Lösningar till övningsuppgifter. Impuls och rörelsemängd

Storlek: px
Starta visningen från sidan:

Download "Lösningar till övningsuppgifter. Impuls och rörelsemängd"

Transkript

1 Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10, m 13 m 800 kg Sva: 800 kg G. p v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p kgm/s 1, kgm/s Sva: 1, kgm/s G5. Röelsemängd p Elektonens massa m 9, kg och dess hastighet v m/s p 9, kgm/s 1, kgm/s Sva: 1, kgm/s G6. a) Vid en kollision mellan två koppa bevaas inte deas hastighete. Två koppa kan t.ex. komma akt mot vaanda med samma fat. Om kollisionen ä fullständigt oelastisk och koppana ha samma massa komme de att stanna vid kollisionen. Altenativ a ä inte koekt. b) Röelseenegi kan oandlas till bland annat fiktionsväme vid kollisione. Altenativ b ä inte koekt. c) Totala öelsemängden bevaas vid alla kollisione. Altenativ c ä koekt. Sva: c G7. Röelsemängden bevaas vid alla stöta, dvs altenativen c och d ä koekta. Röelseenegin bevaas endast vid fullständigt elastiska stöta, vilket innebä att altenativ a ä koekt. Sva: a, c och d G8. Pucken ges en hastighet åt höge. Efte tillslaget ha pucken således dels en hastighet akt uppåt, dels en hastighet åt höge. Dessa hastighete addeas till en esulteande hastighet snett uppåt höge, dvs. figu. Sva: Figu

2 G1.Geväet få hastigheten v. Den totala öelsemängden hos systemet "kula-gevä" ä noll innan skottet avlossats och ä dämed noll även efte det att skottet avlossats. Lagen om öelsemängdens bevaande ge: 4,0 v + 0, v 0,84 m/s Att hastigheten ha negativt tecken innebä att geväets öelseiktning ä motsatt kulans. Sva: 0,84 m/s G. Vagnanas gemensamma hastighet efte kollisionen betecknas med v. Vi bestämme denna hastighet med lagen om öelsemängdens konstans: 6,0. 5,0 +,0. ( 8,0) (6,0 +,0). v v 8v 14 v 1,75 m/s Sva: 1,8 m/s G3. Bilens hastighet föe kollisionen ä 36 v 1 36 km/h m/s 10 m/s 3,6 Lastbilens hastighet föe kollisionen ä v 0 m/s Bilens massa ä m 100 kg. Lastbilens massa ä M 5300 kg Kollisionen ä helt oelastisk. Bilana ha gemensam hastighet v efte kollisionen. Lagen om öelsemängdens bevaande ge då: 1 + Mv (m + M)v v + Mv m/s m + M ,846 m/s 1,846. 3,6 km/h 6,6 km/h Sva: 6,6 km/h (1,8 m/s) G4. Att stöten ä fullständigt oelastisk innebä att vagnana fastna i vaanda och fotsätte som ett enda ekipage med hastigheten v efte kollisionen. Lagen om öelsemängdens bevaande ge: 4,0. 6,0 + 8,0. 0 (4,0 + 8,0). v v v m/s,0 m/s 1 Sva:,0 m/s V6.Om vi sätte hastigheten efte studsen till v 11 m/s, ä hastigheten föe studsen v 1 1 m/s, eftesom hastighetens iktninga ä omkastade. Röelsemängd föe studsen: 1 0,018. ( 1) kgm/s 0,16 kgm/s Röelsemängd efte studsen: 0, kgm/s 0,198 kgm/s. Ändingen av öelsemängd bli då 1 (0,198 ( 0,16)) kgm/s 0,414 kgm/s Sva: 0,41 kgm/s

3 V7. Impulslagen F. t o. v o 0, m,0 kg Impulsen F. t epesenteas av aean unde gafen i figuen. N F 6 4 Vi få F. t ( ,0. v v Sva: 3 m/s t s 6 6 ) Ns 46 Ns 46 m/s 3 m/s V8. Vi vill beäkna kulans hastighet v då den nå stålplattan. Vi beäkna däfö föst falltiden t. gt s 1,0 s Detta ge t s 0,451 s g 9,8 Kulan ha då fått hastigheten v gt 9,8. 0,451 m/s 4,43 m/s Kulans öelsemängd p 1 m. v 0,010. 4,43 kgm/s 0,0443 kgm/s. Efte studsen ha kulan öelsemängden p 0,0443 kgm/s. Röelsemängdsändingen p. 0,0443 kgm/s 0,0886 kgm/s Impulslagen: F. t p ge F. 0,05 0,0886 0,0886 F N 1,77 N 0,05 Sva: 1,8 N V9. Innan kulan avfyats ä den totala öelsemängden fö båt och kula lika med noll. Enligt lagen om öelsemängdens bevaande ä den totala öelsemängden noll även efte avfyandet. Båtens hastighet efte skottet ä v. Kulans hastighet sätts till 100 m/s. Efte avfyandet av kulan väge båten (450 6,5) kg 443,5 kg Vi få: 443,5. v + 6,5. ( 100) 0 443,5v 650 v 650 m/s 1,47 m/s 443,5 Sva: 1,5 m/s

