Diagonalisering och linjära system ODE med konstanta koe cienter.

Storlek: px
Starta visningen från sidan:

Download "Diagonalisering och linjära system ODE med konstanta koe cienter."

Transkript

1 Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på formen x 0 (t) = a x (t) + a x (t) + ::: + a n x n (t) x 0 (t) = a x (t) + a x (t) + ::: + a n x n (t) ::: x 0 n(t) = a n x (t) + a n x (t) + ::: + a nn x n (t) eller mera kompakt på vektorform för x(t) = [x (t); x (t); :::; x n (t)] T : x 0 (t) = Ax(t) med konstanta matrtisen A som betraktas i section 5.7 i Lay. Det går inte att lösa system di erentialekvationer direkt. Frikoplingen av system linjära di erentialekvationer. (sid. i Lay) Huvudsakliga poängen är att införa nya variabler y genom en inverterbar matristransformation T (y) = P (y) med en inverterbar matris P så att x = P y y = P x och så att systemet ekvationer för nya variabeln y(t) = [y (t); y (t); :::; y n (t)] T är enklare att lösa. Komponenter av vektorn y är då koordinater av vektorn x = P y med avseende på basen som består av kolonner fv ; v ; ; :::; v n g i matrisen P P = [v ; v ; ; :::; v n ] som är linjärt oberoende på grund av vi väljade en inverterbar matris P. Systemetekvationer för y får vi med att multiplicera ekvationen x 0 (t) = Ax(t) med P från vänster och med att observera att P P = I: P x 0 (t) = P Ax(t) =) P x 0 (t) = P A Ix(t) P x 0 (t) = P A P P x (t) y 0 (t) = P A P y(t) De nition Matriser A och (P A P ) är similara:

2 Låt oss tänka oss att vi har lyckats hitta en inverterbar transformation T : R n! R n med matris P så att matrisen (P A P ) similär till matrisen A är en diagonal matris, nämligen P A P = D D = ::: ::: ::: ::: 0 0 ::: n I det fallet består systemet di erentialekvationer för nya variabler y(t) av enkla oberoende ekvationer y 0 (t) = y (t) y 0 (t) = y (t) ::: y 0 n(t) = n y n (t) som har enkla exponentiella lösningar med godtyckliga koe cienter c k : y k (t) = c k e kt 7 5 y(t) = c e e t + c e e t + ::: + c n e n e nt Sista uttrycket är faktiskt lösningen till begynnelsevärdesproblemet med y(0) = C = [c ; c ; :::; c n ] T : Allmän lösning till ursprungliga ekvationen x 0 (t) = Ax(t) fås omedelbart genom sambandet x = P y mellan x och y: x(t) = P y(t) = c v e t + c v e t + ::: + c n v n e nt där vi påminner att fv ; v ; ; :::; v n g är kolonnerna i matrisen P: Slutsatsen av vår undersökning är följade. Om matrisen A i systemet x 0 (t) = Ax(t) är similär med en diagonal matris: (P A P ) = D; då kan allmän lösning till systemet framställas som linjär kombination av lösningar på formen v k e kt. Det är bra orsak för att införa begreppet diagonaliserbar matris och att undersöka när diagonaliseringen som ovan är möjlig. De nition. En kvardratisk n n matris A kallas diagonaliserbar om det nns en inverterbar matris P sådan att A = P DP och D = P AP; där D är en diagonalmatris, eller kortare att A är similär med en diagonal matris D.

