LINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER

Storlek: px
Starta visningen från sidan:

Download "LINJÄRA AVBILDNINGAR AV PUNKTER OCH PUNKTMÄNGDER"

Transkript

1 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder LINJÄ VBILDNING V PUNKE OCH PUNKMÄNGDE vildig v e puk Vi hr defiier lijär vildigr ell vå vekorru Vi k forell erk puker so orsvekorer och däred erk vildigr ell puker i giv vekorru Lå : vr e lijär vildig vrs ris i sdrdse är Lå P {eller P } vr e puk i illhörde orsvekor p OP hr s koordier so puke P Bilde v puke P vid vildige defiierr vi so ilde v pukes orvekor OP p ros "puk" och "vekor" är vå olik egrepp eräkr vi forell ilde v e puk på s sä so ilde v illhörde orsvekor OP Därför eeckr vi ilde v P so LP llså o Q är ilde v puke P Q L P då är v 8

2 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder Eepel Lå : vr e lijär vildig ed rise Lå Besä ilde v puke P vid de vildig p P L Svr: P L eller P L - vildig v e pukägd Defiiio Lå : vr e lijär vildig och lå M vr e pukägd i Bilde v M eeckr vi M och defiierr på e urlig sä so ägde i vrs elee är ilder v ll puker i M dvs } : { M P P M Eepel Lå : vr de lijär vildig vrs vildigsris är Besä ilde v pukägde M då } { M dvs M esår v vå puker och } { M dvs M esår v oädlig åg puker c } och { M dvs M esår v oädlig åg puker Förs esäer vi ilder v esk puker: 7 v 8

3 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder 7 Däred är M { } dvs e ägd ed vå elee För vrje hr vi e puk so ligger i M Vi eräkr Däred M { } de är e rä lije c För vrje i iervlle hr vi e puk so ligger i M Vi eräkr Däred M { och } De är e sräck e del v rä lije vrs ädpuker är och 7 Svr: M { } M { } c M { och } OVNING Uppgif Lå : vr de lijär vildig vrs vildigsris är Besä ilder v puker: O B C och D Beeck ilder ed O B och C Då gäller: O eller O eller v 8

4 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder B eller B C eller C - Uppgif E vikig egeskp för e lijär vildig Lå : vr e lijär vildig Vis e rä lije i lije eller e puk i vilds på e rä Noer ekvioe v eskriver ige e rä lije o v eller e puk o v Lå u v vr e rä lije i Då gäller v v Då hr vi vå öjlig fll: i O v då ildr puker v e lije i ed rikigsvekor v ii O v då är v dvs e puk i ärkig : På s sä visr vi ilde v e sräck so ges v v är { v } so är i e sräck i o v eller ii e puk i o v ärkig : Kosekves v ovsåede E sä vild e åghörig är vild hörpuker och därefer dr sräckor ell de Uppgif Lå : vr de lijär vildig vrs vildigsris är Besä ilde v de lije vrs ekvio är Vi skriver lijes ekvio på preerfor geo välj Däred är { } lije på preerfor so gör v 8

5 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder Meod Vi esäer ilde v lije geo direk väd vildiges ris på lijes puker: där llså är lije } { ilde v de lije vrs ekvio är Vi k också ge lijes ekvio på fore k : Frå och hr vi förs / och därefer / Svr: eller Uppgif Lå : vr de lijär vildig vrs vildigsris är Besä ilde v de lije vrs ekvio på preer for är Lösig Lå L eeck lije } { } { } { L 8 8 De här gåge vilds giv lije på e puk Svr: L 8 5 v 8

