå område i ill område j för uredigsaleraive (miuer). J = Bilresid lågrafik frå område i ill område j för jämförelsealeraive (miuer). I de regioala daabasera fis vå möjliga residsmariser a göra beräkigara på; förmiddages maximme och lågrafik. Lågväga bilresor aas ill sörsa dele ske uaför högrafik. Av dea aledig aväds bilresidsmarise för lågrafik i makro.
3 Uppdragsr: (7) Skillader i reskosader Skillader i reskosader beräkas elig formel eda. U J U J ( X ( RK ( d d ) + ( ) G ) T = /, där T RK G = Skillad i reskosad resyp uryck i kroor per årsmedeldyg. = {privaresor, jäseresor}. = Reslägdsberoede reskosad (kr/km). = Bilbeläggigsgrad resyp. Aväds för eveuell omräkig av bilresor ill bilar. X = Aal bilar frå område i ill område j resyp beräkade med Sampers modell för aioella resor. U d = Bilresavsåd frå område i ill område j för uredigsaleraive (km). J d = Bilresavsåd frå område i ill område j för jämförelsealeraive (km). U = Eveuell kosad för bilull lågrafik frå område i ill område j för uredigsaleraive (kroor). J = Eveuell kosad för bilull lågrafik frå område i ill område j för jämfö- relsealeraive (kroor). I de regioala daabasera fis vå möjliga ullmariser a göra beräkigara på; förmiddages maximme och lågrafik. Lågväga bilresor aas ill sörsa dele ske uaför högrafik. Uder lågrafik as de valigvis u e lägre pris ä uder högrafik eller så as de ie u ågo avgif alls. Av dea aledig aväds bilullsmarisera för lågrafik i makro. L:\705x\_SAMSAM\3_Dokume\36_PM\PM makroprogrammerig residsviser bil IC versio doc
4 Uppdragsr: (7) Daabaser Daa förusäs fias i vå Emme-daabaser: -Bildaabase för jämförelsealeraive. -Bildaabase för uredigsaleraive. Daabasera förväas iehålla mf-mariser med bilar eller bilresor, bilresider, bilavsåd och eveuella bilullar. Alla beräkigar görs i bildaabase för uredigsaleraive. Till dea Emme-bas imporeras mariser för jämförelsealeraive frå bildaabase för jämförelsealeraive. Impore av marise skös av makro. Impor görs av följade mariser: 1. Bilresid lågrafik 2. Bilavsåd 3. Bilullar lågrafik. Marisplaser L:\705x\_SAMSAM\3_Dokume\36_PM\PM makroprogrammerig residsviser bil IC versio doc Marisyp mf I syfe a förebygga exekverigsavbro på grud av för låg exsräg hårdkodas marisplasera för mariser som måse fias i Emme-daabase elig abelle eda. Tabell 1: Hårdkodade marisplaser för mariser som måse fias i Emme-daabase före exekverig av makro Maris Lågväga bilresor priva Lågväga bilresor jäse Bilresid lågrafik Bilresavsåd Bilullar lågrafik Marisplas mf26 mf27 mf04 mf05 mf02 E y marisplas måse as i aspråk i bildaase för uredigsaleraive för bilresider, bilresavsåd och eveuella bilullar för jämförelsealeraive. Förslagsvis aväds marisplas mf57 (ages vid arop av makro).
5 Uppdragsr: (7) Marisyp ms För a spara resula aväds fem hårdkodade plaser för marisskalärer. Vilka de är framgår av abelle eda. Tabell 2: Hårdkodade marisplaser för resula Maris Temporär lagrigsplas Skillad resid UA-JA priva Skillad resid UA-JA jäse Skillad reskosad UA-JA priva Skillad reskosad UA-JA jäse Marisplas ms99 ms11 ms12 ms13 ms14 L:\705x\_SAMSAM\3_Dokume\36_PM\PM makroprogrammerig residsviser bil IC versio doc
6 Uppdragsr: (7) Aropsparamerar Makro programmeras så a följade aropsparamerar ages vid exekverig: p1 = Residsvärde för privaresor kr/h. T.ex p2 = Residsvärde för jäseresor kr/h. T.ex p3 = Bilbeläggigsgrad privaresor. T.ex p4 = Bilbeläggigsgrad jäseresor. T.ex p5= Marisplas för impor av bilresid jämförelsealeraive. T.ex. mf57. p6 = Filadress ill bildaabas för jämförelsealeraive. T.ex...\..\..\..\JA\Regbaser\Samm\Bil. p7 = 1 om ehee på marisera med de lågväga reseferfråga är bilar, 2 om de är bilresor. p8 = 1 om bilullar ska igå i beräkige, 2 aars. p9 = geomsilig reskosad lågväga bilresor (kr/km) L:\705x\_SAMSAM\3_Dokume\36_PM\PM makroprogrammerig residsviser bil IC versio doc Förydligade: Aropsparameer p8. o Om värde 1 ages kommer variabel G (bilbeläggigsgrade) a aa värde 1 för både priva- och jäsereseärer i beräkige av residsvisera 1. För beräkige av skillader i reskosader 2 kommer de värde som ages i aropsparamerara p3 och p4 avädas. o Om värde 2 ages kommer variabel G (bilbeläggigsgrade) a aa de värde som ages i aropsparamerara p3 och p4 i beräkige av residsvisera. För beräkige av skillader i reskosader kommer värde 1 avädas för både priva- och jäsereseärer. 1 Se beräkigsurycke på sida 2. 2 Se beräkigsuryck på sida 3.