3 Huvudsats om diagonaliserbara matriser. (Bevis till den satsen krävs på tentan) Sats 5..5, sid., 00 i Lay. En kvadratisk n n matris A är diagonaliserbar om och endast om () den har n linjärt oberoende egenvektorer. I det fallet A = P DP där matrisen P har kolonner som är n linjärt oberoende egenvektorer till A och diagonala matrisen D med diagonala element som är egenvärden som svarar mot dessa egenvektorer (i samma ordning som i P ): Bevis. (krävs på tentan) Vi visar först implikationen från höger till vänster (= : Låt fv ; v ; ; :::; v n g R n vara n linjärt oberoende egenvektorer till matrisen A och f ; ; ::: n g vara motsvarande egenvärden (kanske en del multipla). Bygg en matris P med kolonner som är dessa vektorer: P = [v ; v ; ; :::; v n ] och en diagonal matris med egenvärden f ; ; ::: n g på diagonalen, i samma ordning som egenvektorerna som hör till dem var satta i matrisen P. (Vi kan sätta dem i vilken som helst ordning) Egenvektorer satis erar ekvationer Av k = k v k, k = ; :::; n Vi kan skriva om dessa ekvationer som en matrisekvation [Av ; Av ; :::; Av n ] = [ v ; v ; :::; n v n ] som är enligt de nitionen av matrisprodukten är amma som AP = P D Låt oss visa att verkligen P D = [ v ; v ; :::; n v n ] : Kolla elementet c rk i produkten P D, som ligger i raden r och i kolonnen k. Rad-kolonn regeln för matrisprodukt säger att c rk måste vara lika med summan av elementvisa produkter av raden med nummer r ur P : [P r ; P r ; :::; P rn ] och kolonnen med nummer k ur D : [D k ; D k ; :::; D nk ] T. Observera att [D k ; D k ; :::; D nk ] T har bara ett element som inte är noll: D kk = k. Detta medför att c rk = k P rk för alla r = ; :::; n. Det betyder att kolonnen med nummer k i P D är kolonnen med nummer k ur P, multiplicerad med k. Det är exakt meningen med [ v ; v ; :::; n v n ]. Matrisen P är inverterbar eftersom dess kolonner är linjärt oberoende. Vi multiplicerar sista ekvationen från vänster med P och ser att A är diagonaliserbar: P AP = D A = P DP

4 Implikationen från vänster till höger =) följer från samma beräkning men genomförd åt motsatt håll. Låt matrisen A vara diagonaliserbar: A = P DP och betekna lnjärt oberoende kolonner i P med fv ; v ; ; :::; v n g och diagonalelementen i diagonalmatrisen D med f ; ; ::: n g. Multiplicera ekvationen A = P DP med P från höger: AP = P D som kan skrivas om med att speci ciera kolonner i matriser AP och DP i sista ekvationen: P D = P 6 4 AP = [Av ; Av ; :::; Av n ] = ::: ::: ::: ::: 0 0 ::: n 7 5 = [ v ; v ; :::; n v n ] Med att identi era ekvationer för kolonner i dessa matriser ser vi att Av k = k v k, k = ; :::; n och att linjärt oberoende vektorer fv ; v ; ; :::; v n g är egenvektorer till matrisen A med egenvärden f ; ; ::: n g : Exempel. (Beräkning av determinant, egenvärden, och egenvektorer och diagonalisering) 4 Bestäm egenvärden och egenvektorer till matrisen A = och ange om den är diagonaliserbar. Beräkna karakteristiska polynomet. p() = det(a I) = det Byt subtrahera andra raden från tredje raden och sätt resultatet istället för tredje raden och sedan byt andra kolonnen med summan av andra och tredje kolonnen. 4 p() = det(a I) = det Addera tredje kolonnen till andra kolonnen och får 4 p() = det

5 = Utveckla sista determinant over sista raden: p() = det(a I) = = ( ) det = ( + )( 6) = ( + ) ( ) Karakteristiska polynomet är p() = : Egenvärden är ; =, har multiplicitet (dubbelrot), =. 4 4 A ( )I = ~ A I = 4 ~ , ~ ~ ~ < = < = Egenvektorer: 4 5 ; : ; $ ; 4 5 : ; $ 0 Det är lätt att kolla att egenvektorer som vi har fått är linjärt oberoende och matrisen A är diagonaliserbar. En viktig sats för tillämpningar är följande. Sats 5..., sid. 88, i Lay. Om linjärt oberoendet av egenvektorer som hör till olika egenvärden. Om v ; v ; ; :::; v r är egenvektorer som hör till olika egenvärden ; ; :::; r ;av en n n matris A;då är egenvektorerfv ; v ; ; :::; v r g linjärt oberoende. Om vi förutsätter att fv ; v ; ; :::; v r g är linjärt beroende i den situationen så kommer man till motsägelse. Bevis krävs inte på tentan. Den satsen medför direkt att egenvektorer vi har fått i sista exemplet är linjärt oberoende. Två första är tydligen icke parallella och linjärt oberoende. Den tredje egenvektor hör till annat egenvärde och måste varalinjärt oberoende av två andra. Kommentar. Två sista satser medför att om matrisen A har n distinkta reella egenvärden, så har den n injärt oberoende vektorer och är då diagonaliserbar. Men det kriteriet är inte nödvändigt, som visas av föregående exempel med en diagonaliserbar matris som har bara två distinkta egenvärden (ett är multipelt) men som är diagonaliserbar. Vi kommer att betrakta olika exempel med system av två linjära ODE med konstanta 5 5

