Något om funktionsföljder/funktionsserier

Storlek: px
Starta visningen från sidan:

Download "Något om funktionsföljder/funktionsserier"

Transkript

1 mtemtis metoder E, del D, FF Något om futiosföljder/futiosserier. Putvis och liformig overges Vi etrtr reellvärd futioer med gemesm defiitiosmägd D IR, M D. Me (äst) llt går helt logt för omplevärd futioer (v e omple vriel). DEF Vi säger: FUNKTIONSFÖLJDEN PÅ M, och sriver f f f KONVERGERAR PUNKTVIS MOT f lim f f för ll putvis på M, om ( ) ( ) f..5 M. f lls gräsfutioe till ( ) EX f ( ), M [, ] : för gäller lim och för < gäller lim.5, lltså overgerr putvis på, då < [,] mot f ( )., då Futiosföljde f () + EX f ( ), M IR : ( ) f ±, f ( ), för < : f ( ) och för > : f ( ), då < f ( ), då :, då >, +, lltså overgerr f putvis mot

2 mtemtis metoder E, del D, FF Fråg är u, vil egesper (otiuerlig, deriverr, itegrerr..) överförs frå f till gräsfutioe f, mer precist: gäller lim lim f ( ) lim( lim f ( )), lim f ( ) ( lim f ( )) och lim f ( ) d lim f ( ) d, dvs: får m yt "ordige v gräsvärde "? Svret är ej, som eemple ov visr. Det rävs ågot mer ä "overges i vrje put": f overgerr putvis mot f på M, om det till vrje > och till vrje M fis ett N (, ) (N eror på och!), så tt f ( ) f ( ) < för ll > N (, ). Det som rävs för tt svret sll vr j, är tt m till vrje > hitt ett N () som duger för ll M : DEF Vi säger: f KONVERGERAR LIKFORMIGT MOT f PÅ M, och sriver f f liformigt på M, om det till vrje > fis ett N ( ) så tt för ll M och > N ( ) gäller tt f ( ) f ( ) <. ANM ) Liformig (eg: uiform) overges är strre ä putvis (eg: poitwise) overges: f f liformigt på M f f putvis på M, me omvädige är fel, som vår eempel och följde sts visr. ) Vi säger: f är putvis, resp liformigt, overget på M, om det fis e futio f så tt f overgerr putvis, resp liformigt, mot f på M. Då vi u vis tt liheter ov gäller för liformigt overget futiosföljder : SATS Föruts: f f liformigt på [,] och ll f är otiuerlig på [,]. Påst: ) f är otiuerlig på [,]. ) lim f ( ) d f ( ) d. Bev: ) Vi sll vis tt till [,] och godt. > fis δ så tt f ( ) f ( ) < för ll [,] med < δ : Eftersom f overgerr liformigt mot f på [,], så fis ett N så tt för ll [,] och >N gäller : f ( ) f ( ) < 3 ; för t.e. N + gäller (eftersom f är otiuerlig) tt det fis ett δ så tt f ( ) f ( ) < för < δ och då gäller för 3 dess : f ( ) f ( ) f ( ) f ( ) + f ( ) f ( ) + f ( ) f ( ) f ( ) f ( ) + f ( ) f ( ) + f ( ) f ( ) + +. vsv 3 3 3

3 mtemtis metoder E, del D, FF 3 ) Vi sll vis tt till godt. > fis N så tt för > N gäller: f ( ) d f ( ) d < : Eftersom f overgerr liformigt mot f på [,], så fis ett N så tt för ll [,] och >N gäller : f ( ) f ( ) < ; me då gäller för > N : ( ) ( ) ( ( ) ( )) ( ) ( ) f d f d f f d f d f d d. vsv SATS Föruts: f C ((, ) ), ( f ( )) är overget för ågot ( ) f overgerr liformigt mot g i (,) och,. Påst: f overgerr liformigt mot e C -futio f i (,) och f g, lim f ( ) lim f ( ) för ll,. dvs: ( ) ( ) ( ) Bev: g är otiuerlig (sts) i (,); sätt f ( ) lim f ( ) f ( ) f ( ) + g( t ) dt. Futioe f är C med f g ( ) och för (, ) i,. Kvr tt vis: f overgerr liformigt mot f i (,): Eftersom f overgerr liformigt mot g i (,) så fis till godt. > ett N så tt för ll ( ) t, och >N gäller f ( t ) g( t ) < ( ) ; vidre fis ett N så tt för >N gäller f ( ) f ( ) < (ty f ( ) f ( ) ). Me då gäller för >N : m{n,n } och ll, tt ( ) f ( ) f ( ) f ( ) + f ( t ) dt f ( ) + g( t ) dt ( ) ( ) f ( ) f ( ) + f ( t ) g( t ) dt f ( ) f ( ) + f ( t ) g( t ) dt ( ) ( ) ( ) ( ) f f + dt + dt + vsv E tillfredsställde ehdlig v liformig overges räver "supremum"-egreppet. Me vårt itresse gäller huvudslige futiosserier, och för dess hr vi Weierstrß' riterium, vilet m lrr sig lågt med. Först e självlr "om ihåg"-defiitio:

4 mtemtis metoder E, del D, FF 4. Futiosserier DEF Låt u vr futioer med gemesm defiitiosmägd D och M D. Vi säger: FUNKTIONSSERIEN u är PUNKTVIS, resp. LIKFORMIGT KONVERGENT PÅ M, om följde v delsummor S liformigt overget på M. SATS 3 (Weierstrß' mjortsts) Om u ( ) för ll M och IN och om serie overget, så är futiosserie Bev: Låt >; eftersom u N N + N + N + N N u är putvis, resp. solut och liformigt overget på M. är overget, så fis ett N så tt N + är < och för N > N gäller då u ( ) S ( ) u ( ) u ( ) < (oeroede v!). Oserver tt det räcer tt u ( ) gäller f.o.m. ågot N. vsv EX 3 Futiosserie si är liformigt overget på vrje [-R,R] ( < R IR ), ty R si för ll och [ R R] Stser och ger u diret för futioserier: R, och är overget. SATS 4 Föruts: Futiosserie Påst: ) u u är otiuerlig på [,]. ) u ( ) d u ( ) d. är liformigt overget och ll u är otiuerlig på [,].

5 mtemtis metoder E, del D, FF 5 SATS 5 Föruts: u Påst: Bev: är liformigt overget i (,), u ( ) är overget för ågot ( ) (,) och ll u C ( ),. u är liformigt overget och u u i (,). Delsummor S N är otiuerlig på [,], resp. C i (,), sts, ger påståede! Så, det vr llt. Som ett först och vitigt eempel tittr vi på potesserier och visr stser och, sid :9 i ursoe (JP). Ett t vitigt eempel lir Fourierserier. SATS 6 Föruts: Potesserie c hr overgesrdie R> och summ S() ( < R ). Påst: Serie, de termvis deriverde serie och de termvis itegrerde serie hr smm M : < R. overgesrdie R och är liformigt overget i { } ) S ( ) c, S ( ) ( ) c för M ) S( t) dt L. + c + för M. Bev: Låt <r<r. Weierstrß' mjortsts ger tt ty c c r och c r overget på ( r,r), ty för r c är overget (r < R!); vidre är är liformigt overget på [ r, r], c < gäller ( ) > ågot tillräcligt stort N ( lim q då < q < Stser 4/5 ger påståede för vrje itervll ( r,r) + R ligger i ett sådt itervll ( r,r) r c c r < c r för r och q r < ). liformigt ; me eftersom vrje med < R (välj t.e. ) så är stse visd. vsv

6 mtemtis metoder E, del D, FF 6 3. Uppgifter ) Låt f ( ) ( ). Är ( ) ) f liformigt overget på [,]? [led: gäller sts?] ) Vis tt si( är liformigt overget på IR och disuter vd som häder om du deriverr termvis. 3) Vis tt 4) Berä ( ) cos är liformigt overget på RI. [led: deriver termvis, väd sts] e lim. + 5) Vis tt S ( ) ( + ) är liformigt overget i [,] och erä ( ) 6) Låt ( ) l( cos ) f. ) Vis tt f 3 ) Gäller ( ) f ( ) är liformigt overget i ( π, π). f för < π? 3 3 7) Vis tt futioe f som ges v ( ) e f är lösig till ( + ) e differetilevtioe y y + y e, <. S d. svr ) ej 4) e 5) 6) j

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak

I den här stencilen betraktar vi huvudsakligen reella talserie, dvs serier vars termer ak Armi Hlilovic: EXTRA ÖVIGAR SERIER (OÄDLIGA SUMMOR) Defiitio E serie är e summ v oädligt måg termer I de här stecile etrtr vi huvudslige reell tlserie, dvs serier vrs termer är reell tl (I slutet v stecile

Läs mer

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om

c k P ), eller R n max{ x k b dx def lim max n f ( def definition. [a,b] om RIEMANNSUMMOR OCH DEFINITIO ONEN AV INTEGRALI LEN f ( x) dx Låt f ( Låt P={xx 0,x 1,...,x } där = x 0 x 1,..., x = =, vr e idelig vv itervllet [,]. I vrje delitervll [x -1, x ] väljer och e put c. Alltså

Läs mer

INTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM )

INTEGRALKRITERIET ( även kallas CAUCHYS INTEGRALKRITERIUM ) Armi Hlilovic: EXTA ÖVIGA Cuchys itegrlriterium ITEGALKITEIET ( äve lls CAUCHYS ITEGALKITEIUM ) POSITIVA SEIE Defiitio E serie är ositiv om 0 för ll Eftersom delsummor v e ositiv serie bildr e väde ositiv

Läs mer

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis

FÖ 5: Kap 1.6 (fr.o.m. sid. 43) Induktionsbevis FÖ 5: K.6 fr.o.m. sid. Idutiosevis Fultet och iomiloefficieter Defiitio v! "-fultet" och iomiloefficieter " över " Disussio och evis v egeser.7 och.8. och.7 för ll =,,,...,.8 Av.8 följer t.e. tt, och Disussio

Läs mer

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system.