7 Uppdragsr: (7) Udaa Makro skriver resula ill re sälle: 1. I Emme-daabase. 2. Texfil på hårddiske. 3. I Sampersriggige. I Emmebase Resulae skrivs ill e serie om fyra skalärer i bildaabase för uredigsaleraive: ms11= skillad resid priva ms12 = skillad resid jäse ms13 = skillad reskosad priva ms14 = skillad reskosad jäse. Texfil på hårddiske Iehålle i skalärera skrivs också ill file rvis_ic.%d%, där %d% sår för de daum då makro exekveras. %d%=yymmdd. File skapas i samma filmapp som bildaabase för uredigsaleraive Om de reda fis e fil rvis_ic.%d% med samma daum i filame som är exekverige görs kommer iehålle i file a skrivas över. File rvis_ic.%d% är e kommaseparerad exfil som ekel ka imporeras ill Excel. L:\705x\_SAMSAM\3_Dokume\36_PM\PM makroprogrammerig residsviser bil IC versio doc I Sampersriggige Loggfile frå de beräkigar som görs i Emmedaabase hamar i flike repors i de rapporfil som ka skapas i Sampers geom a avädare markerar makrosege och klickar på Rapporfilskappe.
Kvinnors arbetsmiljö. Rapport 2012:11. Tillsynsaktivitet 2012 inom regeringsuppdraget om kvinnors arbetsmiljö. Delrapport
Kviors arbesmiljö Tillsysakivie 12 iom regerigsuppdrage om kviors arbesmiljö Delrappor Rappor 12:11 12-5-9 1 (9) Ehee för mäiska och omgivig Chrisia Josso, 8-73 94 18 arbesmiljoverke@av.se Delrappor Tillsysakivie
Läs mer================================================
rmi Halilovic: ETR ÖVNINGR TVÅ STICKPROV Vi betraktar två oberoede ormalfördelade sv och Låt x, x,, x vara ett observerat stickprov, av storleke, på N (, ) och låt y, y,, y vara ett observerat stickprov,
Läs merEkvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.
Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav
Läs merStatistisk analys. Vilka slutsatser kan dras om populationen med resultatet i stickprovet som grund? Hur säkra uttalande kan göras om resultatet?
Statistisk aalys Vilka slutsatser ka dras om populatioe med resultatet i stickprovet som grud? Hur säkra uttalade ka göras om resultatet? Mats Guarsso Tillämpad matematik III/Statistik - Sida 83 Exempel
Läs merLINJÄR ALGEBRA II LEKTION 4
LINJÄR ALGEBRA II LEKTION 4 JOHAN ASPLUND Iehåll Egevärde, egevektorer och egerum 2 Diagoaliserig 3 Uppgifter 2 5:4-5a) 2 Extrauppgift frå dugga 2 52:8 4 52:3 4 Extrauppgift frå teta 4 Egevärde, egevektorer
Läs merBefolkning per födelseland Reviderad metod vid framskrivningar. Version: 2
Befolkig per födelselad Reviderad metod vid framskrivigar Versio: 2 Tillväxtverket stärker Sverige geom att stärka företages kokurreskraft Vi skapar bättre förutsättigar för företagade och bidrar till
Läs merx 1 x 2 x 3 x 4 x 5 x 6 HL Z x x x
Uppgift 1 a) Vi iför slackvariabler x 4, x 5 och x 6 och löser problemet med hjälp av simplexalgoritme. Z -2-1 1 0 0 0 0 x 4 1 1-1 1 0 0 20 x 5 2 1 1 0 1 0 30 x 6 1-1 2 0 0 1 10 x 1 blir igåede basvariabel
Läs merEgna funktioner. Vad är sin? sin är namnet på en av många inbyggda funktioner i Ada (och den återfinns i paketet Ada.Numerics.Elementary_Functions)
- 1 - Vad är si? si är amet på e av måga ibyggda fuktioer i Ada (och de återfis i paketet Ada.Numerics.Elemetary_Fuctios) si är deklarerad att ta emot e parameter (eller ett argumet) av typ Float (mätt
Läs merInduktion LCB Rekursion och induktion; enkla fall. Ersätter Grimaldi 4.1
duktio LCB 2000 Ersätter Grimaldi 4. Rekursio och iduktio; ekla fall E talföljd a a 0 a a 2 ka aturligtvis defiieras geom att ma ager e explicit formel för uträkig av dess elemet, som till exempel () a
Läs mer2015-10-22. Ca 415.000m 3 = 600.000 ton. Masshantering Sven Brodin. Dessa mängder ska Stockholms Stad transportera varje månad.