6 koe cienter x 0 (t) = Ax(t) x (t) x(t) = x (t) och beskriver olika typer av fasporträtt som kan uppstå beroende på egenvärden och egenvektorer till matrisen A. Karakteristiska ekvationen till matris är Egenvärden beräknas enligt formeln p() = det(a I) = Tr(A) + det(a) ; = Tr(A) q (Tr(A)) 4 det(a) På följande bild visas enkla bilder som illustrerar olika typer av fasporträtt till systemet beroende på tecken av Tr(A);tecken av det(a) och relationer mellan Tr(A) och det(a) får vi olika kombinationer av egenvärden (inklusive komplexa, som kräver lite extra arbete). Grafen av parabeln det(a) = =4 (Tr(A)) som beskriver nollor av uttrycket under roten är också visat på bilden. I fall punkten (det(a); Tr(A)) ligger under parabeln och uttrycket under roten är positiv får man två olika reella egenvärden, och enligt satsen två linjärt oberoende egenvektorer 6

7 v ; v. Lösningen framställes som linjär kombination x(t) = c e t v + c e t v Fall. Sadel punkt. det(a) < 0, i detta fall > 0, < 0. Banor på fasporträtt ser ut som hyperbler orienterade längs linjer genom origo, parallella till egenvektorer. De syns på diagrammet under tr(a) axeln. Den kon gurationen av banor runt origo kallas sadel punkt. 0 Example. Betrakta systemet x 0 = Ax med matrisen A =. Matrisen A har 0 karakteristiska polynomet p() = och två egenvärden = och = : Motsvarande egenvektorer v och v uppfyller homogena system ekvationer (A ) v = 0 med matrisen (A I) = och (A I) v = 0 med matrisen (A I) =. Eigenvektorer är v = och v = och är linjärt oberoende (det följer också från att egenvärdena är olika). Allmän lösning till systemet av ODE har the formen x(t) = C e t v + C e t v = C e t + C e t med godtyckliga koe cienter C and C : Motsvarande fasporträtt består av speciella lösningar som går mot oändligheten längs vektor v =, lösningar som går mot origo längs vektor v = och andra lösningar i resten av planet som har banor i formen av hyperbler. Man kan se den formen av banor med att integrera ODEn dx dx = x x med separabla variabler som följer från systemet för att få fram relationen x x = Const 7

8 Liknande fasporträtt kan observeras i alla fall då reel matris A i systemet ODE har reella eigenvärden med olika tecken. Bilden kan vara roterad och deformerad beroende på riktningar av eigenvektorer v och v. Man kan först rita banor längs egenvektorer och sedan skissa andra banor med hänsyn till lösningar som går längs eigenvektorer. 8

9 Fall. Källa, eller instabil nod. det(a) > 0; Tr(A) > 0; Tr(A) > 4 det(a): I detta fall är egenvärden > 0, > 0 och är olika. Alla lösningar förutom nollösning, går bort från origo då t!. Kon gurationen runt origo på fasporträtt kallas källa eller instabil nod. Exempel. Betrakta linjära system ODE x 0 (t) = Ax(t) med A = karakteristiskt polynom är p() = 4 + = ( )( ). = ; =. Egenvektorer satis erar homogena ekvationer med matriser (A I) = =) v = och (A I) = =) v = Allmän lösning till systemet ODE är x(t) = C e t v + C e t v Om man vill lösa ett begynnelsevärdesproblem med x(0) = måste man lösa ett 0 systemekvationer för koe cienter C, C med matrisen P = [v ; v ] och högerledet x(0) C e 0 v + C e 0 v = 0 C P = C 0 C = 0 C 9

