TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll Lay, kapitel , Linjära ekvationer i linjär algebra

Storlek: px
Starta visningen från sidan:

Download "TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra"

Transkript

1 TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel , Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska objekt 2. linjärkombination av vektorer 3. matrisekvation 4. linjär avbildning. 1

2 1.1 Linjära ekvationssystem Viktiga begrepp Lösning till ekvationssystem, ekvivalens Totalmatris, utökad matris (till ett ekvationssystem) Elementär radoperation, radekvivalens Konsistent ekvationssystem Inkonsistent system Lärandemål 1.1 För betyget godkänd skall du kunna: lösa linjära ekvationssystem med eliminationsmetoden För högre betyg skall du dessutom kunna: förklara varför eliminationsmetoden leder till ekvivalenta system och vad detta innebär Exempel 1 Ett linjärt ekvationssystem: x 1 2x 2 + x 3 = 0 2x 2 8x 3 = 8 4x 1 + 5x 2 + 9x 3 = 9 2

3 Elementära radoperationer 1. Addition Ersätt en ekvation med summan av den ekvationen och en multipel av en annan ekvation. 2. Platsbyte Låt två ekvationer byta plats. 3. Skalning Multiplicera koefficienterna i en ekvation med en konstant (utom 0). Observation: Elementära radoperationer är reversibla eftersom man återfår ''det gamla'' ekvationssystemet genom en elementär radoperation på ''det nya''. De två systemen kallas radekvivalenta. Sats Radekvivalenta ekvationssystem har samma lösningsmängder, de är alltså ekvivalenta Vi skriver ES1 ES2. Exempel 1 Totalmatrisen (den utökade matrisen) till det linjära ekvationssystemet i exempel 1 är:

4 Elementära radoperationer på matriser 1. Addition Ersätt en rad med summan av raden och en multipel av en annan rad 2. Platsbyte Låt två rader byta plats 3. Skalning Multiplicera koefficienterna i en rad med en konstant (utom 0) Radekvivalens Matriser som erhålls ur varandra genom radoperationer kallas radekvivalenta. Vi skriver M 1 M 2 Radekvivalenta totalmatriser hör till ekvivalenta ekvationssystem. Två fundamentala frågor om ekvationssystem 1. Är systemet konsistent, existerar någon lösning? 2. Om det finns minst en lösning, är den i så fall unik, entydig? En viktig del i kursen är att förstå vad dessa frågor betyder i olika situationer och att kunna besvara dem. 4

5 1.2 Radreduktion och trappstegsform Viktiga begrepp Trappstegsform (echelon form) Reducerad trappstegsform (reduced row echelon form, rref) Pivot position, pivot kolonn Fri variabel Bunden variabel Lärandemål 1.2 För betyget godkänd skall du kunna: förklara hur de olika typerna av lösningsmängder uppkommer och hur de kan beskrivas. använda sats i problemlösning För högre betyg skall du dessutom kunna: Inga ytterligare mål i detta avsnitt En matris har trappstegsform om: 1. Under en rad med bara nollor finns inget annat än nollor. 2. Det första nollskilda elementet i varje rad är till höger om det första nollskilda elementet i raden ovanför. 3. Under det första nollskilda elementet i en rad (och under nollorna till vänster om detta element) finns endast nollor. 5

6 En matris har (rad)reducerad trappstegsform om Den är i trappstegsform och dessutom 1. Alla pivotelement är Över pivotelementen finns bara nollor A= B= ConcepTest redigera Vilka av matriserna är i trappstegsform? Reducerad trappstegsform? D= E= C= Sats 1: Den reducerade trappstegsformens entydighet Varje matris är radekvivalent med en och endast en (exakt en) reducerad trappstegsmatris. (Detta är inte alls självklart, beviset kräver en del begrepp och resonemang som dyker upp senare i kursen. 6

7 Definition Om matrisen A är radekvivalent med den reducerade trappstegsmatrisen E så kallas en position i A för pivotposition om elementet där svarar mot ett pivotelement i E. En kolonn i A som innehåller en pivotposition kallas en pivotkolonn. Notera att pivotpositionerna inte är entydigt bestämda men att pivotkolonnerna är det. Sats 2: Existens och entydighet för lösningar till linjära ekvationssystem. Ett linjärt ekvationssystem är konsistent (har lösning) om och endast om den högra kolonnen i totalmatrisen inte är en pivotkolonn. Detta är samma som att trappstegsformen inte innehåller en rad av typen [ 0 0 b ] därb 0 Ett konsistent system har unik lösning om och endast om alla kolonner utom den högra i totalmatrisen är pivotkolonner. 1.3 Vektorekvationer Kolonnvektor Linjärkombination Linjärt hölje (span) Viktiga begrepp 7