6 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder Uppgif 5 ee 7 rs Lå : vr de lijär vildig so hr sdrdsris Lå L vr lije so ges v Vis vildr lije L på e lije L Hi e lije L så L är e puk ge ekvio för L Jäför ed ovsåede uppgif Lå u L { v } vr e rä lije i och : e lijär vildig Då gäller L { v} { v} För L hr vi vå öjlig fll: i O v då är { v } e lije i so går geo och hr rikigsvekor v ii O v då är v} { } dvs e puk i { Förs skriver vi lijes ekvio på preer for Vi väljer och eräkr Däred ges L v följde ekvio / llså är L { } / / L { } { } / / / / { } / / { } / / { } llså är L { } so är e rä lije i ed rikigsvekor v 8

7 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder E lije v vilds på e puk o och eds o rikigsvekor v uppfller v dvs o v Beeck de sök rikigsvekor v Vi löser ekvioe och väljer e lösig Vi väljer e lösig e och däred v Med de rikigs vekor vilds lije L' so ges v på e puk för vrje vl v Vi väljer e och får lijes ekv på preerfor: O vi eliierr då hr vi Svr: är e lije so vilds på e puk ärkig: Vrje lije v p C vilds också på e puk Uppgif Lå : vr de lijär vildig so hr sdrdsris Besä ilde v rigel vrs hör är i P P P där P P P i grfe v rigels ild Svr: Beeck ed Q Q och Q ilder v P P P Då är Q Q 8 Q Grfe: 7 v 8

8 ri Hlilovic: EX ÖVNING Lijär vildigr v pukägder Uppgif 7 Lå : vr de lijär vildig so hr sdrdsris Besä ilde v kvdre vrs hör är i P P P P där P P P och P i grfe v kvdres ild Svr: Beeck ed Q Q Q och Q ilder v P P P och P Då är Q 5 Q Q 77 och Q -85 Grfe: 8 v 8

NOLLRUMMET och BILDRUMMET till en linjäravbildning. MATRISENS RANG. DIMENSIONSSATSEN.

NOLLRUMMET och BILDRUMMET till en linjäravbildning. MATRISENS RANG. DIMENSIONSSATSEN. Ari Hliloic: EXTRA ÖVNINGAR NOLLRUMMET och BILDRUMMET ill e lijärildig. MATRISENS RANG. DIMENSIONSSATSEN. NOLLRUM (Kerel (kär i kuroke Defiiio. Lå T r e lijär ildig frå R ill R. Mägde ll ekorer i R o ild

Läs mer

1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 10. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekviosssem. Gusselimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekviosssem med oek m m m m ss) och m ekvioer: E lföljd -ippel) s s s är e lösig ill

Läs mer

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd:

1 av 12. (sys1) ELEMENTERA OPERATIONER Vi får göra följande elementära operationer med ekvationer utan att ändra systemets lösningsmängd: Armi Hlilovic: EXTRA ÖVNINGAR v Lijär ekvioem Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

Approximationen med den här metoden kallas minstakvadratmetoden.

Approximationen med den här metoden kallas minstakvadratmetoden. Ari Hlilovic: EXTRA ÖVNINGAR MINSTAKVADRATMETODEN Mistvdrtetode. INLEDNING frå lijär lger) Låt vr ett olösrt sste dvs. ett sste so sr lösig). Vi sriv ssteet på fore A = ss ) där...... A, och................

Läs mer

(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd.

(sys1) Definition1. Mängden av alla lösningar till ett ekvationssystem kallas systemets lösningsmängd. Armi Hlilovic: EXTRA ÖVNINGAR Lijär ekvioem. Guelimiio LINJÄRA EKVATIONSSYSTEM GAUSSELIMINATION Vi erkr e lijär ekvioem med oek m m m m () och m ekvioer: E lföljd (-ippel) är e löig ill eme om uiuioe ifierr

Läs mer

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie. Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.

Läs mer

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Armi Hlilovic: ETRA ÖVNINGAR, SF676 Sysem v lijär DE Sid v 6 SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Iehåll: Mrisorm Begyelsevärdesprobleme Eises- och eydighessse ör lijär sysem

Läs mer

KOORDINATVEKTORER. BASBYTESMATRIS

KOORDINATVEKTORER. BASBYTESMATRIS Armin Hlilovic: EXTRA ÖVNINGAR KOORDINATVEKTORER ASYTESMATRIS yemri Koordiner för en vekor i en given Om (vv vv vv nn ) är en för vekorrumme ( eller underrumme) V då gäller följnde: Vrje vekor i rumme

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =.