10 Systemet löses med Gauss elimination eller med hjälp av Cramers formel:c = =, C = = : x (t) = e t + e t x (t) = e t + e t Fall. Sänka: det(a) > 0; Tr(A) < 0; Tr(A) > 4 det(a); Egenvärden < 0, < 0 : Alla lösningar förutom nollösning, går mot origo då t!. Kon gurationen på fasporträtt kallas stabil nod eller sänka. Fall 4. Spiraler Tr(A) < 4 det(a). Egenvärden och är två konjugerade komplexa tal: Re = Re och Im = Im, = jj : I det fallet ser banor ut som spiraler på fasportrett. Lösningar går längs spiraler mot origo i fall Re < 0 och kallas stabila spiraler. Lösningar går bort från origo längs spiraler om Re > 0 och kallas då instabila spiraler. Exempel. Instabila spiraler. Ange allmän lösning till linjära systemet ODE: r 0 = Ar med A = 4 Svar. r = C e t cos t cos t + sin t + C e t sin t sin t cos t Lösning. A =, karakteristiskt polynom: + 5 = 0; 4 Egenvärden är = i;och = + i. 0

11 Egenvektorer i fall med matrisen A av storlek löses ut från första av två ekvivalenta ekvationer: + i (A I) = ger egenvektorn: v 4 + i = $ + i = i; i (A I) = ger egenvektorn: v 4 i = $ i = + i. Dessa två komplexa egenvektorer är linjärt oberoende eftersom de hör till olika egenvärden. En komplex lösning är x (t) = e t v = e ( i)t. + i Två linjärt oberoende reella lösningar kan väljas som reela och imaginära delar av x (t) = Re [x (t)] + i Im [x (t)] och kan användas för att framställa allmän lösning x(t) som x(t) = C Re [x (t)] + C Im [x (t)] : = x (t) = e ( i)t + i = e t (cos t i sin t) e t cos t i sin t = e cos t + sin t + i (cos t sin t) t + i = e t cos t i sin t ( + i) cos t + ( i) sin t i e t sin t (sin t cos t) cos t cos t + sin t Svaret följer som linjär kombination av reella och imaginära delar: x(t) = C Re [x (t)] + C Im [x (t)]. Alla lösningar ger banor i form av spiraler som i det fallet går bort från origo, eftersom Re = > 0: instabila spiraler. Fall 5. Tr(A) = 4 det(a); Tr(A) 6= 0 (krävs inte på tentan) Vi har multipla (dubbla) reella egenvärden i det fallet: ; = = Tr(A) Det kan uppstå (inte obligatoriskt!) situationen att multipla egenvärdet har bara en linjärt oberoende egenvektor v. I det fallet nns bara en linjärt oberoende lösning på formen e t v. En linjärt oberoende lösning till sökes på mera komplicerad form y(t) = te t v + ue t Vi sätter det uttrycket i systemet ODE och hittar sådan u att y(t) är en lösning till systemet y 0 (t) = Ay(t): y 0 (t) = e t v + te t v + e t u = A te t v + ue t (Av v) te t + (Au u v) e t = 0 (Av v) t + (Au u v) = 0