8 Lärandemål 1.3 För betyget godkänd skall du kunna: förklara hur ett ekvationssystem hänger samman med en vektorekvation x 1 a 1 +x 2 a 2 +x 3 a 3 + +x p a p =b avgöra om en vektor är linjärkombination av givna vektorer För högre betyg skall du dessutom kunna: redogöra för begreppet linjärkombination Rummet R n. R n n (u 1,u 2,,u n ) Vektorer i är -tipler av reella tal eller skrivna som kolonnmatriser u= u 1 u 2 u n R 2 R 3 Vektorer i och kan uppfattas som punkter eller som vektorer i planet respektive rummet där vi utgår från en ON-bas. Addition och subtraktion Addition och subtraktion av vektorer samt multiplikation med skalär sker ''koordinatvis''. Exempel: u 1 u 2 u 3 u 4 + ( 1)u=( 1) v 1 v 2 v 3 u 4 u 1 u 2 u 3 u 4 = = u 1 +v 1 u 2 +v 2 u 3 +v 3 u 4 +v 4 u 1 u 2 u 3 u 4 = u 8

9 Vanliga räknelagarna gäller För alla vektorer och gäller d u+v=v+u u, v och alla skalärer c c(u+v)=cu+cv (u+v)+w=u+(v+w) (c+d)u=cu+du u+0=0+u=u c(du)=(cd)u u+( u)=( u)+u=0 1u=u Linjärkombination En linjärkombination av vektorerna v 1,v 2,v 3,,v p med vikterna c 1, c 2, c 3,, c p är vektorn y som ges av y=c 1 v 1 +c 2 v 2 +c 3 v 3 + +c p v p Vektorekvation ekvationssystem Vektorekvationen x 1 a 1 +x 2 a 2 +x 3 a 3 + +x p a p =b har samma lösningar som ekvationssystemet vars totalmatris är [ a1 a 2 a 3 b ] 9

10 Linjära höljet Linear Span Mängden av alla linjärkombinationer av v 1,v 2,v 3,,v p kallas linjära höljet av eller delmängden av R n som spänns upp av Linjära höljet betecknas v 1,v 2,v 3,,v p Span{v 1,v 2,v 3,,v p } v 1,v 2,v 3,,v p Linjärkombination = lösning till ES. b Span{v 1, v 2, v 3,, v p } om och endast om x 1 v 1 +x 2 v 2 +x 3 v 3 + +x p v p =b har minst en lösning. Ax=b 1.4 Matrisekvationen. Multiplikation Viktig operation matris kolonnvektor 10

11 Lärandemål 1.4 För betyget godkänd skall du kunna: förklara hur ett ekvationssystem hänger samman med matrisekvationen Ax=b använda sats i problemlösning För högre betyg skall du dessutom kunna: bevisa sats Matrismultiplikation Låt vara -matrisen A= [ ] A m n a 1 a 2 a 3 a n där kolonnerna i A är vektorer i R m. Låt x vara en vektor i R n Då är produkten Ax linjärkombinationen av kolonnerna i A med vikterna x 1, x 2,, x n. x 1 Ax= [ ] a 1 a 2 a 3 a n x 2 x n =x 1 a 1 +x 2 a 2 +x 3 a 3 + +x n a n Sats Matrisekvationen Ax=b har samma lösningar som vektorekvationen x 1 a 1 +x 2 a 2 +x 3 a 3 + +x n a n =b som i sin tur har samma lösningar som ekvationssystemet vars totalmatris är [ a1 a 2 a 3 a n b ] 11

12 Sats Låt A vara en m n -matris. Då är följande utsagor logiskt ekvivalenta. a) För varje b i R m har ekvationen Ax=b minst en lösning. b) Varje b i R m är linjärkombination av kolonnerna i A. c) Kolonnerna i A spänner upp R m d) A har pivotposition i varje rad. Sats Om A är en m n-matris, u och v är vektorer i R n, och c är en skalär, så gäller: A(u+v)=Au+Av och A(cu) = c(au) Multiplikation med matris är linjär 1.5 Lösningsmängder Homogen ekvation Trivial lösning Icke-trivial lösning Viktiga begrepp 12