Sida 1 av 12. vara ett inkonsistent system (= olösbart system dvs. ett system som saknar lösning). b =. Sida av MINSAKVADRAMEODEN Låt a a a a a a a a a vara ett ikosistet sste ( olösart sste dvs. ett sste so sakar lösig). Vi ka skriva ssteet på fore A (ss ) där a a... a a a... a A, och............. a p a

Läs mer

helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god

helst. poäng. (betyg Fx). Vem som Komplettering sker c:a Uppgift Uppgift Uppgift veta hur vänd! Var god Teme i TEN, HF, Memisk sisik Dum -8-7 Kurskod HF Skrivid: 5-75 Lärre: Armi Hlilovi Hjälmedel: Bifog formelhäfe (" Formler oh beller i sisik ") oh miiräkre v vilke y som hels De är INTE TILLÅTET väd miilo,

Läs mer

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x) Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi

Läs mer

16.3. Projektion och Spegling

16.3. Projektion och Spegling 6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.

Läs mer

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15

Tentamen 1 i Matematik 1, HF sep 2016, kl. 8:15-12:15 Tenmen i Memik, HF9 sep 6, kl. 8:-: Eminor: rmin Hlilovic Undervisnde lärre: Erik Melnder, Jons Senholm, Elis Sid För godkän beg krävs v m poäng. egsgränser: För beg,,, D, E krävs, 9, 6, respekive poäng.

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är H009, Inrodukionskurs i memik Armin Hlilovi NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definiion. En irkel är mängden v de punker i plne vrs vsånd ill en given punk är

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system. Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, betecknar temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmeledigsekvaioe VÄRMEEDNINGSEKVAIONEN Vi berakar följade PDE u x u x k (, ) (, ), < x (ekv), där k> är e kosa Ekvaioe (ekv) ka bl aa beskriva värmeledige i e u sav

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER

HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER HOMOGENA DIFFERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEFFICIENTER Vi brr sysm v lijär omog DE (v förs ordig) md os offiir dx x x d dx x x d dx x x d där x ), x ( ),, x ( ) är ob fuior v vribl ( Ovsåd sysm

Läs mer

TILLÄMPNINGAR AV DIAGONALISERING Beräkning av potenser A n. Rekursiva samband (s.k. differensekvationer).

TILLÄMPNINGAR AV DIAGONALISERING Beräkning av potenser A n. Rekursiva samband (s.k. differensekvationer). rmi Hlilovic: ETR ÖVNINGR Tillämpigr v digoliserig TILLÄMPNINGR V DIGONLISERING Beräig v poteser. Reursiv smbd s.. differesevtioer. Beräig v poteser med hjälp v digoliserig Om mtrise är digoliserbr dvs

Läs mer

INTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM )

INTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM ) Armi Hlilovic: EXTA ÖVIGA Cuchys itegrlriterium ITEGALKITEIET ( äve lls CAUCHYS ITEGALKITEIUM ) POSITIVA SEIE Defiitio E serie är ositiv om 0 för ll Eftersom delsummor v e ositiv serie bildr e väde ositiv

Läs mer

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral ri Hlilovic: EX ÖVNING Mss och tgdput ILLÄMPNING V INEGLE. MSSN OCH YNGDPUN MSSN Huvud etod för eräig v ss för e v e ropp ed desitete, är trippelitegrl, dd so hör till urse i flervriells. Me, ågr el prole

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmi Hliloic: EXR ÖVNINGR Lijär bildigr LINJÄR VBILDNINGR INLEDNING: Fktioer bildigr Beteckigr och grdbegrepp Defiitio E fktio eller bildig frå e mägd till e mägd B är e regel som till ågr elemet i ordr