12 Dessa ekvationer måste uppfyllas för alla värden av tiden t:detta medför att linjärt oberoende termer med t och utan t måste vara lika med noll. Av v = 0 Au u = v Första ekvationen uppfylles eftersom v är en egenvektor som hör till egenvärdet. Andra ekvationen ger oss en vektor u som kallas i det fallet generaliserade egenvektor. Allmän lösning till systemet ODE framställes som x(t) = C e t v + C te t v + ue t Beroende på om > 0 eller < 0, kallas kon gurationen av banor på fasporträtt instabil eller stabil degenererad nod (källa eller sänka). Exempel. Ange allmän lösning till systemet ODE x 0 (t) = Ax(t), med A =, characteristic polynomial: p() = 4 + 4: Egenvärden är mulktipla =. Motsvarande egenvektor v är en icke trivial lösning till homogena systemet (A I)v = 0 med matrisen. v = : Systemet av ODE har en lösning på formen e t v. Andra linjärt oberoende lösning sökes på formen y(t) = te t v + ue t där generaliserade egenvektorn u satis erar ekvationen (A I)u = v u = u u s och kan väljas på formen u = = med godtycklig s. Vi väljer s = 0 och får u s u = och allmän lösning till systemet ODE på formen 0 x(t) = C e t + C te t v + ue t + C = C e t te t C e = t + C e t + tc e t C e t tc e t + e t 0 Alla lösningar förutom nollösningen går bort från origo då t!.

13 Kon gurationen kallas instabil degenererad nod och är en källa.

Determinanter, egenvectorer, egenvärden.

Determinanter, egenvectorer, egenvärden. Determinanter, egenvectorer, egenvärden. Determinanter av kvadratiska matriser de nieras recursivt: först för matriser, sedan för matriser som är mest användbara. a b det = ad bc c d det a a a a a a a

Läs mer

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem.

Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Vectorer, spannet av vektorer, lösningsmängd av ett ekvationssystem. Begrepp som diskuteras i det kapitlet. Vektorer, addition och multiplikation med skalärer. Geometrisk tolkning. Linjär kombination av

Läs mer

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att

Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner. 2? Det är komplicerat att Egensystem Vi skalla främst utnyttja omskrivning av en matris för att löas ett system av differentialekvaioner Potens av matris 2 6 Ex Givet matrisen A =, vad är A 2? Det är komplicerat att beräkna högre

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

Algebraiska egenskaper hos R n i)u + v = v + U

Algebraiska egenskaper hos R n i)u + v = v + U Underrum till R n, nollrum, kolonnrum av en matris, rank, bas, koordinater, dimension. Påminnelse om R n s egenskaper: Algebraiska egenskaper hos R n i)u + v = v + U v) c(u + v) = cu + cv ii) ( u + v)

Läs mer

Lösningar till utvalda uppgifter i kapitel 8

Lösningar till utvalda uppgifter i kapitel 8 Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet

Läs mer

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp)

Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Stora bilden av Linjära algebran. Vektorrum, linjära transformationer, matriser (sammanfattning av begrepp) Linjär algebra består av tre grenar eller koncept: geometriska begreppet av vektorrum, analysbegreppet

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

ODE av andra ordningen, och system av ODE

ODE av andra ordningen, och system av ODE ODE av andra ordningen, och system av ODE Exempel på di erentialekvation av andra ordningen (innehåller andra derivata) Pendel beskrives av Newtons andra lag: Kraft = massa Acceleration Acceleration =

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar I Innehåll

Läs mer

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S

Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista

Läs mer

Egenvärden och egenvektorer

Egenvärden och egenvektorer Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

MVE022 Urval av bevis (på svenska)

MVE022 Urval av bevis (på svenska) MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller

Läs mer

Egenvärden, egenvektorer

Egenvärden, egenvektorer Egenvärden, egenvektorer Om en matris är kvadratisk (dvs n n) kan vi beräkna egenvärden och egenvektorer till matrisen. Polynomet p(λ) = det(a λi) kallas det karakterisktiska polynomet för A. Ett nollställe

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016

SF1624 Algebra och geometri Tentamen Torsdag, 17 mars 2016 SF4 Algebra och geometri Tentamen Torsdag, 7 mars Skrivtid: 8:-: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på tentamen

Läs mer

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER

STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Armin Halilovic: EXTRA ÖVNINGAR, SF676 STABILITET FÖR LINJÄRA HOMOGENA SYSTEM MED KONSTANTA KOEFFICIENTER Innehåll Stabilitet för en kritisk punkt (grundbegrepp) Stabilitet för ett linjärt homogent system

Läs mer

Ortogonal dekomposition. Minstakvadratmetoden.