13 Lärandemål 1.5 För betyget godkänd skall du kunna: skriva lösningsmängden till ett ekvationssystem på vektorform För högre betyg skall du dessutom kunna: bevisa sats Fundamental observation Den homogena ekvationen Ax=0 har icke-trivial lösning om och endast om ekvationen har minst en fri variabel Sats Antag att ekvationen Ax=b är konsistent för ett visst högerled b och låt p vara en lösning. Då är ekvationens lösningsmängd alla vektorer på formen w=p+v h där v h är lösning till homogena ekvationen Ax=0 13

14 1.6 Tillämpningar Viktiga begrepp Inga nya begrepp i detta avsnitt. Kapitlet ingår inte i kursen, men väl värt att läsa kursivt. Eventuellt tas något exempel upp som illustration. Lärandemål 1.6 För betyget godkänd skall du kunna: Inga godkändmål i detta avsnitt För högre betyg skall du dessutom kunna: Inga överbetygsmål i detta avsnitt 1.7 Linjärt oberoende Linjärt oberoende Linjärt beroende Viktiga begrepp 14

15 Lärandemål 1.7 För betyget godkänd skall du kunna: avgöra om en given mängd av vektorer är linjärt beroende eller linjärt oberoende. För högre betyg skall du dessutom kunna: redogöra för begreppen linjär kombination, linjärt beroende och linjärt oberoende förklara hur begreppen ovan hänger samman med egenskaper hos ekvationssystem, matrisekvationer och vektorekvationer bevisa sats och Linjärt oberoende Mängden av vektorer {v 1,v 2,v 3,,v p } i R n sägs vara linjärt oberoende om och endast om vektorekvationen x 1 v 1 +x 2 v 2 +x 3 v 3 + +x p v p =0 endast har trivial lösning. Linjärt beroende Mängden av vektorer {v 1,v 2,v 3,,v p } i R n sägs vara linjärt beroende om och endast om vektorekvationen x 1 v 1 +x 2 v 2 +x 3 v 3 + +x p v p =0 även har icke-trivial lösning. Alltså om och endast om det finns vikter c 1, c 2,, c p, som inte alla är noll, men så att c 1 v 1 +c 2 v 2 +c 3 v 3 + +c p v p =0 15

16 Fundamental observation Kolonnerna i en matris A är linjärt oberoende om och endast om ekvationen Ax=0 endast har trivial lösning. Sats En mängd som består av två eller fler vektorer {v 1,v 2,v 3,,v p } är linjärt beroende om och endast om minst en av vektorerna är en linjärkombination av de övriga. Man kan inte veta på förhand vilken/vilka detta är. Sats Varje mängd {v 1,v 2,v 3,,v p } av vektorer i, där är större än är linjärt beroende. R n p n R n n (Högsta antalet linjärt oberoende vektorer i är.) 16

17 Sats Om en mängd vektorer {v 1,v 2,v 3,,v p } i R n innehåller nollvektorn, så är mängden linjärt beroende. 1.8 Linjära transformationer Viktiga begrepp Transformation, avbildning Linjär avbildning Definitionsmängd domän Målmängd codomän Lärandemål 1.8 För betyget godkänd skall du kunna: avgöra om en given avbildning är linjär För högre betyg skall du dessutom kunna: Inga ytterligare mål i detta avsnitt 17

18 Transformation Avbildning En funktion eller transformation eller avbildning från R n till T R m är en regel som T(x) till varje vektor x i R n ordnar en vektor i R m R n kallas funktionens definitionsmängd eller domän. R m kallas funktionens codomän eller målmängd. Beteckningen T :R n R m läses T är en avbildning från R n till R m Avbildning som ges av en matris. Om A är en m n-matris så ger varje vektor i R n en vektor Ax i R m. Vi har således en avbildning T :R n R m som ges av T(x)=Ax. Vi kan också skriva x T :R n R m ges av x Ax En avbildning Definition: Linjär avbildning T kallas linjär om i. T(u+v)=T(u)+T(v) u v T för alla och i :s domän. ii. T(cu)=cT(u) u T c för alla i :s domän och alla skalära. 18

19 Avbildning som ges av matris är linjär. A Antag att är en m n - matris. Matrismultiplikation har då följande egenskaper: i. A(u+v)=Au+Av för alla u och v i R n ii. A(cu)=c(Au) för alla u i R n och alla skalära c. Slutsats T :R n R m som ges av T(x)=Ax är en linjär avbildning. 1.9 Matrisen till en linjär transformation Viktiga begrepp Standardmatris, avbildningsmatris Injektiv, ett-ett, one-to-one Surjektiv, på, onto Lärandemål 1.9 För betyget godkänd skall du kunna: bestämma standardmatrisen till en linjär avbildning F då F(v) är givet för tillräckligt många vektorer v. För högre betyg skall du dessutom kunna: bestämma standardmatrisen till linjära avbildningar som ges av en geometrisk beskrivning besvara frågor om injektivitet och surjektivitet för linjära avbildningar. 19