är ett tal som betecknas det(a) eller Motivering: Determinanter utvecklades i samband med lösningsmetoder för kvadratiska linjära system. Armi Hlilovi: EXTRA ÖVNINGAR Determiter DETERMINANTER A Determiter v r orige Determite v e mtris A följe är ett tl som etes eta eller Eempel: 6. oh efiiers eligt Motiverig: Determiter utveles i sm me lösigsmetoer

Läs mer

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral

Huvud metod för beräkning av massan för en av en kropp med densiteten ρ ( x, är trippelintegral ri Hlilovic: EX ÖVNING Mss och tgdput ILLÄMPNING V INEGLE. MSSN OCH YNGDPUN MSSN Huvud etod för eräig v ss för e v e ropp ed desitete, är trippelitegrl, dd so hör till urse i flervriells. Me, ågr el prole

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS Armi Hlilovic: ETRA ÖVNINGAR Digoliserig v e mtris DIAGONALISERING AV EN MATRIS Defiitio ( Digoliserbr mtris ) Låt A vr e vdrtis mtris dvs e mtris v typ. Mtrise A är digoliserbr om det fis e iverterbr

Läs mer

TILLÄMPNINGAR AV DIAGONALISERING Beräkning av potenser A n. Rekursiva samband (s.k. differensekvationer).

TILLÄMPNINGAR AV DIAGONALISERING Beräkning av potenser A n. Rekursiva samband (s.k. differensekvationer). rmi Hlilovic: ETR ÖVNINGR Tillämpigr v digoliserig TILLÄMPNINGR V DIGONLISERING Beräig v poteser. Reursiv smbd s.. differesevtioer. Beräig v poteser med hjälp v digoliserig Om mtrise är digoliserbr dvs

Läs mer

Kompletterande material till kursen Matematisk analys 3

Kompletterande material till kursen Matematisk analys 3 Kompletterde mteril till kurse Mtemtisk lys 3 Augusti 2011 Adrzej Szulki 1 Supremum, ifimum och kotiuerlig fuktioer I ppedix A3 i [PB2] defiiers begreppe supremum och ifimum. mooto tlföljder är ekvivlet

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmi Hlilovi: EXR ÖVNINGR v Ivers mtriser KVDRISK MRISER, DIGONLMRISER, MRISENS SPÅR, RINGULÄR MRISER, ENHESMRISER, INVERS MRISER KVDRISK MRISER Defiitio E mtris me rer oh oloer, lls vrtis typ Defiitio

Läs mer

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x)

som är styckvis kontinuerlig och har styckvis kontinuerlig derivatan. Notera att f (x) Armi Hlilovic: EXRA ÖVNINGAR cosiusserier,siusserier SINUSSERIER OCH COSINUSSERIER I föregåede lektio (stecil om Fourierserier) hr vi vist hur m utvecklr e periodisk fuktio i e trigoometrisk serie K vi

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna

vara en T- periodisk funktion som är integrerbar på intervallet ges av formlerna Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiitio (rigoometrisk serie Ett utryck v öljde orm [ cos( Ωx b si( Ω x är e trigoometrisk serie ] Amärkig: Först terme skriver vi som v prktisk skäl som vi örklrr

Läs mer

Approximationen med den här metoden kallas minstakvadratmetoden.

Approximationen med den här metoden kallas minstakvadratmetoden. Ari Hlilovic: EXTRA ÖVNINGAR MINSTAKVADRATMETODEN Mistvdrtetode. INLEDNING frå lijär lger) Låt vr ett olösrt sste dvs. ett sste so sr lösig). Vi sriv ssteet på fore A = ss ) där...... A, och................

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera.

Uppsala Universitet Matematiska Institutionen Bo Styf. Att repetera. Uppsala Uiversitet Matematisa Istitutioe Bo Styf rasformmetoder, 5 hp gyl, I, W, X 20-0-26 Att repetera. Vi samlar här e del material frå tidigare urser som a vara avädbart uder urses gåg. Serier. E serie

Läs mer

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic

Tentamen TEN1, HF1012, 30 maj Matematisk statistik Kurskod HF1012 Skrivtid: 14:00-18:00 Lärare och examinator : Armin Halilovic Tentmen TEN, HF, mj 8 Mtemtis sttisti Kursod HF Srivtid: 4:-8: Lärre och emintor : Armin Hlilovic Hjälmedel: Bifogt formelhäfte ("Formler och teller i sttisti " och miniränre v vilen ty som helst Förjudn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto-Raphsos metod NEWTON-RAPHSONS METOD (e metod för umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

TENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare

TENTAMEN. Digital signalbehandling. Sven Knutsson. Typgodkänd räknare Istitutioe för dt- och eletrotei 5-5-4 TETAME KURSAM PROGRAM: m Eletro- och dtigejörslije å / läsperiod årsurs /läsperiod 3 KURSBETECKIG LET39 96 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3

Läs mer

TENTAMEN. Tillämpad digital signalbehandling. Sven Knutsson. Typgodkänd räknare Sven Knutsson: Signalprocessorn ADSP-2105

TENTAMEN. Tillämpad digital signalbehandling. Sven Knutsson. Typgodkänd räknare Sven Knutsson: Signalprocessorn ADSP-2105 Istitutioe för dt- och eletrotei 4-8- TETAME KURSAM PROGRAM: m Eletroigejörslije å / läsperiod årsurs /läsperiod 4 KURSBETECKIG LET39 EAMIATOR Sve Kutsso TID FÖR TETAME Fredg 7 ugusti 4 l 3.3 7.3 HJÄLPMEDEL

Läs mer

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel.

ÖPPNA OCH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Några viktiga andragradskurvor: Cirkel, ellips, hyperbel och parabel. ÖPPNA OH SLUTNA MÄNGDER. KOMPAKTA MÄNGDER. DEFINITIONSMÄNGD. INLEDNING. Någr viktig drgrdskurvor: irkel ellips hyperbel och prbel.. irkels ekvtio irkel med cetrum i och rdie hr ekvtioe pq O Amärkig. Edst

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

1 Armin Halilovic: EXTRA ÖVNINGAR

1 Armin Halilovic: EXTRA ÖVNINGAR Armi Hlilovi: EXTRA ÖVNINGAR Tylors ormel TAYLORS FOREL Tylors ormel krig pukte Om uktioe oh dess + örst derivtor är kotiuerlig i det slut itervllet [, ] eller [,], dvs vi tillåter < då gäller. som ligger

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi

Integraler. Integraler. Integraler. Integraler. Exempel (jfr lab) Integrering i Matlab. cos(3 xdx ) Från labben: Informationsteknologi Itegrler Frå le: Itegrler Beräkigsveteskp I/KF Trpetsformel oc Simpsos formel Itegrler Itegrler Frå le: Frå le: Adptiv metod (dptiv Simpso) Lösig v itegrl i Mtl: är itegrde är kotiuerlig fuktio: väd itegrl.

Läs mer

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten )

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i närheten av punkten ) rmi Hliloi: EXTR ÖVNINGR Tlors ormel ör utioer ler riler TYLORS FORMEL FÖR FUNKTIONER V FLER VRIBLER PPROXIMTIONER FELNLYS --------------------------------------------------------------------------------------------

Läs mer

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor

Matte C. Översikt. Funktioner. Derivatan. Användning av derivatan. Exponentialfunktionen. Logaritmiska funktioner. Geometriska summor Mtte C Översikt Fuktioer Poteslgr Potesuktioer Polomuktioer o Väde/vtgde uktio o M/mi pukter tersspukt o Tget Lösigsmetoder ör : grdre Rtioell uktioer Derivt Deiitio v derivt o Vis ör C Deriverigsregler:

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

4 Signaler och system i frekvensplanet Övningar

4 Signaler och system i frekvensplanet Övningar Signler och system i frevensplnet Övningr. Bestäm fourierserieoefficientern för de periodis signlern ) 7 δ [ n ] N = b) { δ [ n ] δ [ n 6] } N = c) { δ [ n + ] δ [ n ] } N =. T frm fourierserieoefficientern

Läs mer

Stokastiska variabler

Stokastiska variabler TNG006 F2 11-04-2016 Stoastisa variabler Ett slumpmässigt försö ger ofta upphov till ett tal som bestäms av utfallet av försöet. Talet är ite ät före försöet uta bestäms av vilet utfall som ommer att uppstå,

Läs mer

Tentamen i Envariabelanalys 1

Tentamen i Envariabelanalys 1 Liöpigs uiversitet Matematisa istitutioe Matemati och tillämpad matemati Kursod: TATA4 Provod: TEN Iga hjälpmedel är tillåta. Tetame i Evariabelaalys 4-4-3 l 4 9 Lösigara sall vara fullstädiga, välmotiverade,

Läs mer

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor

UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR. Med andra ord: Vi kan approximera integralen från båda sidor Armi Halilovic: EXTRA ÖVNINGAR Summor och itegraler UPPSKATTNING AV INTEGRALER MED HJÄLP AV TVÅ RIEMANNSUMMOR Om vi betratar e futio ff() som är otiuerlig i itervallet [aa, bb] då atar futioe sitt mista

Läs mer

Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson)

Föreläsning 3. Signalbehandling i multimedia - ETI265. Kapitel 3. Z-transformen. LTH 2015 Nedelko Grbic (mtrl. från Bengt Mandersson) Sigalbeadlig i multimedia - ETI65 Föreläsig 3 Sigalbeadlig i multimedia - ETI65 Kapitel 3 Z-trasforme LT 5 Nedelo Grbic mtrl. frå Begt Madersso Departmet of Electrical ad Iformatio Tecolog Lud Uiversit

Läs mer

INTEGRALEKVATIONER. Fredrik Smeds. Karlstads universitet, Institutionen för ingenjörsvetenskap, fysik och matematik, 2005.