Ortogonal dekomposition. Minstakvadratmetoden. Ortogonal dekomposition. Minstakvadratmetoden. Nästa sats är en utvidgning av begreppet ortogonal projektion av en vektor på en annan vektor. Ortogonal projektion på ett underrum. Satsen om ortogonal dekomposition

Läs mer

November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs)

November 24, Egenvärde och egenvektor. (en likformig expansion med faktor 2) (en rotation 30 grader moturs) Fö : November 4, 7 Egenvärde och egenvektor Definition s 9: Låt A resp T : R n R n vara en n n-matris resp en linjär avbildning En icke-trivial vektor v R n kallas en egenvektor till A resp till T med

Läs mer

Chalmers tekniska högskola Datum: Våren MVE021 Linjär algebra I

Chalmers tekniska högskola Datum: Våren MVE021 Linjär algebra I MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: Våren 6 Övningstentamen Telefonvakt: Thomas Bäckdahl ankn 8 MVE Linjär algebra I Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l. SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B

Läs mer

x 1(t) = x 2 (t) x 2(t) = x 1 (t)

x 1(t) = x 2 (t) x 2(t) = x 1 (t) Differentialekvationer II Modellsvar till räkneövning 4 16.4. 218 (kl 12-14 B222) 1. Lös det linjära homogena DE-systemet x 1(t) = x 2 (t) x 2(t) = x 1 (t) med matrismetoden. Påminnelse: egenvärden och

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v4, 9 april 5 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 8- Hjälpmedel : Inga hjälpmedel

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 22--6 DEL A Planet H ges av ekvationen x + 2y + z =, och planet W ges på parameterform som 2t 4s, t + 2s där s och t är reella parametrar (a) Bestäm

Läs mer

Del 1: Godkäntdelen. TMV142 Linjär algebra Z

Del 1: Godkäntdelen. TMV142 Linjär algebra Z MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 130313 kl 0830 1230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV142 Linjär algebra Z Tentan

Läs mer

SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016

SF1624 Algebra och geometri Tentamen Onsdag, 13 januari 2016 SF624 Algebra och geometri Tentamen Onsdag, 3 januari 206 Skrivtid: 08:00 3:00 Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del

Läs mer

SF1624 Algebra och geometri Lösningsförsag till modelltentamen

SF1624 Algebra och geometri Lösningsförsag till modelltentamen SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till

Läs mer

1 Linjära ekvationssystem. 2 Vektorer

1 Linjära ekvationssystem. 2 Vektorer För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant

Läs mer

LYCKA TILL! kl 8 13

LYCKA TILL! kl 8 13 LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm

Läs mer

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016 Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Modul 1: Komplexa tal och Polynomekvationer

Modul 1: Komplexa tal och Polynomekvationer Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +

Läs mer

Preliminärt lösningsförslag

Preliminärt lösningsförslag Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel

Läs mer

Linjär algebra på 2 45 minuter

Linjär algebra på 2 45 minuter Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom

Läs mer

TMV166 Linjär algebra för M, vt 2016

TMV166 Linjär algebra för M, vt 2016 TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten.

LÖSNINGAR TILL LINJÄR ALGEBRA kl 8 13 LUNDS TEKNISKA HÖGSKOLA MATEMATIK. 1. Volymen med tecken ges av determinanten. LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR TILL LINJÄR ALGEBRA 2018-08-29 kl 8 1 1 Volymen med tecken ges av determinanten a 2 2 2 4 2 1 2a 1 = a 2 2 2 0 4 2 = 4(a 2)(1 a) 0 2a 1 Parallellepipedens volym

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF624 Algebra och geometri Lösningsförslag till tentamen 202-2-3 DEL A Betrakta punkterna A = (2, 2) och B = (6, 4) och linjen (, 3) + t(2, ) i planet (a) Det finns exakt en punkt P på linjen så att triangeln

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS DIAGONALISERING AV EN MATRIS Definition ( Diagonaliserbar matris ) Låt A vara en kvadratisk matris dvs en matris av typ n n. Matrisen A är diagonaliserbar om det finns en inverterbar matris P och en diagonalmatris