20 Sats 10. Matrisen till en linjär avbildning. Låt T :R n R m vara en linjär avbildning. A Då finns en unik matris sådan att T(x)=Ax för alla x i R n Denna matris kallas standardmatrisen eller avbildningsmatrisen till avbildningen A T Matrisen är den m n -matris som bestäms på följande sätt: Låt e j vara den j :te kolonnen i enhetsmatrisen I n och a j =T(e j ). Då är A= [ ] a 1 a 2 a n Definition: T :R n R m En avbildning kallas surjektiv (eng. onto), om och endast om varje vektor b i R m är bild av minst en vektor x i R n. Värdemängden är i så fall hela R m Definition: T :R n R m En avbildning kallas injektiv eller en-entydig (eng. one-to-one) om och endast om varje vektor b i R m är bild av högst en vektor x i R n. 20

21 Låt Då är T :R n R m T Sats 11 vara en linjär avbildning. injektiv om och endast om ekvationen T(x)=0 endast har den triviala lösningen Sats 12 Låt T :R n R m vara en linjär avbildning och låt A vara standardmatrisen för T. Då gäller: T a. är surjektiv, avbildar R n på, onto R m om och endast om kolonnerna i spänner upp R m T A b. är injektiv, en-entydig, one-to-one om och endast om kolonnerna i A är linjärt oberoende. 21

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA Grundläggande vektoralgebra TEN4 Datum:

Läs mer

Datorlaboration :: 1 Problembeskrivning ::

Datorlaboration :: 1 Problembeskrivning :: Datorlaboration :: Ett hyrbilsföretags problem Laborationen går ut på att lösa Labbuppgift 1 till 5. Laborationen redovisas individuellt genom att skicka laborationens Mathematicafil till Mikael Forsberg

Läs mer

Extraövningar, linjär algebra

Extraövningar, linjär algebra Extraövningar, linjär algebra Uppgifter markerade med * kan innehålla något moment som är kursivt, medan uppgifter markerade med ** kan vara av det svårare slaget och innehålla något moment som inte ingår

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

EN KONCIS INTRODUKTION TILL GRUPPTEORI

EN KONCIS INTRODUKTION TILL GRUPPTEORI EN KONCIS INTRODUKTION TILL GRUPPTEORI DANIEL LARSSON Sammanfattning. En kort introduktion till gruppteori. Innehåll 1. Binär operation, slutenhet, grupper 1 2. Exempel, abelska grupper 2 3. Exempel, icke-abelska

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

Matematik i Gy11. 110912 Susanne Gennow

Matematik i Gy11. 110912 Susanne Gennow Matematik i Gy11 110912 Susanne Gennow Var finns matematik? Bakgrund Nationella utredning 2003 PISA 2009 TIMSS Advanced 2008 Skolinspektionens rapporter Samband och förändring åk 1 3 Olika proportionella

Läs mer

MATEMATIK. Ämnets syfte

MATEMATIK. Ämnets syfte MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Kommunikation

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2

Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Välkomna till Numme och MATLAB, 9 hp, för Materialdesign och Energi&Miljö, årskurs 2 Kursen avses ge dig kunskap om numeriska metoder, hur man kan använda dessa genom elementär programmering i MATLAB samt

Läs mer

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder

Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter 1101, 1106, 1107, 1113, 1118, 1120 Talmängder Kap1 1.1 Tal i olika former Mål Mål Mål Mål Mål Mål Rek. uppgifter Känna till de vanligaste talmängderna och de Veta hur talmängderna betecknas Ha kunskap om hur de olika talmängderna är 1101, 1106, 1107,

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Linjär algebra med tillämpningar, lab 1

Linjär algebra med tillämpningar, lab 1 Linjär algebra med tillämpningar, lab 1 Innehåll Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Uppgifterna i denna laboration täcker kapitel 1-3 i läroboken. Läs igenom motsvarande kapitel. Sitt

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Mer om reella tal och kontinuitet

Mer om reella tal och kontinuitet Kapitel R Mer om reella tal och kontinuitet I detta kapitel formulerar vi ett av de reella talens grundläggande axiom, axiomet om övre gräns, och studerar några konsekvenser av detta. Med dess hjälp kommer

Läs mer

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och...