4 V10. Vi vill beäkna den påköande bilens hastighet v 1 i kollisionsögonblicket och beäkna däfö föst tiden t fån stat till kollision. Vi ha s Detta ge t s a 80 1,5 at s 10,3 s Vi få då v 1 at 1,5. 10,3 m/s 15,5 m/s 15,5. 3,6 km/h 55,8 km/h Låt vaje bils massa vaa m och låt v vaa deas gemensamma hastighet efte kollisionen. Lagen om öelsemängdens bevaande ge: m. 55,8 + m. 30 m. v v 85,8 85,8 v km/h 4,9 km/h Sva: 43 km/h V11. Vi sätte puckens hastighet till 1 m/s nä den näma sig klubban. Efte slaget fån klubban ha den hastigheten v. Puckens massa ä m. Impulslagen ge:,50 m. ( 1),50 0,160. v + 0, ,160. v 0,58 v Sva: 3,6 m/s 0,58 0,160 m/s 3,65 m/s M1.Vi välje höge som positiv öelseiktning. Vagnanas sammanlagda öelseenegi föe kollisionen ä 5,0 ( 1) 5,0 ( + ) J 1,5 J Enegipincipen ge att den totala öelseenegin inte kan vaa stöe efte kollisionen. I altenativ D ä vagnanas sammanlagda öelseenegi 5,0 ( ) 5,0 3 ( + ) J 3,5 J Altenativ D ä således omöjligt. I samtliga öviga altenativ ä vagnanas totala öelseenegi lika med elle minde än 1,5 J. Röelsemängden bevaas vid alla stöta. Röelsemängden föe kollisionen ä ( 1) 5 kgm/s Röelsemängden efte kollisionen ä A: 5 ( ) kgm/s B: kgm/s C: 5 ( 1) kgm/s E: 5 0,+ 5 0,8 5 kgm/s F: 5 0, ,5 5 kgm/s Vi finne att öelsemängden bevaas i B, C, E och F. Sva: B, C, E och F

5 M. Vi beäkna föst den hastighet v 1 med vilken bollen täffa golvet. Vi utnyttja enegipincipen. Bollens lägesenegi oandlas till öelseenegi stax innan studsen mot golvet. Bollen falle fån höjden h 1,5 m. Vi få: 1 mgh 1 v 1 gh 1 9,8, 5 m/s 7,0 m/s Diekt efte studsen ha bollen hastigheten v och nå sedan höjden h,0 m. Detta ge mgh v gh 9,8, 0 m/s 6,3 m/s Efte studsen ha bollen motsatt öelseiktning, vafö vi sätte v 6,3 m/s. Impulslagen F. t 1 : F. 0,15 (0,10. ( 6,3) 0,10. 7,0) Ns ( )1,59 Ns 1,59 F N 10,6 N 0,15 Sva: 11 N M3. a) Efte det att bollen ha studsat upp ha den föloat (4,0,8) m 1, m i höjd. Detta innebä en fölust av lägesenegi mgh 0,080. 9,8. 1, J 0,94 J. Denna enegi ha oandlats till väme vid studsen. b) Vi beäkna föst bollens hastighet v 1 stax innan den nå golvet. Bollen släpps fån höjden h 1 4,0 m. Dess lägesenegi ha oandlats till öelseenegi då den nå golvet. 1 mgh 1 v 1 gh 1 9,8 4, 0 m/s 8,9 m/s Diekt efte studsen ha bollen hastigheten v och nå sedan höjden h,8 m. Detta ge: mgh v gh 9,8, 8 m/s 7,4 m/s Efte studsen ha bollen motsatt öelseiktning, vafö vi sätte v 7,4 m/s. Impulslagen F. t 1 ge F.0,075 (0,080.( 7,4) 0,080.8,9) Ns 1,30 Ns 1,30 F N 17,4 N 0,075 Sva. a) 0,94 J b) 17 N

6 Centalöelse G m G1.Newtons gavitationslag F 1 m , ,0 10,0 10 F 11 (1,5 10 ) F 3,56 10 N ge N Sva: 3,6 10 N G m G13. Newtons gavitationslag F 1 m , ,0 10 7,3 10 F N 8 (3,8 10 ) F, N ge Sva:, N G14. I läge ha kulan hastighet akt uppåt i bilden. Tidigae ha öets ytte vägg tvingat kulan att öa sig i cikelbana. Eftesom öet upphö vid, komme kulan nu att öa sig utefte en ät linje åt samma håll som dess hastighet, dvs. i iktning B. Sva: B G15. Då ett föemål ö sig i cikelbana med adien och med konstant banhastighet v, ä acceleationen konstant till sin stolek. a Acceleationen ända däemot hela tiden iktning, eftesom den ständigt ä iktad in mot centum av banan. Sva: C G16.Båda pesonena otea med 6,0 vav/minut. De ha således samma vinkelhastighet ω. Ju länge man befinne sig fån kausellens axel, desto stöe hastighet ha man. A ha alltså stöe hastighet än B. Sva: a och d v G17. Fågeln ö sig i en cikel med omketsen π π. 1,30 m 8,17 m. Omloppstiden T 1 h 3600 s. 8,17 Fågelns hastighet v m/s 0,003 m/s 3600 Fågelns acceleation v 0,003 a 1,30 m/s 4, m/s Sva: 4, m/s