Masshaterig Ca 415.000m 3 = 600.000 to Dessa mägder ska Stockholms Stad trasportera varje måad. The Capital of Scadiavia Sida 2 Till varje km väg som ska byggas behövs ytor på ca 4000m 2 för: Etablerig
Läs merBilaga 6.1 Låt oss studera ett generellt andra ordningens tidsdiskreta system
Bilaga 6. Lå oss sudea e geeell ada odiges idsdiskea sysem [] [] [ ] [ ] [ ] [ ] y y x x x y Vi besämme öveföigsfukioe i -plae Figu B6.. Tidsdiske sysem på gudfom,, blockschema [ ] [ ] Lå oss fomulea om
Läs mer2009-11-20. Prognoser
29--2 Progoser Progoser i idsserier: Gissa e framida värde i idsserie killad geemo progoser i regressio: De framida värde illhör ie daaområde. fe med e progosmodell är a göra progos, ie a förklara de hisoriska
Läs merUppgifter 3: Talföljder och induktionsbevis
Gruder i matematik och logik (017) Uppgifter 3: Talföljder och iduktiosbevis Ur Matematik Origo 5 Talföljder och summor 3.01 101. E talföljd defiieras geom formel a 8 + 6. a) Är det e rekursiv eller e
Läs merBorel-Cantellis sats och stora talens lag
Borel-Catellis sats och stora tales lag Guar Eglud Matematisk statistik KTH Vt 2005 Iledig Borel-Catellis sats är e itressat och avädbar sats framför allt för att bevisa stora tales lag i stark form. Vi
Läs merLinjär Algebra (lp 1, 2016) Lösningar till skrivuppgiften Julia Brandes
Lijär Algebra (lp 1, 2016) Lösigar till skrivuppgifte Julia Brades Uppgift 1. Betecka mägde av alla matriser med M(). Vi har e elemetvist defiierad additio av två matriser A, B M(). De är defiierad geom
Läs mera) Beräkna E (W ). (2 p)
Avd. Matematisk statistik TENTAMEN I SF19 och SF191 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 13:E MARS 18 KL 8. 13.. Examiator: Björ-Olof Skytt, 8 79 86 49. Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merFöreskrift. om publicering av nyckeltal för elnätsverksamheten. Utfärdad i Helsingfors den 2. december 2005
Dr 1345/01/2005 Föreskrift om publicerig av yckeltal för elätsverksamhete Utfärdad i Helsigfors de 2. december 2005 Eergimarkadsverket har med stöd av 3 kap. 12 3 mom. i elmarkadslage (386/1995) av de
Läs merLösningar och kommentarer till uppgifter i 1.1
Lösigar och kommetarer till uppgifter i. 407 d) 408 d) 40 a) 3 /5 5) 5 3 0 ) 0) 3 5 5 4 0 6 5 x 5 x) 5 x + 5 x 5 x 5 x 5 x + 5 x 40 Om det u är eklare så här a x a 3x + a x) a 4x + 43 a) 43 45 5 3 5 )
Läs merFrikort utskrivet 14/6 2013, giltigt t.o.m 23/4 2014 24/4 2014 150 kr 150 kr Första avgift erlagd för nytt avgiftsåret
Ho gosadssydd och fio D ä upp ill vaj ladsig a fassälla om osadsa sall vaa 1100 ll läg fö högosadssydd. D lagsifad högosadssydd ä isgilig. Elig Fullmäigs bslu ä högosadsa fö öpp hälso- och sjuvåd fö pso
Läs merFormler, grundläggande statistik
Formler, grudläggade aiik Medelvärde N X μ σ Sadardavvikele, populaio Sadardavvikele, ickprov Sadardavvikele, räkevälig z Z-poäg z z r Pearo korrelaio, urpruglig r Pearo korrelaio, räkeväligare Oe ample
Läs merDetaljplan Ekedal södra. Behovsbedömning 1/5. Sektor samhällsbyggnad
1/5 Sektor samhällsbyggad Datum Beteckig 2015-02-10 PLAN.2014.19 Plaehete Hadläggare Jey Olausso Detaljpla Ekedal södra Behovsbedömig Förslag Geomföradet av plaförslaget bedöms ite medföra ågo betydade
Läs merLycka till! I(X i t) 1 om A 0 annars I(A) =
Avd Matematisk statistik TENTAMEN I SF955 f d 5B555 DATORINTENSIVA METODER ONSDAGEN DEN AUGUSTI 008 KL 400 900 Examiator: Guar Eglud, tel 790746 Email: guare@mathkthse Tillåta hjälpmedel: Formel- och tabellsamlig
Läs merHandbok i materialstyrning - Del F Prognostisering
Hadbok i materialstyrig - Del F Progostiserig F 71 Absoluta mått på progosfel I lagerstyrigssammahag ka progostiserig allmät defiieras som e bedömig av framtida efterfråga frå kuder. Eftersom det är e
Läs merLösningar till tentamensskrivning i kompletteringskurs Linjär Algebra, SF1605, den 10 januari 2011,kl m(m + 1) =
Lösigar till tetamesskrivig i kompletterigskurs Lijär Algebra, SF605, de 0 jauari 20,kl 4.00-9.00. 3p Visa med hjälp av ett iduktiosbevis att m= mm + = +. Lösig: Formel är uppebarlige sa är = eftersom
Läs merc n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.