MATLAB. Python. Det finns flera andra program som liknar MATLAB. Sage, Octave, Maple och... Allt du behöver veta om MATLAB: Industristandard för numeriska beräkningar och simulationer. Används som ett steg i utvecklingen (rapid prototyping) Har ett syntax Ett teleskopord för «matrix laboratory»

Läs mer

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1:

Prov 1 2. Ellips 12 Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad 20.5.2010. a) i) Nollställen för polynomet 2x 2 3x 1: Ellips Numeriska och algebraiska metoder lösningar till övningsproven uppdaterad.. Prov a) i) ii) iii) =,, = st 9,876 =,9876,99 = 9,9,66,66 =,7 =,7 Anmärkning. Nollor i början av decimaltal har ingen betydelse

Läs mer

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund

Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism. Inledning. Fysikalisk bakgrund Gemensamt projekt: Matematik, Beräkningsvetenskap, Elektromagnetism En civilingenjör ska kunna idealisera ett givet verkligt problem, göra en adekvat fysikalisk modell och behandla modellen med matematiska

Läs mer

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del

Matematik 5000 Kurs 1a röd lärobok eller motsvarande., ISBN 978-91-27-42156-1. Prövningen är skriftlig, eventuellt kompletterad med en muntlig del prövning matematik 1a Malmö stad Komvux Malmö Södervärn PRÖVNING PRÖVNINGSANVISNINGAR Prövningen avser Kurskod Matematik 1a MATMAT01a Gymnasiepoäng 100 Läromedel Prövningsutformning Bifogas Matematik 5000

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Optimeringslära för T (SF1861)

Optimeringslära för T (SF1861) Optimeringslära för T (SF1861) 1. Kursinformation 2. Exempel på optimeringsproblem 3. Introduktion till linjärprogrammering Introduktion - Ulf Jönsson & Per Enqvist 1 Linjärprogrammering Kursinformation

Läs mer

FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum

FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Johan Helsing, 20 februari 2007 FMN140 VT07: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Projektuppgift Syfte: att träna på att skriva ett lite större Matlabprogram med relevans för byggnadsmekanik.

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3

Tommy Färnqvist, IDA, Linköpings universitet. 2 Strukturer 2 2.1 Domäner... 2 2.2 Tolkningar... 3 Föreläsning 2 Semantik 729G06 Logikdelen Föreläsningsanteckningar i Programmering och logik 27 januari 2014 Tommy Färnqvist, IDA, Linköpings universitet 2.1 Innehåll Innehåll 1 Lite mer syntax 1 2 Strukturer

Läs mer

Relationer och funktioner

Relationer och funktioner Relationer och funktioner Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Relationer: Binära relationer på mängder Mängd-, graf- och matrisnotation Egenskaper hos relationer

Läs mer

En smula tropisk geometrié

En smula tropisk geometrié Normat 59:1, 1 21 (2011) 1 En smula tropisk geometrié Erwan Brugallé Université Pierre et Marie Curie, Paris 6 175 rue du Chevaleret, 75 013 Paris, France brugalle@math.jussieu.fr Vad är det egentligen

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Lab 1, Funktioner, funktionsfiler och grafer.

Lab 1, Funktioner, funktionsfiler och grafer. Lab 1, Funktioner, funktionsfiler och grafer. Starta gärna en dagbok genom att ge kommandot diary lab1. Skriv in alla beräkningar som efterfrågas i uppgifterna i dagboken. Glöm inte diary off om det skrivna

Läs mer

Hur många registreringsskyltar finns det som inte innehåller samma tecken mer än en

Hur många registreringsskyltar finns det som inte innehåller samma tecken mer än en Föreläsning 10 Multiplikationsprincipen Additionsprincipen Permutationer Kombinationer Generaliserade permutationer och kombinationer. Binomialsatsen Multinomialsatsen Lådprincipen (Duvslagsprincipen)

Läs mer

Per Jönsson Symbolisk matematik med MATLAB

Per Jönsson Symbolisk matematik med MATLAB Per Jönsson Symbolisk matematik med MATLAB Malmö 2010 2 Per Jönsson Centrum för Teknikstudier Malmö högskola 205 06 Malmö email: per.jonsson@mah.se hemsida: http://homeweb.mah.se/~tspejo/index.htm c Per

Läs mer

Metoder för beräkningar med potenser med rationella exponenter.