Läs mer

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER rmi Hliloic: EXTR ÖVNINGR EGENVÄRDEN och EGENVEKTORER Defiitio. Egeektor och egeärde för e lijär bildig Låt V r ett ektorrum och T : V V e lijär bildig frå V till V. Om det fis e ollskild ektor och e sklär

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260 FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik F7 eflektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: eflektio och rytig rytig

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

KONTROLLSKRIVNING. Matematik I för basåret. och Jonas Stenholm

KONTROLLSKRIVNING. Matematik I för basåret. och Jonas Stenholm KONTROLLSKRIVNING Kursnuer: Moen: Progr: Rände lärre: Einor: Du: Tid: Hjälpedel: Oning oc beygsgränser: HF00 Meik I ör bsåre KS Teknisk bsår Håkn Sröberg, Mrin Arkelyn oc Jons Senol Nicls Hjel 0-- 8. 0.00

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Kontrollskrivning (KS1) 16 sep 2019

Kontrollskrivning (KS1) 16 sep 2019 Kotrollskrivig (KS) sep 9 Tid: 8:- Kurs: HF Lijär algebra och aals (algebradele) Lärare: Maria Shaou, Ari Halilovic För godkät krävs poäg (av a 9p) Godkäd KS ger bous eligt kurs-pm Fullstädiga lösigar

Läs mer

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden.

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden. Armi Hlilovic: EXRA ÖVNINGAR ylors ormelör evribeluktioer AYLORS FOREL FÖR FUNKIONER AV EN VARIABEL ylors ormel väds bl vid i umerisk beräkigr ii optimerig och iii härledigr iom olik tekisk och mtemtisk

Läs mer

Lektionssammanfattning Syra-Bas-Jämvikter

Lektionssammanfattning Syra-Bas-Jämvikter Lektiossmmfttig SyrBsJämvikter Det fis ytterligre e typ v jämvikter som vi sk t upp i vi käer oss öjd. Nämlige Syrsjämvikter. De type v jämvikter väds huvudsklige för svg syror oh ser. Ett exempel på e

Läs mer

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260 FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik F7 elektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: elektio och rytig rytig

Läs mer

Armin Halilovic: EXTRA ÖVNINGAR MASSCENTRUM. vara punkter med motsvarande massor m. . Om O betecknar origo och T masscentrum då gäller

Armin Halilovic: EXTRA ÖVNINGAR MASSCENTRUM. vara punkter med motsvarande massor m. . Om O betecknar origo och T masscentrum då gäller ri Halilovic: EXTR ÖVNINGR Masscetru MSSCENTRUM Låt P, P,, P vara pukter ed otsvarade assor,,, O O beteckar origo och T asscetru då gäller ( OP OP OP OT = + + + ) (*) där = + + + ärkig: Uttrcket ( OP OP

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 9. Förklaring till dragkraftens storlek är: f

LEDNINGAR TILL PROBLEM I KAPITEL 9. Förklaring till dragkraftens storlek är: f LEDNINGAR TILL PROBLE I KAPITEL 9 LP 9. N S S S Vi sk bestä stockens frt so funktion v tiden och frilägger den därför. Den påverks v tyngdkrften, norlkrften N, friktionskrften f st drgkrften S från otorn.

Läs mer

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11

Räta linjer: RÄTA. Därför PM. Eftersom. x y z. (ekv1) Sida 1 av 11 RÄTA LINJER OCH PLAN Rä linje: Lå L den ä linjen genom punkenn P om ä pllell med ekon 0. Lå M= enn godcklig punk på linjen L. Punkenn M ligge på linjen L om och end om PM ä pllell med ikningekonn. Däfö

Läs mer

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer:

KURVOR OCH PÅ PARAMETER FORM KURVOR I R 3. En kurva i R 3 beskrivs anges oftast på parameter form med tre skalära ekvationer: Amin Hlilovic: EXTRA ÖVNINGAR Kuvo på pmeefom KURVOR OCH PÅ PARAMETER FORM KURVOR I R En kuv i R beskivs nges ofs på pmee fom med e sklä ekvione: x = f, y = f, z = f, D R * Fö vje få vi en punk på kuvn

Läs mer

Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:

Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid: TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8

Läs mer

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et.