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX

Läs mer

1 Diagonalisering av matriser

1 Diagonalisering av matriser 1 Diagonalisering av matriser Kan alla matriser diagonaliseras? Nej, det kan de inte. Exempel: ẋ 1 = x 1 + 2x 2, Integrerande faktor: e t x 2 = x 2 x 2 (t) = c 2 e t och ẋ 1 x 1 = 2c 2 e t. e t x 1 e t

Läs mer

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:

Läs mer

2x + y + 3z = 4 x + y = 1 x 2y z = 3

2x + y + 3z = 4 x + y = 1 x 2y z = 3 ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Tenta i MVE465 Linjär algebra och analys fortsättning. K/Bt/Kf. (2p) Z 2 xdx b) Beräkna 0 (x + 1) (2x + 1). (3p)

Tenta i MVE465 Linjär algebra och analys fortsättning. K/Bt/Kf. (2p) Z 2 xdx b) Beräkna 0 (x + 1) (2x + 1). (3p) MATEMATIK Datum: 8-- Tid: eftermiddag (kl.-8.) Chalmers Hjälmedel: inga. Mobiltelefoner är förbjudna. Kursansvarig: Aleei Heintz Telefonvakt: Carl Lundholm ankn. 9 Tenta i MVE Linjär algebra och anals

Läs mer

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004 UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3)

x 2y + z = 1 (1) 2x + y 2z = 3 (2) x + 3y z = 4 (3) TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 74-4 kurser:: Linjär Algebra ma4a Matematik för ingenjörer maa 8 5 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta

Läs mer

Dagens teman. Linjära ODE-system av ordning 1:

Dagens teman. Linjära ODE-system av ordning 1: Dagens teman Linjära ODE-system av ordning 1: Egenvärdesmetoden. Lösning av homogena system x 1 (t) = a 11 x 1 (t) + + a 1n x n (t) x 2 (t) = a 21 x 1 (t) + + a 2n x n (t) x n (t) = a n1 x 1 (t) + + a

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-10-28 DEL A 1. Vi har matriserna 1 1 1 1 1 0 3 0 A = 1 1 1 1 1 1 1 1 och E = 0 0 0 1 0 0 1 0. 1 0 0 1 0 1 0 0 (a) Bestäm vilka elementära

Läs mer

Del 1: Godkäntdelen. TMV141 Linjär algebra E

Del 1: Godkäntdelen. TMV141 Linjär algebra E Var god vänd! MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 26083 kl 0830 230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV4 Linjär algebra

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

kvivalenta. Ange rangen för A samt en bas för kolonnrummet för A. och U =

kvivalenta. Ange rangen för A samt en bas för kolonnrummet för A. och U = MATEMATIK Hjälpmedel: utdelad ordlista, ej räknedosa Chalmers tekniska högskola Datum: 9-- kl 8 Tentamen Telefonvakt: Aron Lagerberg tel 76-786 Linjär Algebra Z (tmv4) Skriv tentamenskod tydligt på samtliga

Läs mer

Uppgifter, 2015 Tillämpad linjär algebra

Uppgifter, 2015 Tillämpad linjär algebra Geometri. Uppgifter, 25 Tillämpad linjär algebra. Uppgift. Låt (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av linjära

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så

Läs mer

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009

SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 SF1624 Algebra och geometri Bedömningskriterier till tentamen Tisdagen den 15 december, 2009 Allmänt gäller följande: Om lösningen helt saknar förklarande text till beräkningar och formler ges högst två

Läs mer

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t

3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u

Läs mer

Vi skall här studera första ordningens homogena system av linjära dierentialekvationer

Vi skall här studera första ordningens homogena system av linjära dierentialekvationer Kapitel System av ordinära dierentialekvationer Vi skall här studera första ordningens homogena system av linjära dierentialekvationer med konstanta koecienter. Huvudvikten läggs vid fallet att systemets

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)

A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p) SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar

Läs mer

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen:

x(t) I elimeringsmetoden deriverar vi den första ekvationen och sätter in x 2(t) från den andra ekvationen: Differentialekvationer II Modellsvar: Räkneövning 6 1. Lös det icke-homogena linjära DE-systemet ( ( 0 e x t (t = x(t + 1 3 e t med elimineringsmetoden. Lösning: den explicita formen av DE-systemet är