7 G18. Centipetalkaften kan skivas 0,045,5 F c N 0,9375 N 0,30 Sva: 0,94 N G19. a) Hastigheten v ä iktad akt famåt, tyngden mg ä iktad nedåt och nomalkaften F N ä iktad uppåt. mg ä stöe än F N eftesom den esulteande kaften skall vaa iktad nedåt (en centipetalkaft). F N v mg b) v 7 km/h 7 m/s 0 m/s 3,6 Centipetalkaften ä mg F N F N mg 00 N ( , ) N Sva: b),0 kn V3.a) Den esulteande kaften på stenen ä en centipetalkaft, dvs iktad in mot cikelns centum. Dess stolek ä F 0,50,0 0,40 N 5,0 N b) Vi löse ut u uttycket ovan. F Om F ä oföändad och faten v öka till v få vi: m(v) 1 4, dvs 4 gånge stöe än tidigae. F F Sva: a) 5,0 N iktad mot cikelns centum b) A) 4

8 V4. På kulan veka tyngden mg och spännkaften F s fån snöet. Kulan otea i hoisontalplanet. Detta innebä att den esulteande kaften (centipetalkaften) till mg och F s ä iktad mot cikelbanans centum (åt höge i figuen). Den pil som epesentea spännkaften skall itas så lång så att spännkaftens lodäta komposant ä lika sto som tyngden. F s mg V5. Kulans massa ä m 0,055 kg På kulan veka två kafte, spännkaften S i tåden och kulans tyngd mg. Den esulteande kaften ä F, en centipetalkaft, som tvinga kulan att öa sig i en cikelbana. Se figu. 4 o S F mg tan 4 o F mg F mg. tan 4 o 0,055. 9,8. tan 4 o N 0,4 N Sva: 0,4 N V6. Centipetalacceleationen v 4π a, dä ä jodadien vid ekvaton och T ä omloppstiden. T 6, m. T 4 h s s. 4π 6 4π 6, a m/s 0,034 m/s T Sva: 0,034 m/s

9 V7. Bilens massa ä m och dess fat ä v. Eftesom bilen kö på en hoisontell väg ä nomalkaften lika sto som tyngden, dvs mg. Maximal fiktionskaft ä F 0,3. mg Denna fiktionskaft ä centipetalkaften F c v 0,3 g 0,3 9,8 56 m/s 11, m/s 11,. 3,6 km/h 40 km/h Sva: 40 km/h 0,3. mg V8. Det utföda abetet W F. s, dä F äknas i föflyttningens iktning. Eftesom kaften F unde hela öelsen ä vinkelät mot föflyttningen s, bli abetet lika med noll. Sva: 0 Nm V9. Centifugens adie 0,5 m. Fekvens f 400 vav/minut 6,67 vav/s. Den esulteande kaften på metallföemålet ä en centipetalkaft F 0,10. 4π. 6,67. 0,5 N 5,6 N På föemålet veka två kafte som båda ä iktade nedåt: 1) tyngdkaften mg 0,10. 9,8 N 1,18 N ) nomalkaften F N, dvs den kaft med vilken centifugen påveka föemålet. Summan av dessa båda kafte bli 5,6 N. 1,18 + F N 5,6 F N (5,6 1,18) N 51,46 N m. 4π. f. Metallföemål mg F N Sva: 51 N

10 M3.Fö att kunna beäkna centipetalkaften i banans lägsta punkt behöve vi bestämma hastigheten i denna punkt. Vi använde ett enegiesonemang. I banans högsta punkt ä tyngden lika med den nödvändiga centipetalkaften: o o (v o ä hastigheten i högsta punkten.) mg mg o mg I banans högsta punkt ha stenen öelseenegi E k o mg och potentiell enegi E p mg. dä höjden öve den lägsta punkten ä. Vi sätte således den potentiella enegin till noll i lägsta punkten. Total enegi E E p + E k mg. mg 5mg + Denna totala enegi övegå helt i öelseenegi i den lägsta punkten (v ä stenens hastighet i denna punkt): 5mg 5mg Den nödvändiga centipetalkaften i den lägsta punkten ä således 5 gånge så sto som koppens tyngd. I den lägsta punkten veka två kafte på koppen, tyngden mg iktad nedåt och spännkaften F i snöet iktad uppåt. Centipetalkaften F c ä esultanten till dessa kafte: F c F mg F c 5mg 5mg F mg F 6mg 6.. 9,8 N 118 N Sva: 10 N M4. På stenen veka två kafte, stäckkaften i tåden och tyngdkaften 1,5g. Vi låte kaften i tåden vaa 18 N. Eftesom stenen ö sig i en cikelbana med konstant banhastighet ä den esulteande kaften F iktad in mot centum. Se figu. 18 N 1,0 m 1,0 m F 1,5g Vi bestämme F med hjälp av Pythagoas' sats. F + (1,5g) 18 1,0 10,3 1,0 F N 10,3 N F Radien i banan bestäms med hjälp av likfomiga tiangla. 1,0 18 1,0 10,3 1,0 F m 0,69 m Låt f vaa fekvensen, dvs antalet vav pe sekund. Centipetalkaften F kan då skivas: F m. 4π. f. F vilket ge f m 4π vav/s 0,50 vav/s. Antal vav pe minut bli då 0, Sva: 30 vav/minut 10,3 1,5 4π 0,69