P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt
Läs merModellering och prediktion av tidsserier gällande sjukförmåner inom socialförsäkringen
Maemaisk saisik Sockholms uiversie Modellerig och predikio av idsserier gällade sukförmåer iom socialförsäkrige Per Johasso Examesarbee 6:8 Posal address: Maemaisk saisik Dep. of Mahemaics Sockholms uiversie
Läs merFör rörformiga instrument, slangar och liknande krävs speciella insatser för genomspolning för att få ett fullgott resultat.
Sida 1 av 6 Avisig för kvalitetssäkrig av spol- och diskdesifektorer 141203 Avisig primärvård Föremål och istrumet avsedda för flergågsbruk ska regöras och desifekteras efter avädig i e värmedesifektor.
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065, HT-15 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade
Läs merTentamenskrivning, , kl SF1625, Envariabelanalys för CINTE1(IT) och CMIEL1(ME ) (7,5hp)
KTH-Matematik Tetameskrivig, 2008-0-0, kl. 4.00-9.00 SF625, Evariabelaalys för CITE(IT) och CMIEL(ME ) (7,5h) Prelimiära gräser. Registrerade å kurse SF625 får graderat betyg eligt skala A (högsta betyg),
Läs mer101. och sista termen 1
Lektio, Evariabelaalys de ovember 999 5.. Uttryck summa j uta summasymbole. j + Termera är idexerade frå j = till j = och varje term är blir j j+. Summa Skriver vi upp summa uta summasymbole blir de +
Läs merFörsöket med trängselskatt
STATISTISKA CENTRALBYRÅN m 1(5). Nilo Trägelkatt Förlag frå Ehete för pritatitik Ehete för pritatitik förelår att å kallad trägelkatt ka täcka i KI frå och med idex aveede jauari 26. Trägelkatte ave då
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN kl
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-04-5 kl 8.5-.5 Hjälpmedel: Formler och tabeller i statistik, räkedosa Fullstädiga lösigar erfordras till samtliga uppgifter. Lösigara skall vara
Läs merTENTAMEN I MATEMATISK STATISTIK Datum: 13 mars 08
TENTAMEN I MATEMATISK STATISTIK Datum: 3 mars 8 Te i kurse HF3, 6H3, 6L3 MATEMATIK OCH MATEMATISK STATISTIK, Te i kurse HF ( Tidigare k 6H3), KÖTEORI OCH MATEMATISK STATISTIK, Skrivtid: 8:5-:5 Hjälpmedel:
Läs merÖvningstentamen i MA2018 Tillämpad Matematik III-Statistik, 3.5hp
Övigstetame i MA08 Tillämpad Matematik III-Statistik,.hp Hjälpmedel: Pea, radergummi och lijal. Räkedosa och medföljade formelsamlig är tillåte! Tetame består av 0 frågor! Edast Svarsblakette ska lämas
Läs merPTKs stadgar. Fastställda vid stämman 2009 06 16
PTKs stadgar Fastställda vid stämma 2009 06 16 INNEHÅLLSFÖRTECKNING SYFTE OCH UPPGIFTER Syfte och uppgifter 3 Medlemskap 4 Orgaisatio 7 Stämma 8 Överstyrelse 12 Styrelse 15 Förhadligsorgaisatio 17 PTK-L
Läs merStat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT ) Ordlista till NCT
Stat. teori gk, ht 2006, JW F13 HYPOTESPRÖVNING (NCT 10.1-10.3) Ordlista till NCT Hypothesis testig Null hypothesis Alterative hypothesis Simple / composite Oe-sided /two-sided Reject Test statistic Type
Läs merENDIMENSIONELL ANALYS B1 FÖRELÄSNING VI. Föreläsning VI. Mikael P. Sundqvist
Föreläsig VI Mikael P. Sudqvist Aritmetisk summa, exempel Exempel I ett sällskap på 100 persoer skakar alla persoer had med varadra (precis e gåg). Hur måga hadskakigar sker? Defiitio I e aritmetisk summa
Läs merTRIBECA Finansutveckling
TRIBECA Rådgivare iom fiasiella helhetslösigar TRIBECA a s k r e i v g S f a s k r i e v g S f g g r r e e a r a r e e i i f f TRIBECA s målsättig är att bidra med råd & produkter som hela tide gör att
Läs merfermacell Brandskydd Brandskydd med fermacell AESTUVER och fermacell Firepanel A1
fermacell Bradskydd Bradskydd med fermacell ESTUVER och fermacell Firepael 1 2 Bradiklädad av balkar och pelare med fermacell ESTUVER Skivas uppbyggad fermacell ESTUVER skiva är illverkad av sad, ceme,
Läs merVikingen FutureLook. Delphi Finansanalys AB
Vikige FutureLook by Delphi Fiasaalys AB Referesmaual för Vikig FutureLook Översikt Futurelook är ett uikt och mycket kraftfult verktyg för fiasaalytiker och kapitalplacerare. Med FutureLook är det möjligt
Läs merVi betygsätter årets skatteprogram
Vi beygsäer åres skaeprogram Tycker du a de är svår a deklarera? Då ka du få hjälp. Här graskar och beygsäer Privaa Affärer markades samliga skaeprogram. För de flesa sveskar är deklaraioe umera e lä mach.