Metoder för beräkningar med potenser med rationella exponenter. Kurskod: MATMAT02a Kursen matematik 2a omfattar punkterna 1 7 under rubriken Ämnets syfte. Centralt innehåll Kommentar Begrepp i kursen matematik 2a Metoder för beräkningar vid budgetering. Budgetering

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Stokastiska processer

Stokastiska processer Stokastiska processer Fredrik Olsson, fredrik.olsson@iml.lth.se Avdelningen för produktionsekonomi Lunds tekniska högskola, Lunds universitet Dessa förläsningsanteckningar kommer att behandla diskreta

Läs mer

Matlabövning. Matlab har en enkel syntax och många av er har använt programmet tidigare. Inga deklarationer behövs.

Matlabövning. Matlab har en enkel syntax och många av er har använt programmet tidigare. Inga deklarationer behövs. Funktionsteori ht 2010 Matlabövning Inledning Denna datorövning ger en introduktion till Matlab. Systemet används här som en avancerad räknedosa med inbyggda matrisoperationer och grafik. Ha den Matlabmanual

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Eulers polyederformel och de platonska kropparna

Eulers polyederformel och de platonska kropparna Eulers polyederformel och de platonska kropparna En polyeder är en kropp i rummet som begränsas av sidoytor som alla är polygoner. Exempel är tetraedern och kuben, men klotet och konen är inte polyedrar.

Läs mer

For-sats/slinga. Notis

For-sats/slinga. Notis Notis I koden för exemplen förekommer kommentarer. Kommentarer i Matlabkoden identieras med prexet %. Kommentarer är text/kod som Matlab bortse från. Alltså all text/kod som ligger till höger och på samma

Läs mer

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.

Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo. UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och

Läs mer

Matematik för språkteknologer

Matematik för språkteknologer 1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos

Läs mer

Laboration i Geometrisk Optik

Laboration i Geometrisk Optik Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen

Läs mer

Prissättning av optioner

Prissättning av optioner TDB,projektpresentation Niklas Burvall Hua Dong Mikael Laaksonen Peter Malmqvist Daniel Nibon Sammanfattning Optioner är en typ av finansiella derivat. Detta dokument behandlar prissättningen av dessa

Läs mer

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation

ANDREAS REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se. Coulombs lag och Maxwells första ekvation ANDREA REJBRAND 2007-11-03 Elektromagnetism http://www.rejbrand.se oulombs lag och Maxwells första ekvation oulombs lag och Maxwells första ekvation Inledning Två punktladdningar q 1 samt q 2 i rymden

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0).

r 2 Arbetet är alltså endast beroende av start- och slutpunkt. Det följer av att det elektriska fältet är konservativt ( E = 0). 1 Föreläsning 2 Motsvarar avsnitten 2.4 2.5 i Griffiths. Arbete och potentiell energi (Kap. 2.4) r 1 r 2 C Låt W vara det arbete som måste utföras mot ett givet elektriskt fält E, då en laddning Q flyttas

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-04-10 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGc Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

Frågeoptimering. Frågeoptimering kapitel 14

Frågeoptimering. Frågeoptimering kapitel 14 Frågeoptimering kapitel 14 Frågeoptimering sid Introduktion 1 Transformering av relationsuttyck 4 Kataloginformation för kostnadsestimering Statisk information för kostnadsestimering Kostnadsbaserad optimering

Läs mer

Datoraritmetik. Binär addition papper och penna metod. Binär subtraktion papper och penna metod. Binär multiplikation papper och penna metod

Datoraritmetik. Binär addition papper och penna metod. Binär subtraktion papper och penna metod. Binär multiplikation papper och penna metod inär addition papper och penna metod Dagens föreläsning: Lärobok, kapitel rbetsbok, kapitel Ur innehållet: hur man adderar och subtraherar tal i det binära talsystemet hur man kan koda om negativa binära

Läs mer

Rekursion. 1. Inledning. vara en fot bred.

Rekursion. 1. Inledning. vara en fot bred. Rekursion. Inledning En trädgårdsmästare skall lägga en gång med cementplattor. Gången skall vara en fot bred. Han har tre slags plattor. En är omönstrad och kvadratisk med sidan en fot, två är rektangulära

Läs mer

Styrsignalsfördelning hos system med redundanta aktuatorer

Styrsignalsfördelning hos system med redundanta aktuatorer Styrsignalsfördelning hos system med redndanta aktatorer Linköpings Tekniska Högskola Tillämpningar Styrsignalsfördelning (eng. control allocation) Hr Hr ska ska den den önskade totala styrerkan fördelas