11 M5. a) Två kafte påveka piloten, hans tyngd och nomalkaften fån sätet. Fö att tvinga piloten att följa cikelbanan måste den esulteande kaften vaa iktad mot cikelbanans centum. Nomalkaften måste vaa stöe än tyngden. Nomalkaft F N Tyngd mg b) Resulteande kaft ä en centipetalkaft. F N mg F c m v F N F c + mg + mg 70 v 70 km/h m/s 00 m/s 3,6 Vågen mäte nomalkaften F N, men ange massan M dä F N M. g M F N g m v + mg m v g g ( + 86) kg 3 kg 400 9,8 Sva: 30 kg + m M6. Nä kulan befinne sig i det nede läget ä belastningen på tåden som stöst. Låt kaften i tåden i detta läge vaa S. På kulan veka då två kafte, kaften S i tåden iktad uppåt och kulans tyngd 1,5g iktad nedåt. Resulteande kaft ä S 1,5g, vilket ä en centipetalkaft och följaktligen kan skivas L 1,5 v, dä L ä tådens längd och v kulans hastighet i det nede läget. L S 1,5g 1,5 v L (1) L 60 o L cos 60 o 0,5L S h 0,5L 1,5g Vi bestämme hastigheten v med hjälp av enegipincipen. Fån utgångsläget till nede läget minska kulans lägesenegi med mgh 1,5. g. (L L. cos 60 o ) 1,5. g. (L 0,5L) 1,5. g. 0,5L 0,75. g. L Denna lägesenegi oandlas till öelseenegi 1,5 v 0,75v

12 Vi ha således: 0,75v 0,75. g. L, vilket ge v gl. Detta väde på v insättes i ekv. (1) ovan: S 1,5g 1,5 gl 1,5 g L S 1,5g + 1,5g 3g 3. 9,8 N 9,46 N Sva: 9 N

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E

UPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med

Läs mer

Lösningsförslag nexus B Mekanik

Lösningsförslag nexus B Mekanik Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)

Läs mer

7 Elektricitet. Laddning

7 Elektricitet. Laddning LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva

Läs mer

1 Rörelse och krafter

1 Rörelse och krafter 1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften

Läs mer

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09

Lösningar och svar till uppgifter för Fysik 1-15 hösten -09 Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan

Läs mer

Lösningar till övningsuppgifter centralrörelse och Magnetism

Lösningar till övningsuppgifter centralrörelse och Magnetism Lösninga till öningsuppgifte centalöelse ch Magnetism Centalöelse G1 Centipetalacceleatinen a = = 5, m/s = 15,9 m/s 1,7 Sa: 16 m/s G4 (3,5 10 3 ) c 0,045 a m/s =,7 10 8 m/s Sa:,7 10 8 m/s 50 G7 = 50 km/h

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2

LEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2 LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive

Läs mer

Vågräta och lodräta cirkelbanor

Vågräta och lodräta cirkelbanor Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel

Läs mer

Mekanik Laboration 3

Mekanik Laboration 3 Götebogs Uniesitet Natuetenskapligt baså, NBAF 9/9 8 Institutionen fö fsik Inga Albinsson Natuetenskapligt baså, NBAF Laboationen genomfös i guppe om te och omfatta 4 olika fösök som totalt genomfös unde

Läs mer

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.

TFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng. Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat

Läs mer

Tentamen i El- och vågrörelselära, 2014 08 28

Tentamen i El- och vågrörelselära, 2014 08 28 Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,

Läs mer

Den geocentriska världsbilden

Den geocentriska världsbilden Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade

Läs mer

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.

FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets. FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften

Läs mer

1 Två stationära lösningar i cylindergeometri

1 Två stationära lösningar i cylindergeometri Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes

Läs mer

Mekanik för I, SG1109, Lösningar till problemtentamen,

Mekanik för I, SG1109, Lösningar till problemtentamen, KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten

Läs mer

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.

Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC. villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och

Läs mer

Sammanfattning av STATIK

Sammanfattning av STATIK Sammanfattning av STATIK Pete Schmidt IEI-ekanik, LiTH Linköpings univesitet Kaft: En kafts vekan på en kpp bestäms av kaftens stlek, iktning ch angeppspunkt P. Kaftens iktning ch angeppspunkt definiea

Läs mer

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden.

I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. I stötuppgifterna bortser vi från den impuls som yttre krafter ger under själva stöttiden. 60 Du vandrar omkring bland din mosters äppelträd och får ett jättestort äpple i huvudet. Av din moster (som är

Läs mer

Kap.7 uppgifter ur äldre upplaga

Kap.7 uppgifter ur äldre upplaga Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti

Läs mer

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa

U U U. Parallellkretsen ger alltså störst ström och då störst effektutveckling i koppartråden. Lampa FYSIKTÄVLINGEN KVALIFICEINGS- OCH LAGTÄVLING 6 febuai 1997 SVENSKA FYSIKESAMFNDET LÖSNINGSFÖSLAG 1. Seieketsen ge I s + Paallellketsen ge I p + / + I s I p Paallellketsen ge alltså stöst stöm och å stöst

Läs mer

5 Energi och rörelsemängd

5 Energi och rörelsemängd 5 Energi och rörelsemängd 501. a) Arbete är kraft gånger sträcka. Kraften mäts i sträckans riktning. W = F s s b) Energiändring är lika med utfört arbete. E = W c) Lägesenergi E p = mgh Svar: a) W = F

Läs mer

Lösningar till övningar Arbete och Energi

Lösningar till övningar Arbete och Energi Lösningar till övningar Arbete och Energi G1. Lägesenergin E p = mgh = 1. 9,8. 1,3 J = 153 J Svar: 150 J G10. Arbetet F s = ändringen i rörelseenergi E k Vi får E k = 15,4 J = 36 J Svar: 36 J G6. Vi kan

Läs mer

sluten, ej enkel Sammanhängande område

sluten, ej enkel Sammanhängande område POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge

Läs mer

Föreläsning 7 Molekyler

Föreläsning 7 Molekyler Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta

Läs mer

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8

Ergo Fysik 2 Lösningar till Ergo Fysik 2, 47-10672-1, kp 1-8 Ego Fysik Lösninga till Ego Fysik, 47-067-, kp - Tyckfel (fösta tyckningen) Sida Va Stå Skall stå Exepel ad 4,6 0 9 J,6 0 9 J 40 Exepel ad 5 600,5 N 500 N 600,5 N 500 N 4 Rad 5-6 centalkaft centipetalkaft

Läs mer

Lösningar Kap 11 Kraft och rörelse

Lösningar Kap 11 Kraft och rörelse Lösningar Kap 11 Kraft och rörelse Andreas Josefsson Tullängsskolan Örebro Lösningar Fysik 1 Heureka: kapitel 11 11.1.-11.2 Se facit eller figurerna nedan. 1 11.3 Titta på figuren. Dra linjer parallella

Läs mer

21. Boltzmanngasens fria energi

21. Boltzmanngasens fria energi 21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet

Läs mer

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.

Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar. 3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen

Läs mer

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper:

GRADIENT OCH RIKTNINGSDERIVATA GRADIENT. Gradienten till en funktion f = f x, x, K, innehåller alla partiella derivator: def. Viktig egenskaper: Amin Haliloic: EXTRA ÖVNINGAR GadientRiktningsdeiata GRADIENT OCH RIKTNINGSDERIVATA GRADIENT Gadienten till en funktion f = f,, K, ) i en punkt P,, K, ) ä ekto som innehålle alla patiella deiato: gad def

Läs mer

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.

Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths. Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga

Läs mer

===================================================

=================================================== min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet

Läs mer

=============================================== Plan: Låt π vara planet genom punkten P = ( x1,

=============================================== Plan: Låt π vara planet genom punkten P = ( x1, Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation

Läs mer

Storhet SI enhet Kortversion. Längd 1 meter 1 m

Storhet SI enhet Kortversion. Längd 1 meter 1 m Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens

Läs mer

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)

Fö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska) Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt

Läs mer

===================================================

=================================================== Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte

Läs mer

LE2 INVESTERINGSKALKYLERING

LE2 INVESTERINGSKALKYLERING LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3

Läs mer

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1.

Föreläsning 5. Linjära dielektrikum (Kap. 4.4) Elektrostatisk energi (återbesök) (Kap ) Motsvarar avsnitten 4.4, , 8.1. 1 Föeläsning 5 Motsvaa avsnitten 4.4, 5.1 5., 8.1.1 i Giffiths Linjäa dielektikum (Kap. 4.4) Ett dielektikum ä ett mateial dä polaisationen P induceas av ett elektiskt fält. Om det pålagda fältet inte

Läs mer

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.

x=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN. Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b

Läs mer

STOCKE OLMS UNIVERSITET FYS IKUM

STOCKE OLMS UNIVERSITET FYS IKUM STOCKE OLMS UNIVERSITET FYS IKUM Tciita.ncaisskrivnintg i Mckanik för FK2002 /Fk~ zoc~ -j Onsdagen den 5 januari 2011 kl. 9 14 Hjälpmedel: Miniriiknare och formelsamling. Varje problem ger maximall 4 poäng.

Läs mer

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5

BILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5 LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola

Läs mer

Potentialteori Mats Persson

Potentialteori Mats Persson Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E

Läs mer

Heureka Fysik 2, Utgåva 1:1

Heureka Fysik 2, Utgåva 1:1 Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med

Läs mer

Kapitel extra Tröghetsmoment

Kapitel extra Tröghetsmoment et betecknas med I eller J används för att beskriva stela kroppars dynamik har samma roll i rotationsrörelser som massa har för translationsrörelser Innebär systemets tröghet när det gäller att ändra rotationshastigheten

Läs mer

Geometrisk optik reflektion och brytning

Geometrisk optik reflektion och brytning Geometisk optik eflektion oh bytning Geometisk optik F7 Reflektion oh bytning F8 Avbildning med linse Plana oh buktiga spegla Optiska system F9 Optiska instument Geometisk optik eflektion oh bytning Repetition:

Läs mer

Dynamiken hos stela kroppar

Dynamiken hos stela kroppar Natulaga cbemen VT 6 Lekton 4 Dnamken hos stela koa Matn Sevn Insttutonen fö fsk Umeå unvestet -Sol boes (lke EATHLINGS) look sll, on t ou thnk, Koas? -Sll? Yes, Kang, but taste. Mmm! Novoe cow le Dagens

Läs mer

Centripetalkraft. Den resulterande kraften i centralrörelse

Centripetalkraft. Den resulterande kraften i centralrörelse Centipetalkaft Den esulteande kaften i centalöelse Kapitel 1: Tyngd u otation intoduktion Kapitel 2: Li och centipetalkaftena en faktabasead saga Text och idé: Nikodemus Kalsson Oiginal chaacte at by Esa

Läs mer

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.