Läs mer

Uppgifter, 2014 Tillämpad linjär algebra

Uppgifter, 2014 Tillämpad linjär algebra Geometri. Uppgifter, 24 Tillämpad linjär algebra. Uppgift. Låt A = (,, ), B = (, 2, 3), C = (,, ) vara punkter i R 3. () Beskriva på parameter form alla plan som innehåler A, B och C. Ger ett system av

Läs mer

3x + y z = 0 4x + y 2z = 0 2x + y = Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x = 1 x + y = 1 x + 2y = 2

3x + y z = 0 4x + y 2z = 0 2x + y = Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x = 1 x + y = 1 x + 2y = 2 TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 3 7 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och

Läs mer

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl

DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna

Läs mer

Lite Linjär Algebra 2017

Lite Linjär Algebra 2017 Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund

Läs mer

3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6

3. Lös det överbestämda systemet nedan på bästa sätt i minsta kvadratmening. x + y = 1 x + 2y = 3 x + 3y = 4 x + 4y = 6 TM-Matematik Sören Hector :: 7-46686 Mikael Forsberg :: 734-433 kurser:: Linjär Algebra ma4a Matematik för ingenjörer ma3a 5 4 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och

Läs mer

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg

Version 0.82. Linjär algebra kapiltet från ett ODE-kompendium. Mikael Forsberg Version.8 Linjär algebra kapiltet från ett ODE-kompendium Mikael Forsberg 8 Den här boken är typsatt av författaren med hjälp av L A TEX. Alla illustrationer är utförda av Mikael Forsberg med hjälp av

Läs mer

19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN

19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN 9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar

Läs mer

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Bo Styf Prov i matematik F, X, ES, KandFys, Lärare, Frist, W, KandMat1, Q LINJÄR ALGEBRA II 010 08 4 Skrivtid: 1400 1900 Tillåtna hjälpmedel:

Läs mer

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA.

1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA. Övningsuppgifter i anslutning till Kapitel. Skriv följande vektorsummor som en vektor a AB + BC b BC + CD + DA..2 Sök i nedanstående figur de vektorer som har samma längd och samma riktning som vektorn

Läs mer

SKRIVNING I VEKTORGEOMETRI Delkurs

SKRIVNING I VEKTORGEOMETRI Delkurs SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Del 1: Godkäntdelen. TMV142 Linjär algebra Z

Del 1: Godkäntdelen. TMV142 Linjär algebra Z MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 26083 kl 0830 230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV42 Linjär algebra Z Tentan

Läs mer

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0.

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0. Avsnitt Egenvärden och egenvektorer W Vilka av följande matriser är ortogonala? b d En matris A a a a n a a a n a a a n a m a m a mn är en ortogonal matris om dess kolumner bildar en ON-bas för rummet

Läs mer

x + y + z + 2w = 0 (a) Finn alla lösningar till ekvationssystemet y + z+ 2w = 0 (2p)

x + y + z + 2w = 0 (a) Finn alla lösningar till ekvationssystemet y + z+ 2w = 0 (2p) Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen i Linjär algebra (TATA31/TEN1) , Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra TATA/TEN) 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter

Läs mer

Linjär algebra kurs TNA002

Linjär algebra kurs TNA002 Linjär algebra kurs TNA002 Lektionsanteckningar klass ED1 I detta dokument finns ett utdrag av de tavelanteckningar som uppkommit under lektionstid under kursen TNA002. Alltså kan detta dokument långt

Läs mer

A = v 2 B = = (λ 1) 2 16 = λ 2 2λ 15 = (λ 5)(λ+3). E 5 = Span C =

A = v 2 B = = (λ 1) 2 16 = λ 2 2λ 15 = (λ 5)(λ+3). E 5 = Span C = KTH Matematik Lösningar till Kapitel 7 A a Karakteristiska polynomet av detλi A det A λ λ λ b Egenvdena av A nollställen till karakteristiska polynomet alltså har A egenvdet λ c Motsvarande egenrum E lösningsrummet

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp 6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet

Läs mer