1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. Styrels e möte 7mars 2010 Bila gor: 1. D ago r d ning 2. N är va r o lis t a 1. M öt et s öp pn an d e S ve n fö r k la r a r mö t et ö p p nat k lo c k a n 13. 5 0 i me d le ms k o nt o r et. 2. F o rma

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

Uppgift 3. (1p) Beräkna volymen av pyramiden vars hörn är A=(2,2,2), B=(2,3,4), C=(3,3,3) och D=(3,4,9).

Uppgift 3. (1p) Beräkna volymen av pyramiden vars hörn är A=(2,2,2), B=(2,3,4), C=(3,3,3) och D=(3,4,9). Kotrollskriig 9 sep 06 VERSION B Tid: 8:5-000 Kurser: HF008 Aalys och lijär algebra (algebradele HF006 Lijär algebra och aalys (algebradele Lärare: Ari Haliloic, Maria Arakelya, Fredrik Berghol Exaiator:

Läs mer

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process. Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk

Läs mer

CAMPUS. Campus. Duettgatan Klasmossen. Forest Hill. Universitetet. Klarinettgatan. Ö Gustavsbergsvägen. Kaprifolgatan Mor Märtas väg CENTRUM

CAMPUS. Campus. Duettgatan Klasmossen. Forest Hill. Universitetet. Klarinettgatan. Ö Gustavsbergsvägen. Kaprifolgatan Mor Märtas väg CENTRUM SKUTBERGET n ata gg n ne tio nin ott ta ss or St sto en n ta a rge a K To t yrk rg og et a dr Sö sid Re äs xn n ta ns tte Jä g vä na en h Lå ags byt gla ga es nd tan pu nk Ra sga mg tan t Ka ata rls n

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

1 Armin Halilovic: EXTRA ÖVNINGAR

1 Armin Halilovic: EXTRA ÖVNINGAR Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmi Hlilovi: EXR ÖVNINGR v Ivers mtriser KVDRISK MRISER, DIGONLMRISER, MRISENS SPÅR, RINGULÄR MRISER, ENHESMRISER, INVERS MRISER KVDRISK MRISER Defiitio E mtris me rer oh oloer, lls vrtis typ Defiitio

Läs mer

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd.

H1009, Introduktionskurs i matematik Armin Halilovic. Definition. Mängden av alla lösningar till en ekvation kallas ekvationens lösningsmängd. H009, Introuktionskurs i mtemtik Armin Hlilovi LINJÄRA OCH ANDRAGRADSEKVATIONER Inlening: Definition. Mängen v ll lösningr till en ekvtion klls ekvtionens lösningsmäng. Eemelvis är {-, } lösningsmängen

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi Itegrler Frå le: Itegrler Beräkigsveteskp I/KF Trpetsformel oc Simpsos formel Itegrler Itegrler Frå le: Frå le: Adptiv metod (dptiv Simpso) Lösig v itegrl i Mtl: är itegrde är kotiuerlig fuktio: väd itegrl.

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Mekaniska vibrationer. Hjulupphängning. Fria odämpade svängningar. Svängningstiden för pendelrörelsen. Approximationen sin

Mekaniska vibrationer. Hjulupphängning. Fria odämpade svängningar. Svängningstiden för pendelrörelsen. Approximationen sin --9 Meaisa vibraioer Hjulupphäi ria oäpae sväiar Sväisie för peelrörelse 9 7 S e ( S) r ( ) P; e r e 7 9 De aeaisa peel (parielpeel) ( ) (...) 7 Approxiaioe si Rörelseevaioe.99.9.97 si.9.9.9 P ; si, (