För att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd. I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att

Läs mer

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00

Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Institutionen för teknik, fysik och matematik Nils Olander och Herje Westman Tentamen: Baskurs B i Fysik, del1, 4p 2007-03-23 kl. 08.00-13.00 Max: 30 p A-uppgifterna 1-8 besvaras genom att ange det korrekta

Läs mer

6.3 Partikelns kinetik - Härledda lagar Ledningar

6.3 Partikelns kinetik - Härledda lagar Ledningar 6.3 Partikelns kinetik - Härledda lagar Ledningar 6.104 Om du inte tidigare gått igenom illustrationsexempel 6.3.3, gör det först. Låt ϕ vara vinkeln mellan radien till kroppen och vertikalen (det vill

Läs mer

Temperaturmätning med resistansgivare

Temperaturmätning med resistansgivare UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad

Läs mer

10 Dimensionering av balkar med varierande tvärsnitt och krökta balkar

10 Dimensionering av balkar med varierande tvärsnitt och krökta balkar x ap 0 Dimensioneing av balka med 0 Dimensioneing av balka med vaieande tväsnitt oc kökta balka Tabell 0. Allmänna balkfome. Pulpetbalk l Sadelbalk l ap l Kökt balk 'x 'ap 0 x x 0 l/-c/ l/ c/ γ = c/ =

Läs mer

Kartläggning av brandrisker

Kartläggning av brandrisker Bandskyddsbeskivning v4.3 y:\1132 geby 14 mfl\dokumentation\1132 pt 199.doc Katläggning av bandiske : Revidead: - Uppdagsansvaig: Håkan Rönnqvist - Bandingenjö : - Bandingenjö Kungsgatan 48 B 411 15 Götebog

Läs mer

Finansiell ekonomi Föreläsning 2

Finansiell ekonomi Föreläsning 2 Fiasiell ekoomi Föeläsig 2 Fö alla ivesteigsbeslut gälle: Om ytta > Kostad Geomfö ivesteige Om Kostad > ytta Geomfö ite ivesteige Gemesam ehet = pega Vädeig = makadspis om sådat existea (jf. vädet av tid

Läs mer

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109

Företagens ekonomi Tillbakaräkning i SNI2007 NV0109 PCA/MFFM, ES/NS 2-4-29 (7) Föetagens ekonomi Tillbakaäkning i SNI27 NV9 Innehållsföteckning. Sammanfattning... 2 2. Bakgund... 2 2. Den nya näingsgensindelningen (SNI27)... 2 2.2 Föetagens ekonomi... 2

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2

27,8 19,4 3,2 = = 1500 2,63 = 3945 N = + 1 2. = 27,8 3,2 1 2,63 3,2 = 75,49 m 2 Lina Rogström linro@ifm.liu.se Lösningar till tentamen 150407, Fysik 1 för Basåret, BFL101 Del A A1. (2p) Eva kör en bil med massan 1500 kg med den konstanta hastigheten 100 km/h. Längre fram på vägen

Läs mer

= + = ,82 = 3,05 s

= + = ,82 = 3,05 s Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen HT2014, Fysik 1 för Basåret, BFL101 Del A A1. (2p) En boll kastas rakt uppåt och har hastigheten = 30 m/s då den lämnar handen. Hur högt når

Läs mer

Angående kapacitans och induktans i luftledningar

Angående kapacitans och induktans i luftledningar Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns

Läs mer

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning

Granskningsrapport. Projektredovisning vid Sahlgrenska Universitetssjukhuset fördjupad granskning Pojektedovisning vid Sahlgenska Univesitetssjukhuset födjupad ganskning Ganskningsappot 2008-03-06 Pe Settebeg, Enst & Young, Pojektledae Chistina Selin, Enst & Young, Aukt. eviso Patik Bjökstöm, Enst

Läs mer

Nivåmätning Fast material Flytande material

Nivåmätning Fast material Flytande material Nivåmätning Fast mateial Flytande mateial Nivåmätning fö pocessindustin Nivåkontoll fö: Övefyllnadsskydd Batchkontoll Poduktmätning Lagekontoll Säkehetslam Skiljeyto Industie: Koss o Asfalt Olja o Gas

Läs mer

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss.

Lufttryck. Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Repetition, del II Lufttryck Även i lufthavet finns ett tryck som kommer av atmosfären ovanför oss. Med samma resonemang som för vätskor kommer vi fram till att lufttrycket på en viss yta ges av tyngden

Läs mer

Boverket. Energideklarat LL_. IOfl DekLid: 195073. Byggnadens ägare - Kontaktuppgifter. Byggnadens ägare - Övriga

Boverket. Energideklarat LL_. IOfl DekLid: 195073. Byggnadens ägare - Kontaktuppgifter. Byggnadens ägare - Övriga Smhusenhet, -...-. Boveket Enegideklaat Vesion 15 IOfl DekLid: 195073 Byggnadens ägae - Kontaktuppgifte Ägaens namn Pesonnumme/Oganisationsnumme Utländsk adess Adess Postnumme Postot Mötvätsvägen 21 62449

Läs mer

Repetitionsuppgifter i Fysik 1

Repetitionsuppgifter i Fysik 1 Repetitionsuppgifter i Fysik 1 Uppgifterna i detta häfte syftar till att kort repetera några begrepp från fysiklektionerna i höstas. Det är inte på något sätt ett komplett repetionsmaterial, utan tanken

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen

0 x 1, 0 y 2, 0 z 4. GAUSS DIVERGENSSATS. r r r r. r r k ut ur kroppen Ain Hlilovic: EXTRA ÖVIGAR Guss divegenssts GAUSS IVERGESSATS Låt v ett vektofält definied i ett öppet oåde Ω Låt Ω v ett kopkt oåde ed nden so bestå v en elle fle to lödet v vektofält ut u koppen geno

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Måndagen den 23 maj 2011 klockan 14.00-18.00 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniräknare samt en egenhändigt skriven A4 med

Läs mer

Kollisioner, impuls, rörelsemängd kapitel 8

Kollisioner, impuls, rörelsemängd kapitel 8 Kollisioner, impuls, rörelsemängd kapitel 8 ! Sida 4/4 Laboration 1: Fallrörelse på portalen ikväll Institutionen för Fysik och Astronomi! Mekanik HI: 2014 Fallrörelse Institutionen för Fysik och Astronomi!