INTEGRALEKVATIONER. Fredrik Smeds. Karlstads universitet, Institutionen för ingenjörsvetenskap, fysik och matematik, 2005. INTEGRALEKVATIONER v Fredri Seds Krlstds uiversitet, Istitutioe för igejörsvetesp, fysi och teti, 5. Förord. De srift ygger huvudslige på delr v opediet Itegrl Equtios v Yury V. Shestoplov och Yury G.

Läs mer

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R.

c n x n, där c 0, c 1, c 2,... är givna (reella eller n=0 c n x n n=0 absolutkonvergent om x < R divergent om x > R n n lim = 1 R. P Potesserier Med e potesserie mear vi e serie av type c x, där c, c, c,... är giva (reella eller komplexa) kostater, s.k. koefficieter, och där x är e (reell eller komplex) variabel. För varje eskilt

Läs mer

1 Föreläsning 14, följder och serier

1 Föreläsning 14, följder och serier Föreläsning 4, följder och serier. Följd I en följd {a n } n= sriver vi istället elementen som f(n). Följden {sin(n)} n= är begränsad, ty sin n. Följden {/ n} n= är onvergent mot 0: { Följden 2n 2 3n }

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grudkurs Tetame 07-0- - Lösigsskiss. a) Svar: x ], [ [, [. 4x x + 4x 4x (x + ) 0 0 x x + x + x + 0 //Teckeschema// x ], [ [, [ b) I : x I : x I : x x x + = 4 = 4 Lösig sakas x + x + =

Läs mer

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie.

FOURIERSERIER. Definition 1. (Trigonometrisk serie) Ett utryck av följande form. är en trigonometrisk serie. Armi Hlilovic: EXRA ÖVNINGAR FOURIERSERIER Deiiio. rigoomerisk serie E uryck v öljde orm [ cos x b si x ] är e rigoomerisk serie. Amärkig: Förs erme skriver vi som v prkisk skäl som vi örklrr ed. Deiiio.

Läs mer

EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Baires ategorisats och dess tillämpigar av Kristia Nilsso 007 - No 4 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 069

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275)

TEKNISKA HÖGSKOLAN I LUND Institutionen för elektrovetenskap. Tentamen i Digital Signalbehandling ESS040 (ETI240/ETI275) EKNISKA HÖGSKOLAN I LUND Istitutioe för eletrovetesp etme i Digitl Siglbehdlig ESS EI/EI75 7-5- id:. -. Sl: MA F-J Hjälpmedel: Formelsmlig, Räedos. Motiver tgde. De oli lede i lösigr s u följs. Rit gär

Läs mer

Analys av polynomfunktioner

Analys av polynomfunktioner Aals av polomfutioer Aals36 (Grudurs) Istuderigsuppgifter Dessa övigar är det tät du sa göra i aslutig till att du läser huvudtete. De flesta av övigara har, om ite lösigar, så i varje fall avisigar till

Läs mer

Analysens grunder. Tomas Ekholm Niklas Eriksen. Matematiska institutionen, 2001 Finansierat av Marianne och Marcus Wallenbergs Stiftelse

Analysens grunder. Tomas Ekholm Niklas Eriksen. Matematiska institutionen, 2001 Finansierat av Marianne och Marcus Wallenbergs Stiftelse VK Alyses gruder Toms Ekholm Nikls Erikse Mtemtisk istitutioe, 200 Fisiert v Mrie och Mrcus Wllebergs Stiftelse Grekisk lfbetet lf A α iot I ι rho P ρ bet B β kpp K κ sigm Σ σ gmm Γ γ lmbd Λ λ tu T τ delt

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

16.3. Projektion och Spegling

16.3. Projektion och Spegling 6.3 Projektio oh Speglig 67 6.3. Projektio oh Speglig Exempel 6.4. Bestäm mtrise för projektioe P v rmmet vikelrät mot plet W : x y z = 0. Bestäm okså ilde v svektorer e, e, e 3 oh w = e + e + 3e 3. (N-s.