Läs mer

11.7 Kortversion av Kapitel INTEGRALBEGREPPET

11.7 Kortversion av Kapitel INTEGRALBEGREPPET 498 11. INTEGRALBEGREPPET Defiitio 11.16 R är e obestämd itegrl. De beteckr e primitiv fuktio till f(x). Vi smmfttr skillder mell bestämd och obestämd itegrler: Obestämd itegrl: itegrle skr gräser. De

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor

Modell-anpassning: Minstakvadrat-polynom Polynom: interpolation Kurvor: styckevis polynom, Hermite, spline Bézier-kurvor F4 Modell-anpassnng: Mnsavadra-polno olno: nerpolaon Kurvor: scevs polno, Here, splne Bézer-urvor 0-08-06 DN40 nu3 HT Eepel: Mnsavadraeoden V Mnsavadra-approaon ed polno f, [0,] 0.4 f s poler lgger vd

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t))

KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3. P(t)=(x(t),y(t),z(t)) T=(x (t),y (t),z (t)) r(t)=(x(t),y(t),z(t)) Kurvor på parameerform KURVOR OCH PÅ PARAMETERFORM KURVOR I R 3 P=xyz T=x y z r=xyz En kurva i R 3 anges ofas på parameerform med re skalära ekvaioner: x = f 1, y = f, z = f 3, D R * För varje får vi en

Läs mer

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN)

ICKE-HOMOGENA DIFFERENTIALEKVATIONSSYSTEM ( MED KONSTANTA KOEFFICIENTER I HOMOGENA DELEN) Armi Hlilovi: ETRA ÖVNINGAR, S676 Ik-omog sysm Mrismod Sid v 0 ICKE-HOMOGENA DIERENTIALEKVATIONSSYSTEM MED KONSTANTA KOEICIENTER I HOMOGENA DELEN Vi brkr sysm v lijär ik-omog DE v örs ordig md kos koiir

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl

Tentamen 1 i Matematik 1, HF1903, Fredag 14 september 2012, kl TEN HF9 Tetame i Matematik, HF9, Fredag september, kl. 8.. Udervisade lärare: Fredrik ergholm, Elias Said, Joas Steholm Eamiator: rmi Halilovic Hjälpmedel: Edast utdelat formelblad miiräkare är ite tillåte

Läs mer

Kompletterande material till kursen Matematisk analys 3

Kompletterande material till kursen Matematisk analys 3 Kompletterde mteril till kurse Mtemtisk lys 3 Augusti 2011 Adrzej Szulki 1 Supremum, ifimum och kotiuerlig fuktioer I ppedix A3 i [PB2] defiiers begreppe supremum och ifimum. mooto tlföljder är ekvivlet

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR, SF676 Differentialekvationer Inledning DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera

Läs mer

Något om funktionsföljder/funktionsserier

Något om funktionsföljder/funktionsserier mtemtis metoder E, del D, FF Något om futiosföljder/futiosserier. Putvis och liformig overges Vi etrtr reellvärd futioer med gemesm defiitiosmägd D IR, M D. Me (äst) llt går helt logt för omplevärd futioer

Läs mer

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN

LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN Armi Halilovic: EXTRA ÖVNINGAR, SF7 LINJÄRA DIFFERENTIALEKVATIONER AV HÖGRE ORDNINGEN INLEDNING LINJÄRA DIFFERENTIAL EKVATIONER E DE är lijär om de är lijär med avseede å de obekata fuktioe oc dess derivator

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Matematisk statistik

Matematisk statistik Teme TEN, HF, -5-4 Memis sisi Kusod HF Sivid: 8:5-:5 Läe: Ami Hlilovic Hjälmedel: Bifog fomelhäfe "Fomle och belle i sisi " och miiäe v vile som hels Siv m och esoumme å vje bld De emesl få ej behålls

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de.