Läs merUppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 26, 9/2 2011: y + ay + by = h(x)
Uppsala Uiversitet Matematiska Istitutioe Bo Styf Evariabelaalys, 0 hp STS, X 200-0-27 Föreläsig 26, 9/2 20: Geomgåget på föreläsigara 26-30. Att lösa de ihomogea ekvatioe. De ekvatio vi syftar på är förstås
Läs merDEL I. Matematiska Institutionen KTH
1 Matematiska Istitutioe KTH Lösig till tetamesskrivig på kurse Diskret Matematik, momet A, för D2 och F, SF1631 och SF1630, de 5 jui 2009 kl 08.00-13.00. DEL I 1. (3p) Bestäm e lösig till de diofatiska
Läs merBilaga 1 Formelsamling
1 2 Bilaga 1 Formelsamlig Grudbegre, resultatlaerig och roduktkalkylerig Resultat Itäkt - Kostad Lösamhet Resultat Resursisats TTB Täckigsgrad (TG) Totala itäkter TB Säritäkt Divisioskalkyl är de eklaste
Läs merθx θ 1 om 0 x 1 f(x) = 0 annars
Avd. Matematisk statistik TENTAMEN I SF903 SANNOLIKHETSLÄRA OCH STATISTIK FÖR 3-ÅRIG Media TIMEH TORSDAGEN DEN TREDJE JUNI 200 KL 4.00 9.00. Examiator: Guar Eglud, tel. 790 74 06 Tillåta hjälpmedel: Läroboke.
Läs merMätbar vetskap om nuläget och tydliga målbilder om framtiden. Genomför en INDICATOR självvärdering och nulägesanalys inom tre veckor
Mätbar vetskap om uläget och tydliga målbilder om framtide Geomför e INDICATOR självvärderig och ulägesaalys iom tre veckor Självvärderig e del av dokumetatioskravet i ya skollage Skollage ställer också
Läs mer4. Uppgifter från gamla tentor (inte ett officiellt urval) 6
SF69 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 4 KARL JONSSON Iehåll. Egeskaper hos Fouriertrasforme. Kapitel 3: Z-Trasform.. Upp. 3.44a-b: Bestämig av Z-trasforme för olika talföljder.. Upp.
Läs merKorrelationens betydelse vid GUM-analyser
Korrelatoes betydelse vd GUM-aalyser Hela koceptet GUM geomsyras av atagadet att gåede mätgar är okorrelerade. Gude betoar och för sg att ev. korrelato spelar, me ger te mycket vägledg för hur ma då ska
Läs merHögskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00
Lösigsförslag UPPGIFT 1 Kvia Ma Högskoleutbildad 0,90*0,70=0,63 0,80*0,30=0,24 0,87 Ej högskoleutbildad 0,07 0,06 0,13 0,70 0,30 1,00 Pr(ej högskoleutbildad kvi=0,07=7% Pr(högskoleutbildad)=0,87 c) Pr(Kvi*Pr(Högskoleutbildad)=0,70*0,87=0,609
Läs merÖrserumsviken. Förorenade områden Årsredovisning. Ansvar för sanering av förorenade områden. Årsredovisningslagen och god redovisningssed
Föroreade område Årsredovisig Örserumsvike Birgit Fleig Auktoriserad revisor Sustaiability Director birgit.fleig@se.ey.com 19 september 2005 1 2 Årsredovisigslage och god redovisigssed Föroreade område
Läs merFöreläsningar 7,8 sept 24, sept 26 v 39). delvis DD Chapter 6.
Föreläsigar 7,8 sept 4, sept 6 v 39). delvis DD Chapter 6. Metoder som returerar värde. När vi skriver uttryck ka vi aväda ibyggda operatorer, t ex i uttrycket efter tilldeligssymbole i satse : k = 3*i
Läs merE I T. Efficient & Integrated Transport. EIT - Efficient & Integrated Transport Processes. Projektkonferens
EIT - Efficie & Iegraed Trapor FFI Traporeffekivie i Projekkofere 2011-0-1 Se Lidgre, Odee Swede 1 Måläig och bakgrud EIT-projeke hadlar om hur rapor/logiikföreag kommuicerar med ia kuder (B2B-relaioer).
Läs merFrån Regionkansliet :40
Pressmeddelade Frå Regiokasliet 2009 09 22 14:40 Beslut i regiostyrelse de 22 september Fullmäktigeärede Ägaravtal för Västtrafik förlägs ett år Västtrafiks aktieägaravtal mella Västra Götaladsregioe och
Läs merOperativsystem - Baklås
Operativsystem - Baklås Mats Björkma 2017-02-01 Lärademål Vad är baklås? Villkor för baklås Strategier för att hatera baklås Operativsystem, Mats Björkma, MDH 2 Defiitio av baklås (boke 6.2) A set of processes
Läs merKonsoliderad version av. Styrelsens för ackreditering och teknisk kontroll föreskrifter (STAFS 1993:18) om EEG-märkning av färdigförpackade varor
Kosoliderad versio av Styrelses för ackrediterig och tekisk kotroll föreskrifter (STAFS 1993:18) om EEG-märkig av färdigförpackade varor Rubrike har dea lydelse geom (STAFS 2008:11) Ädrig iförd: t.o.m.
Läs merEfter tentamen För kurser med fler än 60 examinerande meddelas resultatet SENAST 20 arbetsdagar efter examinationen annars 15 arbetsdagar.