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Funktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) =

Funktionsserier och potensserier. som gränsvärdet av partialsummorna s n (x) = Funktionsserier och potensserier Viktiga exempel på funktionsföljder är funktionsserier. Summan s(x) av f k (x) definieras som gränsvärdet av partialsummorna s n (x) = n f k (x) för varje fixt x I. Serien

Läs mer

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s.

f(x i ) Vi söker arean av det gråfärgade området ovan. Området begränsas i x-led av de två x-värdena där kurvan y = x 2 2x skär y = 0, d.v.s. Dg. Remsummor och tegrler Rekommederde uppgfter 5.. Del upp tervllet [, 3] lk stor deltervll och väd rektglr med dess deltervll som bs för tt beräk re v området uder = +, över =, smt mell = och = 3. V

Läs mer

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

TATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger.

TATA 57/TATA80 18 augusti Lösningar 1) Lösning 1: Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger. TATA 57/TATA8 8 augusti 26. Lösningar ) Lösning : Z-transformering av ekvationen (med hänsyn tagen till begynnelsevillkoren) ger [ z + z ] Y (z) = z + z z 3 z 2 som i sin tur ger (efter ommöblering) Av

Läs mer

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning

ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER. 1. Inledning ANALYTISKA FUNKTIONER, LIKFORMIG KONVERGENS OCH POTENSSERIER ANDRZEJ SZULKIN & MARTIN TAMM. Inledning Dett ompendium innehåller mteril som ompletterr ursboen Persson&Böiers, del 2. De inlednde fem vsnitten

Läs mer

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T,

Lösningsförslag till tentan i 5B1115 Matematik 1 för B, BIO, E, IT, K, M, ME, Media och T, Institutionen för Matematik, KTH. Lösningsförslag till tentan i 5B5 Matematik för B, BIO, E, IT, K, M, ME, Media och T, 8.. Visa att påståendet P n : n + n < 4 n är sant för n =,, 4.... (a) P : + = 4 +

Läs mer

EXAMENSARBETEN I MATEMATIK

EXAMENSARBETEN I MATEMATIK EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Iterpolatio och approimatio av Elhoussaie Ifoudie 8 - No 5 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 69 STOCKHOLM Iterpolatio

Läs mer

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)

NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer) Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 18 Institutionen för matematik KTH 12 december 2017 Idag Talföljder Serier Jämförelse med integraler (Cauchy s integralkriterium) Andra konvergenskriterier (jämförelsekriterier) Mer i morgon

Läs mer

============================================================ ============================================================

============================================================ ============================================================ Armi Hlilovic: EXTRA ÖVNINGAR Tillämpigr v iegrler TILLÄMPNINGAR AV INTEGRALER. AREABERÄKNING Lå D vr e pl område mell e oiuerlig urv y f (), där f ( ), och -el som defiiers med, y f ( ), dvs D {(, y)

Läs mer

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER

KVADRATISKA MATRISER, DIAGONALMATRISER, MATRISENS SPÅR, TRIANGULÄRA MATRISER, ENHETSMATRISER, INVERSA MATRISER rmin Hlilovic: EXR ÖVNNGR v nvers mtriser KVDRSK MRSER, DGONLMRSER, MRSENS SPÅR, RNGULÄR MRSER, ENHESMRSER, NVERS MRSER KVDRSK MRSER Definition En mtris med n rder och n olonner, lls vdrtis n n n n nn

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i en öppen omgivning D av punkten ) A =.

vara en funktion av n variabler som har kontinuerliga derivator av andra ordningen i en öppen omgivning D av punkten ) A =. rmi Hlilovi: EX ÖVNING lors ormel ör utioer v ler vriler v 9 YLOS FOMEL FÖ FUNKIONE V FLE VIBLE. PPOXIMIONE. FELNLYS. --------------------------------------------------------------------------------------------

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

Räkning med potensserier

Räkning med potensserier Räkig med potesserier Serier (termiologi fis i [P,4-4]!) av type P + + + + 4 +... k ( om < ) k + + + + P 4 4 +... k k! ( e för alla ) k och de i [P, sid.9, formler 7-] som ärmast skulle kua beskrivas som

Läs mer

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering.

Listor = generaliserade strängar. Introduktion till programmering SMD180. Föreläsning 8: Listor. Fler listor. Listindexering. 1 Introduktion till progrmmering SMD180 Föreläsning 8: Listor 2 Listor = generliserde strängr Strängr = sekvenser v tecken Listor = sekvenser v vd som helst [10, 20, 30, 40] # en list v heltl ["spm", "ungee",

Läs mer

Symmetriska komponenter, Enlinjediagram och Kortslutningsberäkningar

Symmetriska komponenter, Enlinjediagram och Kortslutningsberäkningar 0-0-8 F6: Per uit system ymmetris ompoeter, Elijedigrm och Kortslutigsberäigr t i Per uit (pu) beräigr Aväds ot iom elrtei och eletris drivsystem Ager impedser, strömmr och späigr som reltiv mått. viss