081129 Akt 2, Scen 7: Utomhus & Den första förtroendeduetten. w w w w. œ œ œ. œ œ. Man fick ny - pa sig i ar-men. Trod-de att man dröm-de. 1 esper H2 c oco Rec. 081129 Akt 2, Sce 7: Utomhus De örsta örtroededuette 207 ao c c p Vil -ke mid - dag! Vil -ket ö - ver-dåd. Ó Ma ick y - pa sig i ar-me. Trod-de att ma dröm-de. 5 isk - pi -ar och

Läs mer

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t.

Ekvationen (ekv1) kan bl. annat beskriva värmeledningen i en tunn stav där u( x, temperaturen i punkten x vid tiden t. Armi Halilovi: EXRA ÖVNINGAR Värmldigsvaio VÄRMEEDNINGSEKVAIONEN Vi braar öljad PDE u u v där > är osa Evaio v a bl aa bsriva värmldig i u sav där u bar mpraur i pu vid id därör am värmldigsvaio Radvärdsproblm

Läs mer

Begreppet rörelsemängd (eng. momentum)

Begreppet rörelsemängd (eng. momentum) Begreppe rörelsemägd (eg. momeum) Två fra parklar med massora m och m och hasgheera v och v påverkar varadra de skuggade område. Efer a ha påverka varadra har de hasgheera v och v. Hasghesförädrge Dv och

Läs mer

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y

Svar: a) i) Typ: linjär DE med konstanta koefficienter i homogena delen dy men också separabel ( y = 10 4y Diffrnilkvionr, lndd ml DIFFERENTIALEKVATIONER, BLANDADE EXEMPEL Ugif i Bsäm y [srl DE, linjr DE, homogn konsn llr ickkonsn kofficinr ] för ndnsånd diffrnilkvionr ii Bsäm dn llmänn lösningn ill vrj DE

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Fiskars avdelning pä Finlands Mässas 50-àrs jubileumsmässa.

Fiskars avdelning pä Finlands Mässas 50-àrs jubileumsmässa. Fiskars avdelning pä Finlands Mässas 50-àrs jubileumsmässa. O Y F IS K A R S A B Verksamhetsberättelse för 1969, bolagets 86 verksamhetsär. E x t e m f ö r s ä l j n i n g o c h e x p o r t ( 1 0 0 0 m

Läs mer

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1

( ik MATRISER ELEMENTÄRA RÄKNEOPERATIONER. Definition 1. Inom matematiken är en matris ett rektangulärt schema... a1 Hllov: EXR ÖVNINGR Mtse Eleetä äeoetoe MRISER ELEMENÄR RÄKNEOPERIONER Defto Io tete ä e ts ett etgulät she v eell elle ole tl E ts ed de oh oloe sägs h te so v sve då t( M sve oft ( elle ote ( let ä lltså

Läs mer

definitioner och begrepp

definitioner och begrepp 0 Cecili Kilhmn & Jokim Mgnusson Rtionell tl Övningshäfte Avsnitt definitioner och egrepp DEFINITION: Ett rtionellt tl är ett tl som kn skrivs som en kvot melln två heltl och där 0. Mängden rtionell tl

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel

= BERÄKNING AV GRÄNSVÄRDEN ( då x 0 ) MED HJÄLP AV MACLAURINUTVECKLING. a) Maclaurins formel Tillampigar av Taylor- och Maclauriuvcklig ERÄKNING AV GRÄNSVÄRDEN då MED HJÄLP AV MACLAURINUTVECKLING a Maclauris forml f f f f f f L R!!! f c där R och c är al som liggr mlla och! Amärkig Efrsom c liggr

Läs mer

Älvåker Strandhagagatan Skogaholm Högforsgatan

Älvåker Strandhagagatan Skogaholm Högforsgatan e äg sv all Re v ce t r Ila um d a Sk IP år ek yrk a öp ak d e äg sv te äg et åk Älv Älvåker Stradhagagata Skogaholm Högforsgata MJÖLNARTORPET ar öl Mj rp et te ite t Olas väg g. ett ri Kla a at ttg Fa