Läs mer

Syftet med veckans övningar. Något om MATLAB. Vecka 1 matte D del C

Syftet med veckans övningar. Något om MATLAB. Vecka 1 matte D del C Vecka 1 matte D del C handlar om olika typer av integraler. Metoden går tillbaka till antiken; genom triangulering kan man beräkna arean av oregelbundna polygoner. Har men en figur med krokiga begränsningslinjer

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström October 31, 2010 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Flervariabel reglering av tanksystem

Flervariabel reglering av tanksystem Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system

Vad är det? Översikt. Innehåll. Vi behöver modeller!!! Kontinuerlig/diskret. Varför modeller??? Exempel. Statiska system Vad är det? Översikt Discrete structure: A set of discrete elements on which certain operations are defined. Discrete implies non-continuous and therefore discrete sets include finite and countable sets

Läs mer

ALGEBRA. J. Brzezinski

ALGEBRA. J. Brzezinski LINJÄR OCH MULTILINJÄR ALGEBRA J. Brzezinski MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2004 FÖRORD Linjär algebra, vars huvuduppgift är att studera linjära rum

Läs mer

Finansmatematik II Kapitel 3 Risk och diversifiering

Finansmatematik II Kapitel 3 Risk och diversifiering STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Avd. för Matematisk statistik Thomas Höglund Version 04 0 8 Finansmatematik II Kapitel 3 Risk och diversifiering 2 Finansmatematik II Risk och diversifiering

Läs mer

Matematiska modeller

Matematiska modeller Matematiska modeller Kompendium Lektor: Yury V. Shestopalov e-post: youri.shestopalov@kau.se Tel. 054-700856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 Contents Inledning 5. Descartes

Läs mer

Databasdesign. E-R-modellen

Databasdesign. E-R-modellen Databasdesign Kapitel 6 Databasdesign E-R-modellen sid Modellering och design av databaser 1 E-R-modellen 3 Grundläggande begrepp 4 Begränsningar 10 E-R-diagram 14 E-R-design 16 Svaga entitetsmängder 19

Läs mer

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd

Att undervisa och studera matematik med datoralgebraprogrammet Maxima. Per Jönsson och Thomas Lingefjärd Att undervisa och studera matematik med datoralgebraprogrammet Maxima Per Jönsson och Thomas Lingefjärd Malmö och Göteborg 2009 1 Kort om Maxima Begreppet CAS (computer algebra system) eller på svenska

Läs mer

Tangenter till tredjegradsfunktioner

Tangenter till tredjegradsfunktioner Tangenter till tredjegradsfunktioner I bilden intill ser du grafen av en tredjegradsfunktion som har tre nollställen nämligen x = 2, x = 1 och x = -1. Om man ritar en tangent till funktionsgrafen kommer

Läs mer

Användarhandledning Version 1.2

Användarhandledning Version 1.2 Användarhandledning Version 1.2 Innehåll Bakgrund... 2 Börja programmera i Xtat... 3 Allmänna tips... 3 Grunderna... 3 Kommentarer i språket... 4 Variabler... 4 Matematik... 5 Arrayer... 5 på skärmen...

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:...

DIGITALA VERKTYG ÄR INTE TILLÅTNA. Namn:... Klass/Grupp:... DIGITALA VERKTYG ÄR INTE TILLÅTNA Namn:... Klass/Grupp:... Del I 1. Bestäm värdet av 25 3x om x = 2 Svar: (1/0/0) 2. Vilket tal ska stå i rutan för att likheten ska stämma? 2 3 + + 1 =1 Svar: (1/0/0) 9

Läs mer

Syfte. Grundläggande vektoralgebra 7,5 högskolepoäng Basic Vector Algebra. Lärandemål. Innehåll. Undervisning

Syfte. Grundläggande vektoralgebra 7,5 högskolepoäng Basic Vector Algebra. Lärandemål. Innehåll. Undervisning Grundläggande vektoralgebra 7,5 högskolepoäng Basic Vector Algebra Kurskod: MAA123 Utbildningsnivå: Grundnivå 100 Ämne: Matematik/Tillämpad Utbildningsområde: Naturvetenskap matematik Giltig fr.o.m. termin:

Läs mer

LARS SVENSSON OCH ERIC NORDENSTAM

LARS SVENSSON OCH ERIC NORDENSTAM KORT SAMMANFATTNING AV FLERVARIABELKURSEN LARS SVENSSON OCH ERIC NORENSTAM 1 Normer på vektorrum En avbildning V x x R från ett vektorrum över R (eller C) kallas en norm om λ R (eller C) x, y V (1) λx