Läs mer

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P(

vara ett polynom där a 0, då kallas n för polynomets grad och ibland betecknas n = grad( P( Armi Halilovic: EXTRA ÖVNINGAR Polyom POLYNOM OCH ALGEBRAISKA EKVATIONER Defiitio Polyom är uttrycet av type a a a 0, eller ortare a 0, ( där är ett ice-egativt heltal) Defiitio Låt P( a a a0 vara ett

Läs mer

12. Numeriska serier NUMERISKA SERIER

12. Numeriska serier NUMERISKA SERIER 122 12 NUMERISKA SERIER 12. Numerisa serier Vi har tidigare i avsnitt 10.9 sett ett samband mellan summor och integraler. Vi har ocså i avsnitt 11 definierat begreppet generaliserade integraler och för

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Lösningar och kommentarer till uppgifter i 1.2

Lösningar och kommentarer till uppgifter i 1.2 Lösningr och kommentrer till uppgifter i.2 202 d) t t 2 25 t (t 5)(t + 5) Med hjälp v konjugtregeln kn vi fktoriser nämnren. Eftersom nämnren inte får bli noll är ej t 5 eller t 5 tillåtn. 206 Först presenterr

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion.

Induktion och Binomialsatsen. Vi fortsätter att visa hur matematiska påståenden bevisas med induktion. Idutio och Biomialsatse Vi fortsätter att visa hur matematisa påståede bevisas med idutio. Defiitio. ( )! = ( över ).!( )! Betydelse av talet studeras seare. Med idutio a vi u visa SATS (Biomialsatse).

Läs mer

Kapitel Gränsvärden: inledande exempel. Example 2.1. Tänkpåattdubehöverskissautseendetfört.ex.funktionenf(x,y) = xy. kx 2 x 2 +k 2 x 2 = k

Kapitel Gränsvärden: inledande exempel. Example 2.1. Tänkpåattdubehöverskissautseendetfört.ex.funktionenf(x,y) = xy. kx 2 x 2 +k 2 x 2 = k Kapitel Gränsvärden.. Gränsvärden: inledande eempel Eample.. Tänkpåattduehöverskissautseendetfört.e.funktionenf(,) = +.Definitionsmängden av f är D f = R \. Eftersom funktionen f saknar värde i origo,

Läs mer

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIKPROV, LÅNG LÄROKURS 0..0 BESKRIVNING AV GODA SVAR De besrivningar av svarens innehåll som ges här är inte bindande för studenteamensnämndens bedömning.

Läs mer

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2

Tenta i MVE025/MVE295, Komplex (matematisk) analys, F2 och TM2/Kf2 Teta i MVE5/MVE95, Komplex (matematisk) aalys, F och TM/Kf 6, 8.3-.3 Hjälpmedel: Formelblad som delas ut av tetamesvaktera Telefovakt: Mattias Leartsso, 3-535 Betygsgräser: -9 (U), -9 (3), 3-39 (4), 4-5

Läs mer

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP

SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Armi Hlilovic: ETRA ÖVNINGAR, SF676 Sysem v lijär DE Sid v 6 SYSTEM AV LINJÄRA DIFFERENTIALEKVATIONER GRUNDLÄGGANDE BEGREPP Iehåll: Mrisorm Begyelsevärdesprobleme Eises- och eydighessse ör lijär sysem

Läs mer

som gör formeln (*) om vi flyttar första integralen till vänsterledet.

som gör formeln (*) om vi flyttar första integralen till vänsterledet. Armi Hlilovic: EXTRA ÖVNNGAR Prtill itgrtio PARTELL NTEGRATON uu(vv ( dddd uu(vv( uu (vv(dddd ( ), (pppppppppppppppp iiiiiiiiiiiiiiiiiiiiii) KKKKKKKKKKKKKK: uuuu dddd uuuu uu vv dddd Förklrig: Eligt produktrgl

Läs mer

NUMOPEN Om kvadratur. Exempel. NUMOPEN VT11 Förel JOp p 1(9) ν c. 10 tentor, Trapetsmetod poäng

NUMOPEN Om kvadratur. Exempel. NUMOPEN VT11 Förel JOp p 1(9) ν c. 10 tentor, Trapetsmetod poäng Jp p 9 UMPE --7 m vdrtur tentor, rpetsmetod poäng Del p Del 5p / /5 ALLSÅ ör % v tiden ägns trpetsmetoden? - ormler - el - Etrpoltion mtls untioner QUAD, QUADL, QUADGK - Generliserde integrler singulritet

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

FORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats:

FORMELBLAD cos( ) cos cos. 21. sin( ) sin cos. 23. tan TRIGONOMETRISKA FUNKTIONER I RÄTVINKLIGA TRIANGLAR. Pytagoras sats: TRIGONOMETRISKA FORMLER... si 0 si 6 FORMELBLAD HF700, Bggproduktio 6. si cos 7. si45 si 4 si( ) t( ), cos( ) cos( ) cot( ) si( ) 8. cos( ) coscos sisi si 60 si 4. 9. cos( ) coscos sisi cos 0 cos 6 5.