Luleå tekiska uiversitet TENTAMEN Kurskod: R0009N Kursam: Modeller för iter styrig Tetamesdatum: 2015-03-16 Skrivtid: 4 timmar Tillåta hjälpmedel: Räkare. Rätetabeller bifogas lägst bak i dea teta. Jourhavade
Läs merGenomsnittligt sökdjup i binära sökträd
Iformatiostekologi Tom Smedsaas 10 augusti 016 Geomsittligt sökdjup i biära sökträd Detta papper visar att biära sökträd som byggs upp av slumpmässiga data är bra. Beteckigar och defiitioer Defiitio De
Läs merVid mer än 30 frihetsgrader approximeras t-fördelningen med N(0; 1). Konfidensintervallet blir då
Stat. teori gk, ht 006, JW F7 ENKEL LINJÄR REGRESSION, FORTS. (NCT.5-.7) Statistisk iferes rörade β Vi vet reda att b är e vätevärdesriktig skattig av modellparameter β. Vi vet också att skattige b har
Läs merREGULJÄRA SPRÅK (8p + 6p) 1. DFA och reguljära uttryck (6 p) Problem. För följande NFA över alfabetet {0,1}:
CD58 FOMEA SPÅK, AUTOMATE, OCH BEÄKNINGSTEOI, 5 p JUNI 25 ÖSNINGA EGUJÄA SPÅK (8p + 6p). DFA och reguljära uttryck (6 p) Problem. För följade NFA över alfabetet {,}:, a) kovertera ovaståede till e miimal
Läs merLinköping University Tentamen TEN1 vt 2011 Kurs TMMV09 Johan Hedbrant 2011-05-25
Liköpig Uiversity etame EN vt 0 Joha edbrat 0-05-5 eoridel. I kg helt torr ved fis eligt e valig formel 9. MJ eergi. Om dea mägd ved ligger i fukt lagom läge väger de kg, där hälfte av vikte är fukt. Om
Läs merb 1 och har för olika värden på den reella konstanten a.
Första häftet 649. a) A och B spelar cigarr, vilket som bekat tillgår på följade sätt. Omväxlade placerar de ibördes lika, jämtjocka cigarrer på ett rektagulärt bord, varvid varje y cigarr måste placeras
Läs merFöreläsning 3. 732G04: Surveymetodik
Föreläsig 3 732G04: Surveymetodik Dages föreläsig Obudet slumpmässigt urval (OSU) Populatiosparametrar och stickprovsstatistikor Vätevärdesriktighet Ädliga och oädliga populatioer Medelvärde, adel Kofidesitervall
Läs merParkeringsplatser i Älmhult centrum
Uppdragsr: 14939 1 (3) PM Parkerigs i Älmhult cetrum L:\13\Älmhult\14 939 IKEA mm\-wspuppdrag\3_dokumet\3_pm\pm Parkerig.doc Mall: Allmä - Ståede - 23.dot ver 1. 211-9-13 Uppdragsasvarig: Bo Lidelöf WSP
Läs mer3-fastransformatorn 1
-fastrasformator TRANSFORMATORN (-fas) A B C N φa φb φc rimärsida N E -fastrasformator består i pricip av st -fastrasformatorer som är sammaopplade. Seudärsida N YNy trafo. a b c KOLNGSSÄTT rimärsida a
Läs merKURV- OCH YTAPPROXIMATION MED POLYNOM
KURV- OCH YTAPPROXIMATION MED POLYNOM Magus Bodesso Isiuioe för Daaveeskap 999-02-04, 200-02-0 (red), 2003-02-05 (red) Allmä om kurvapproximaio med polyom Dea papper ersäer framsällige i HB: 35-354, FvD:
Läs merParkerings- och handelsutredning Kristianstad centrum
Parkerigs- och hadelsutredig Kristiastad cetrum Del 1: Parkerigsstrategi, kompletterade iveterig 2011-11-21 Beställare Kristiastad kommu Aders Magusso Joha Gomér Lars Nyström Atkis Simo Radahl, Atkis Eli
Läs merSANNOLIKHETER. Exempel. ( Tärningskast) Vi har sex möjliga utfall 1, 2, 3, 4, 5 och 6. Därför är utfallsrummet Ω = {1, 2, 3, 4, 5,6}.
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE BEGRE OH BETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast med Ω ). Hädelse E delmägd av utfallsrummet.
Läs mer1. BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. n x
BERÄKNING AV GRÄNSVÄRDEN ( då ) MED HJÄLP AV MACLAURINUTVECKLING a) Maclauris formel ( ) f () f () f () f ( ) f () + f () + + + +!!! ( ) f ( c) där R och c är tal som ligger mella och ( + )! Amärkig Eftersom
Läs merFinansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 4 (del 1)
Fiasiell Statistik (GN, 7,5 hp,, HT 008) Föreläsig 4 (del 1) Sampligfördeligar (LLL Kap 8) Departmet of Statistics (Gebreegus Ghilagaber, PhD, Associate Professor) Fiacial Statistics (Basic-level course,
Läs merDatorövning 2 Fördelningar inom säkerhetsanalys
Luds tekiska högskola Matematikcetrum Matematisk statistik STATISTISKA METODER FÖR SÄKERHETSANALYS FMS065 Datorövig 2 Fördeligar iom säkerhetsaalys I dea datorövig ska vi studera ågra grudläggade frå saolikhetsteori:
Läs merVad är det okända som efterfrågas? Vilka data är givna? Vilka är villkoren?