Läs mer

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn

Sammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn Eic Sandstöm Diekt telefon 044-781 46 29 E-post:eic.sandstom@fuuboda.se 2003-10-20 Till Folkbildningsådet Sammanfattande edovisning av ådslag/konfeens om Folkbildningens famsyn 1. Fakta om seminaiet/ådslaget

Läs mer

Ta ett nytt grepp om verksamheten

Ta ett nytt grepp om verksamheten s- IT ä f f A tem, sys knik & Te Ta ett nytt gepp om veksamheten Vå övetygelse ä att alla föetag kan bli me lönsamma, me effektiva och me välmående genom att ha ätt veksamhetsstöd. Poclient AB gundades

Läs mer

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna.

1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna. Fysik 1 övningsprov 1-13 facit Besvara 6 frågor. Återlämna uppgiftspappret! 1. Beskriv Newtons tre rörelselagar. Förklara vad de innebär, och ge exempel! Svar: I essäform, huvudpunkterna i rörelselagarna..

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller

LEDNINGAR TILL PROBLEM I KAPITEL 14. Kroppen har en rotationshastighet. Kulan P beskriver en cirkelrörelse. För ren rotation gäller LEDNINR TILL ROBLEM I KITEL 4 L 4. Kroppen har en rotationshastighet. Kulan beskriver en cirkelrörelse. För ren rotation gäller v = r v = 5be O t Eftersom och r O är vinkelräta bestäms storleken av kryssprodukten

Läs mer

Grundläggande om krafter och kraftmoment

Grundläggande om krafter och kraftmoment Grundläggande om krafter och kraftmoment Text: Nikodemus Karlsson Original character art by Esa Holopainen, http://www.verikoirat.com/ Krafter - egenskaper och definition Vardaglig betydelse Har med påverkan

Läs mer

Kapitel 4 Arbete, energi och effekt

Kapitel 4 Arbete, energi och effekt Arbete När en kraft F verkar på ett föremål och föremålet flyttar sig sträckan s i kraftens riktning säger vi att kraften utför ett arbete på föremålet. W = F s Enheten blir W = F s = Nm = J (joule) (enheten

Läs mer

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2

GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin 2 GÖTEBORGS UNIVERSITET Institutionen för fysik LÖSNINGAR TILL TENTAMEN I MEKANIK B För FYP100, Fysikprogrammet termin Tid: Plats: Ansvarig: Hjälpmedel: Tisdag juni 009, kl 8 30 13 30 V-huset Lennart Sjögren,

Läs mer

Övningar Arbete, Energi, Effekt och vridmoment

Övningar Arbete, Energi, Effekt och vridmoment Övningar Arbete, Energi, Effekt och vridmoment G1. Ett föremål med massan 1 kg lyfts upp till en nivå 1,3 m ovanför golvet. Bestäm föremålets lägesenergi om golvets nivå motsvarar nollnivån. G10. En kropp,

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 22 januari 2009 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. (a) Rörelsemotståndsarbetet på nervägen är A n = F motst s = k mg s = k (2 180 + 52 100)

Läs mer

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen

Biomekanik, 5 poäng Introduktion -Kraftbegreppet. Mekaniken är en grundläggande del av fysiken ingenjörsvetenskapen Biomekanik Mekanik Skillnad? Ambition: Att ge översiktliga kunskaper om mekaniska sammanhang och principer som hör samman med kroppsrörelser och rörelser hos olika idrottsredskap. Mekaniken är en grundläggande

Läs mer

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN

TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade

Läs mer

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :

Svar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers : FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet

Läs mer

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar

1(5) & nt s. MrLJösÄKRtNG INNENALLER. MILJöPOLICY. och. ARBETSMILJöPOLIGY. K:\Mallar 1(5) & nt s MLJösÄKRtNG INNENALLER MILJöPOLICY ch ARBETSMILJöPOLIGY K:\Malla MILJOPOLICY 2(5) # nt s Denna miljöplicy gälle Elcente. Syfte Elcente ska följa aktuell miljölagstiftning, egle, kav ch nme

Läs mer

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:

r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass: Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 8 januari 1 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG 1. Ballongens volym är V = πr h = 3,14 3 1,5 m 3 = 4,4 m 3. Lyftkraften från omgivande luft är

Läs mer

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen IF33 Elläa F/Ö F/Ö4 F/Ö F/Ö5 F/Ö3 Stömketsläa Mätinstument Batteie ikstömsnät Tvåpolsatsen KK AB Mätning av U och I F/Ö6 F/Ö7 Magnetkets Kondensato Tansiente KK AB Tvåpol mät och sim F/Ö8 F/Ö9 KK3 AB3

Läs mer

9.1 Kinetik Rotation kring fix axel Ledningar

9.1 Kinetik Rotation kring fix axel Ledningar 9.1 Kinetik Rotation kring fix axel Ledningar 9.5 Frilägg hjulet och armen var för sig. Normalkraften kan beräknas med hjälp av jämvikt för armen. 9.6 Frilägg armen, och beräkna normalkraften. a) N µn