Läs mer

Potensserier och potensserieutvecklingar av funktioner

Potensserier och potensserieutvecklingar av funktioner Analys 36 En webbaserad analysurs Analysens grunder Potensserier och potensserieutveclingar av funtioner Anders Källén MatematiCentrum LTH andersallen@gmail.com Potensserier och potensserieutveclingar

Läs mer

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) =

k=0 kzk? (0.2) 2. Bestäm alla holomorfa funktioner f(z) = f(x + iy) = u(x, y) + iv(x, y) sådana att u(x, y) = x 2 2xy y 2. 1 t, 0 t 1, f(t) = LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Funktionsteori 5 9 kl 4 9 Hjälpmedel: Bifogat formelblad. Lösningarna skall vara försedda med ordentliga motiveringar. Skriv fullständiga meningar och

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process.

Ekvationen (ekv1) kan beskriva en s.k. stationär tillstånd (steady-state) för en fysikalisk process. Armi Halilovic: EXTRA ÖVNINGAR aplace-ekvatioe APACES EKVATION Vi etraktar följade PDE u, u,, a, ekv1 som kallas aplaces ekvatio Ekvatioe ekv1 ka eskriva e sk statioär tillståd stead-state för e fsikalisk

Läs mer

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl

Tentamen SF1633, Differentialekvationer I, den 22 oktober 2018 kl 1 Matematiska Istitutioe, KTH Tetame SF1633, Differetialekvatioer I, de 22 oktober 2018 kl 08.00-13.00. Examiator: Pär Kurlberg OBS: Iga hjälpmedel är tillåta på tetamesskrivige. För full poäg krävs korrekta

Läs mer

Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n =

Serier. egentligen är ett gränsvärde, inte en summa: s n, där s n = Serier Serier eller oändliga summor har flyktigt behandlats redan i tidigare kurser. Vi ska nu gå igenom teorin på ett lite mer systematiskt sätt. I många fall spelar det ingen roll om termerna a k är

Läs mer

Induktion LCB 2000/2001

Induktion LCB 2000/2001 Indution LCB 2/2 Ersätter Grimldi 4. Reursion och indution; enl fll n 2 En tlföljd n nturligtvis definiers genom tt mn nger en explicit formel för uträning v n dess 2 element, som till exempel n 2 () n

Läs mer

Sammanfattning, Dag 9

Sammanfattning, Dag 9 Smmnfttning, Dg 9 Idg studerde vi begrepp sklärprudokt (eller innerprodukt), norm och ortogonlitet på ett llmänt vektorrum. Vi börjde med en kort repetition på smm begrep för vektorrummet R 3. I rummet

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp

INLEDNING: Funktioner (=avbildningar). Beteckningar och grundbegrepp rmi Hliloic: EXR ÖVNINGR Lijär bildigr LINJÄR VBILDNINGR INLEDNING: Fktioer bildigr Beteckigr och grdbegrepp Defiitio E fktio eller bildig frå e mägd till e mägd B är e regel som till ågr elemet i ordr

Läs mer

TATM79: Föreläsning 2 Absolutbelopp, olikheter och binomialkoefficienter

TATM79: Föreläsning 2 Absolutbelopp, olikheter och binomialkoefficienter TATM79: Föreläsig Absolutbelopp, oliheter och biomialoefficieter Joha Thim augusti 018 1 Absolutbelopp Absolutbelopp Defiitio. För varje reellt x defiieras absolutbeloppet x eligt { x, x 0 x x, x < 0.

Läs mer

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden.

Taylors formel används bl. a. vid i) numeriska beräkningar ii) optimering och iii) härledningar inom olika tekniska och matematiska områden. Armi Hlilovic: EXRA ÖVNINGAR ylors ormelör evribeluktioer AYLORS FOREL FÖR FUNKIONER AV EN VARIABEL ylors ormel väds bl vid i umerisk beräkigr ii optimerig och iii härledigr iom olik tekisk och mtemtisk

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

11.7 Kortversion av Kapitel INTEGRALBEGREPPET

11.7 Kortversion av Kapitel INTEGRALBEGREPPET 498 11. INTEGRALBEGREPPET Defiitio 11.16 R är e obestämd itegrl. De beteckr e primitiv fuktio till f(x). Vi smmfttr skillder mell bestämd och obestämd itegrler: Obestämd itegrl: itegrle skr gräser. De

Läs mer

Existens och entydighet

Existens och entydighet Föreläsning 7 Eistens och entydighet 7.1 Aktuella avsnitt i läroboken Appendi Eistence and Uniqueness of Solutions. 47 48 FÖRELÄSNING 7. EXISTENS OCH ENTYDIGHET Som vi sett i flera eempel kan man ibland

Läs mer