Problemlösig. G. Polya ger i si utmärkta lilla bok How to solve it (Priceto Uiversity press, 946) ett schema att följa vid problemlösig. I de flod av böcker om problemlösig som har följt på Polyas bok
Läs merTRIBECA Finansutveckling
Rådgivare iom fiasiella helhetslösigar a s k r e i v g S f a s k r i e v g S f g g r r e e a r a r e e i i f f TRIBECA Fiasutvecklig Tribeca Fiasutveckligs målsättig är att bidra med råd & produkter som
Läs merBilaga 1 Schematisk skiss
Bilaga 1 Schematisk skiss Kalkylbilaga till PM fördjupig JU140 2010-02-01 Baverket Norrbotiabaa Järvägsutredig 140 Dele läsgräse AC/BD - Piteå Bilaga 12 till PM Fördjupigg JU140 Iehållsförteckig Sida 1
Läs merUppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Uiversitet Matematisa Istitutioe Thomas Erladsso LÄSANVISNINGAR VECKA -5 BINOMIALSATSEN Ett uttryc av forme a + b allas ett biom eftersom det är summa av två moom. För uttrycet (a + b) gäller de
Läs merOrderkvantiteter vid begränsningar av antal order per år
Hadbok materalstyrg - Del D Bestämg av orderkvatteter D 64 Orderkvatteter vd begräsgar av atal order per år Olka så kallade partformgsmetoder aväds som uderlag för beslut rörade val av lämplg orderkvattet
Läs merF19 HYPOTESPRÖVNING (NCT ) Hypotesprövning för en differens mellan två medelvärden
Stat. teori gk, ht 006, JW F19 HPOTESPRÖVNING (NCT 11.1-11.) Hypotesprövig för e differes mella två medelvärde Samma beteckigar som vid kofidesitervall för differes mella två populatiosmedelvärde: Medelvärde
Läs merAv Henrik 01denburg\ Radikaler. För att lösa ekv.: x n = a (n helt, pos. tal) konstruerar man kurvan
Av Herik 01deburg\ Eligt gymasiets kurspla skall av lära om poteser medtagas huvudsaklige vad som är behövligt för viade av e säker isikt i lära om logaritmer. Alla torde vara ese därom, att det är syerlige
Läs merAPPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL
Armi Halilovic: EXTRA ÖVNINGAR Approimatio av erie umma med e delumma APPROXIMATION AV SERIENS SUMMA MED EN DELSUMMA OCH EN INTEGRAL Låt vara e poitiv och avtagade utio ör åda att erie overgerar. Vi a
Läs merSannolikheten. met. A 3 = {2, 4, 6 }, 1 av 11
rmi Halilovic: EXTR ÖVIGR SOLIKHETER GRUDLÄGGDE EGRE OH ETEKIGR Utfall Resultat av ett slumpmässigt försök. Utfallsrummet ägde av alla utfall (beteckas oftast medd Ω ). Hädelse E delmägd av utfallsrumm
Läs merViktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.
Statistisk försöksplaerig Provmomet: Ladokkod: Tetame ges för: Skriftlig tetame 3,0 hp 51SF01 DTEIN14h 4,5 högskolepoäg TetamesKod: Tetamesdatum: 5 ovember 015 Tid: 9.00-13.00 Hjälpmedel: Miiräkare Totalt
Läs merRemiss Remissvar lämnas i kolumnen Tillstyrkes term och Tillstyrkes def(inition) och eventuella synpunkter skrivs i kolumnen Synpunkter.