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

Matematiska tillämpningar i 3Dgrafik

Matematiska tillämpningar i 3Dgrafik LITH-ITN-EX 4/37--SE Matematiska tillämpningar i 3Dgrafik Eamensarbete utfört i Matematik och grafik vid Linköpings Tekniska Högskola, Campus Norrköping Patrik Totero Julian Shabo Handledare: George Basta

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Kvantmekanik II, 7,5 hp (FK5012) HT 2015

Kvantmekanik II, 7,5 hp (FK5012) HT 2015 2015-09-29 Kvantmekanik II, 7,5 hp (FK5012) HT 2015 Innehåll: Fördjupad kunskap om grundläggande begrepp och metoder inom icke-relativistisk kvantmekanik: osäkerhetsprincipen; Dirac-notation; rörelsemängdsmoment,

Läs mer

SF1635, Signaler och system I

SF1635, Signaler och system I SF635, Signaler och system I Tentamen tisdagen 0--, kl 4 00 9 00 Hjälpmedel: BETA Mathematics Handbook Räknedosa utan program Formelsamling i Signalbehandling (rosa), Formelsamling för Kursen SF635 (ljusgrön)

Läs mer

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd Wiggo Kilborn Om tal i bråkoch decimalform en röd tråd Tal i bråkoch decimalform en röd tråd Wiggo Kilborn Nationellt centrum för matematikutbildning Göteborgs universitet 20 Detta verk är licensierad

Läs mer

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson

Detaljplanering. Matematik 1A LÅ 2013/2014. Jonas Bengtsson Detaljplanering Matematik 1A Jonas Bengtsson Läromedel: Matematik 00 1a, Natur & Kultur Information Detta är en detaljplan i kursen Matematik 1A för läsåret 2013/2014. Varje vecka innehåller 3 st lektionspass

Läs mer

Laboration i Fourieroptik

Laboration i Fourieroptik Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras

Läs mer

Del A: Begrepp och grundläggande förståelse

Del A: Begrepp och grundläggande förståelse STOCKHOLMS UNIVERSITET FYSIKUM KH/CW/SS Tentamensskrivning i Experimentella metoder, 1p, för kandidatprogrammet i fysik, /5 01, 9-14 Införda beteckningar skall förklaras och uppställda ekvationer motiveras

Läs mer

Saker du ska kunna Föreläsning 13 & 14

Saker du ska kunna Föreläsning 13 & 14 Saker du ska kunna Föreläsning 13 & 14 LISTOR Ta bort element från en vektor Både sorterad och osorterad Söka upp element i en vektor Linjärsökning räcker (jag har även visat binärsökning) Registrering

Läs mer

Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203

Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Undervisningsplanering i Matematik KURS C (100 poäng) Kurskod: MA1203 Styrdokument: Kursplan i matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år De studerande

Läs mer

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012 Överbryggningskurs i matematik del I Teknik och Samhälle 0 Malmö 0 Förord och studietips Föreliggande kompendium i två delar är en överbryggning mellan gymnasiets och högskolans matematikkurser. Målet

Läs mer

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING

Skattning av matchningseffektiviteten. arbetsmarknaden FÖRDJUPNING Lönebildningsrapporten 9 FÖRDJUPNING Skattning av matchningseffektiviteten på den svenska arbetsmarknaden I denna fördjupning analyseras hur matchningseffektiviteten på den svenska arbetsmarknaden har

Läs mer

Modellering och optimering av schemaläggning vid en ridskola

Modellering och optimering av schemaläggning vid en ridskola Modellering och optimering av schemaläggning vid en ridskola En fallstudie i heltalsprogrammering Kandidatarbete inom civilingenjörsutbildningen vid Chalmers Rasmus Einarsson Patrik Johansson Oskar Redlund

Läs mer

Calculators Education - Eco - Cool Black - Business - Office

Calculators Education - Eco - Cool Black - Business - Office Calculators Education - Eco - Cool Black - Business - Office education Från grundskolan via gymnasiet till universitetet. Sharp Education stöttar dig på alla nivåer i din utbildning. Välj en räknare i

Läs mer

Symbolisk integrering av rationella funktioner

Symbolisk integrering av rationella funktioner Symbolisk integrering av rationella funktioner Gustaf Lönn 28 augusti 2013 Helsingfors universitet Institutionen för matematik och statistik Handledare: Mika Seppälä Innehåll 1 Inledning 2 2 Abstrakt algebra

Läs mer

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25

Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25 Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter

Läs mer