Läs mer

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl

Tentamen 1 i Matematik 1, HF1903 onsdag 7 januari 2015, kl Tenamen i Maemaik, HF9 onsdag 7 januai, kl.. Hjälpmedel: Endas fomelblad miniäknae ä ine illåen) Fö godkän kävs poäng av möjliga poäng begsskala ä,,,d,e,f,f). Den som uppnå 9 poäng få bege F och ha ä a

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Mening med ditt liv G/H. o n G/H

Mening med ditt liv G/H. o n G/H =132 J f s s Meg ed d v /H s s s Kr-ur Svesso 1.De vr e gåg e - e po so yc-e v - e vr för 2.To-år - e gc så sbb för-b, h ev - de v - e så - so h / s s ss s s s s J J f b J f J p o o o J p o o o b s s s

Läs mer

Tentamen med lösningar i IE1304 Reglerteknik Måndag 16/

Tentamen med lösningar i IE1304 Reglerteknik Måndag 16/ Tetme me löigr i IE4 Reglertei Måg 6/ 9.-. Allmä iformtio Emitor: Willim Sqvit. Avrig lärre: Willim Sqvit, tel 8-79 4487 Cmpu Kit, Tetmeuppgifter behöver ite återläm är u lämr i i rivig. Hjälpmeel: Räre/rfräre.

Läs mer

Lösning till TENTAMEN070104

Lösning till TENTAMEN070104 ösning ill TENTMEN0700 KURSNMN Meknik och hållfsheslär el eknik PROGRM: nn Sjöingenjörsprogre åk / läsperio //jnuriperioen KURSETEKNING N80 006 EXMINTOR Ms Jrlros TI FÖR TENTMEN 0705 08.0.0 HJÄPMEE NSV

Läs mer

Sjung och läs nu Bacchi böner (sång nr 57)

Sjung och läs nu Bacchi böner (sång nr 57) Sung läs nu Bacchi öner (sång nr 57) ext musik: Carl Michael Bellman Arr: Eva oller 009 Soprano 1 Soprano. Alto 1 Alto enor 1.Sung läs nu 1.Sung läs nu 1.Sung läs nu Bac - chi ö - ner, Bac - chi Bac -

Läs mer

FAFF Johan Mauritsson 1. Geometrisk optik - reflektion och brytning. Våglära och optik. Geometrisk optik - reflektion och brytning

FAFF Johan Mauritsson 1. Geometrisk optik - reflektion och brytning. Våglära och optik. Geometrisk optik - reflektion och brytning Våglär och optik Geometrisk optik - relektio och rytig FFF30 JOHN MUITSSON Geometrisk optik system Geometrisk optik - relektio och rytig elektioslge rytigslge (Sell s lg) Totlrelektio 3 4 Ljusets utredig

Läs mer

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260

Geometrisk optik. Optiska system F9 Optiska instrument. Brytningsindex. avbildning med linser. Begrepp inom geometrisk optik. Brytningslagen FAF260 FF60 Geometrisk optik vildig med liser och speglr Geometrisk optik eflektio och rytig F8 vildig, liser och speglr system F9 istrumet Geometrisk optik vildig med liser epetitio: eflektio och rytig rytig

Läs mer

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN

SPEL OM PENGAR FÖR - EN FRÅGA FÖR SKOLAN? VERKTYG, ÖVNINGAR OCH KUNSKAPSBANK FÖR ARBETE MED SPEL OM PENGAR I SKOLAN Övningr och verktyg för år 7-9 och gymnsiet SPEL OM PENGAR - EN FRÅGA FÖR SKOLAN? ANPASSAT FÖR BLAND ANNAT SVENSKA, SPEL I KONSTHISTORIEN BILD, MATEMATIK OCH SAMHÄLLSKUNSKAP IILLEGALT SPEL VERKTYG, ÖVNINGAR

Läs mer