1(10) Svar lämat av (kommu, ladstig, orgaisatio etc.): Remiss Remissvar lämas i kolume Tillstyrkes term och Tillstyrkes (iitio) och evetuella sypukter skrivs i kolume Sypukter. Begreppe redovisas i Socialstyrelses
Läs merVisst kan man faktorisera x 4 + 1
Visst ka ma faktorisera + 1 Per-Eskil Persso Faktoriserig av polyomuttryck har alltid utgjort e svår del av algebra. Reda i slutet av grudskola möter elever i regel dea omvädig till multiplikatio med hjälp
Läs merDigital signalbehandling Alternativa sätt att se på faltning
Istitutioe för data- oc elektrotekik 2-2- Digital sigalbeadlig Alterativa sätt att se på faltig Faltig ka uppfattas som ett kostigt begrepp me adlar i grude ite om aat ä att utgåede frå e isigal x [],
Läs merIntervallskattning. c 2005 Eric Järpe Högskolan i Halmstad. Antag att vi har ett stickprov x 1,..., x n på X som vi vet är N(µ, σ) men vi vet ej
Itervallskattig c 005 Eric Järpe Högskola i Halmstad Atag att vi har ett stickprov x,..., x på X som vi vet är Nµ, σ me vi vet ej värdet av µ = EX. Då ka vi beräka x, vvr skattig av µ. För att få reda
Läs mer5. Linjer och plan Linjer 48 5 LINJER OCH PLAN
48 5 LINJER OCH PLAN 5. Lijer och pla 5.. Lijer Eempel 5.. Låt L ara e lije i rummet. Atag att P är e pukt på L och att L är parallell med e ektor, lijes riktigsektor. Då gäller att e pukt P ligger på
Läs merIdentfiera orsaker och ge förslag på åtgärder och resultatmått Åtgärdstyp Ska risken åtgärdas genom att orsaken: Bakomliggande orsaker
Risk (möjlighet att e egativ RiskID Beskrivig av risk 4.1 R1 Öskemåle kommer osorterat och geererar måga aalyser - ökad arbetsisats och kostader Ma hittar ite 4.1 R2 produktera i lista 4.2 R3 Svårigheter
Läs merKontrollskrivning 2 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: To Σ p P/F Extra Bonus
Kotrollsrivig till Disret Matemati SF60, för CINTE, vt 09 Eamiator: Armi Halilovic Datum: To 09-04-5 Versio B Resultat: Σ p P/F Etra Bous Iga hjälpmedel tillåta Mist 8 poäg ger godät Godäd KS r medför
Läs merFörslag FÖRSLAG. Riktlinjer
Förslag Riktlijer Övergripade riktlijer för lokaliserig Följade övergripade riktlijer gäller vid prövig av vidkraftsetablerigar. Riktlijera gäller för stora verk, 14-15 meter där gräse edåt är verk med
Läs merAntalet sätt att välja ut r objekt bland n stycken med hänsyn till ordning är np r = n(n 1) (n r + 1).
Harald Lag Formelsamlig och Tabeller i Statistik och Saolikhetsteori (15/11-10) Datareducerig Om x 1,..., x är ett stickprov ur e populatio så defiieras medelvärdet x x = 1 k=1 x k och stadardavvikelse
Läs merb) Bestäm det genomsnittliga antalet testade enheter, E (X), samt även D (X). (5 p)
Avd Matematisk statistik TENTAMEN I SF922, SF923 och SF924 SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 29:E MAJ 208 KL 0800 300 Examiator för SF922/SF923: Tatjaa Pavleko, 08-790 84 66 Examiator för SF924:
Läs merTentamen i Elektronik, ESS010, del 2 den 14 dec 2009 klockan 14:00 19:00.
Tekiska Högskola i Lud Istitutioe för Elektroveteskap Tetame i Elektroik, ESS010, del 2 de 14 dec 2009 klocka 14:00 19:00. Uppgiftera i tetame ger totalt 60p. Uppgiftera är ite ordade på ågot speciellt
Läs merE ( X ) = (här ska ni skriva en viss bokstav! Vilken? Varför)
STOCKHOLMS UNIVERSITET HT 2005 Statistiska istitutioe 2005-09-9 MC Istruktioer till DATORÖVNING Fortsättigskurs i statistik, momet, Statistisk Teori, 0 poäg. Saolikhetsteori - Cetrala gräsvärdessatse.
Läs mer2. Konfidensintervall för skillnaden mellan två proportioner.
Föreläsig 12 LV1, Torsdag 12/10 Upplägg 1. Kofidesitervall för proportioer. 2. Kofidesitervall för skillade mella två proportioer. 3. Grafteori Kofidesitervall för proportioer Atag att vi vill skatta adele
Läs merFråga: Erbjuder ni någon utbildning för förskrivare och apotekspersonal för att kunna använda webbapplikationerna på ett effektivt sätt?
FAQ för det ya licessystemet KLAS Fråga: Hur skickar jag som förskrivare i mi licesmotiverig i KLAS? Svar: Läk fis på lv.se/lices uder Skapa licesmotiverig. Fråga: Varför ska jag som förskrivare skicka
Läs merMarkanvisningsavtal för och försäljning av fastigheten Gesällen 25
TJÄNSTSKRIVLS Hadläggare atum Äredebeteckig Johaa Kidqvist -05- KS /05 50 Kommufullmäktige Markavisigsavtal för och försäljig av fastighete Gesälle 5 Förslag till beslut Kommufullmäktige godkäer förslag
Läs merFamilje- juridik Här är dina rättigheter. Bostad& fastighet. Sambo eller gift? Sambo eller gift? Privata Affärers serie om. Del 3
Äkteskap& samboförhållade Huvudregel eligt sambolage är att bostad och bohag, som skaffats för Är i ekoomiskt jämställda, det vill säga har ugefär lika stora skulder eller tillgågar, har det kaske ite
Läs merNy lagstiftning från 1 januari 2011
Ny lagstiftig frå 1 jauari 2011 1. Ny lag lage om allmäyttiga kommuala bostadsaktiebolag 2. Förädrigar i hyreslage De ya lagstiftige - Bakgrud Klicka här för att ädra format på uderrubrik i bakgrude q
Läs merNEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Läs merFöreläsning 10: Kombinatorik
DD2458, Problemlösig och programmerig uder press Föreläsig 10: Kombiatorik Datum: 2009-11-18 Skribeter: Cecilia Roes, A-Soe Lidblom, Ollata Cuba Gylleste Föreläsare: Fredrik Niemelä 1 Delmägder E delmägd
Läs mer