Läs mer

WALLENBERGS FYSIKPRIS

WALLENBERGS FYSIKPRIS WALLENBERGS FYSIKPRIS KVALIFICERINGS- OCH LAGTÄVLING 7 januari 0 SVENSKA FYSIKERSAMFUNDET LÖSNINGSFÖRSLAG. (a) Falltiden fås ur (positiv riktning nedåt) s v 0 t + at t s 0 a s,43 s. 9,8 (b) Välj origo

Läs mer

Möjliga lösningar till tentamen , TFYY97

Möjliga lösningar till tentamen , TFYY97 Tal Se kurslitteraturen. Möjliga lösningar till tentamen 069, TFYY97 Tal Det finns oändligt många lösningar till detta tal. En möjlig lösning skulle vara följand. Börja med att titta i -led. Masscentrum

Läs mer

Analys av mätdata för beräkning av noggrannhet i fordonsklassificering och hastighetsregistrering. Rapport 01

Analys av mätdata för beräkning av noggrannhet i fordonsklassificering och hastighetsregistrering. Rapport 01 Analys av mätdata fö beäkning av noggannhet i sklassificeing och hastighetsegisteing Rappot 01 Mätning i Klett nov 2011 och Amsbeg januai 2012 Kund Tafikveket Mottagae Pe Melén, Dennis Andesson Vesion

Läs mer

Prov Fysik 1 Värme, kraft och rörelse

Prov Fysik 1 Värme, kraft och rörelse Prov Fysik 1 Värme, kraft och rörelse För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1:

Läs mer

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B

Inlupp 3 utgörs av i Bedford-Fowler med obetydligt ändrade data. B Inlupp Sommarkurs 20 Mekanik II En trissa (ett svänghjul) har radie R 0.6 m och är upphängd i en horisontell friktionsfri axel genom masscentrum.. Ett snöre lindas på trissans utsida och en konstant kraft

Läs mer

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9

Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Fysik 1 Rörelsemängd och Ellära, kap. 6 och 9 Skrivtid: kl. 14:15-17:15 Hjälpmedel: Formelsamling, grafritande miniräknare, linjal Lärare: ASJ, HPN, JFA, LEN, MEN, NSC Möjliga poäng: 20 E-poäng + 12 C-poäng

Läs mer

" e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar

 e n Föreläsning 3: Typiska partikelrörelser och accelerationsriktningar KOMIHÅG 2: 1 Cylinderkomponenter: Hastighet v = r e r + r" e " + z e z Acceleration: a = ( r " r# 2 )e r + ( r # + 2 r # )e # + z e z Naturliga komponenter: v = ve t a = v e t + v 2 " e n ------------------------------------

Läs mer

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten.

3. Om ett objekt accelereras mot en punkt kommer det alltid närmare den punkten. Tentamen 1, Mekanik KF HT2011 26:e November. Hjälpmedel: Physics handbook alt. Formelblad, Beta mathematics handbook, pennor, linjal, miniräknare. Skrivtid: 5 timmmar. För godkänt krävs minst 18/36 på

Läs mer

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas!

Tentamen i Mekanik SG1102, m. k OPEN m fl. Problemtentamen OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! 014-08-19 Tentamen i Mekanik SG110, m. k OPEN m fl. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! KTH Mekanik Problemtentamen 1. En boll med massa m skjuts ut ur ett hål så att den hamnar

Läs mer

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2"# n

KOMIHÅG 12: Ekvation för fri dämpad svängning: x + 2# n KOMIHÅG 1: ------------------------------------------------------ Ekvation för fri dämpad svängning: x + "# n x + # n x = a, Tre typer av dämpning: Svag, kritisk och stark. 1 ------------------------------------------------------

Läs mer

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + )

LÖSNINGAR TILL PROBLEM I KAPITEL A ( ) ( + + ) LÖNINGR TILL RLEM I KITEL L. 3 4 z 5 I dett eempel ä geometin så enkel tt de sökt vinkln med lite eftetnke kn bestämms nästn diekt. Vi följe ändå en metod som lltid funge. Vektoen kn skivs i komponentfom:

Läs mer

ENERGIDEKLARATION. 160 kwh/m2 och år. Krav vid uppförande av. ny byggnad [jan 2012]: Radon mätning: Inte utförd. Har lämnats

ENERGIDEKLARATION. 160 kwh/m2 och år. Krav vid uppförande av. ny byggnad [jan 2012]: Radon mätning: Inte utförd. Har lämnats sammanfattning av ENERGIDEKLARATION DENNA BYGGNADS ENERGIKLASS 160 kwh/m2 och å ny byggnad [jan 2012]: Inte utföd Ha lämnats.... 2025-02-12 www. boveket.se/enegideklaation (2007:4) om enegideklaation fö

Läs mer

Tentamen i Mekanik SG1130, baskurs. Problemtentamen

Tentamen i Mekanik SG1130, baskurs. Problemtentamen 013-03-14 Tentamen i Meani SG1130, basurs. OBS: Inga hjälpmedel förutom rit- och srivdon får användas KTH Meani 1. Problemtentamen En ub med massa m står lutad mot en vertial sträv vägg och med stöd på

Läs mer

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter

Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter Lonitudinell dynamik Fodonsdynamik med elein Modell med kaftjämvikt i lonitudinell led F tot = ma Jan Åslund jaasl@isy.liu.se Associate Pofesso Dept. Electical Enineein Vehicula Systems Linköpin Univesity

Läs mer

... !rlt{; I Å L. Sammanfattning av energideklaration Operan 12 2010-09-06

... !rlt{; I Å L. Sammanfattning av energideklaration Operan 12 2010-09-06 I I :Iti 'xni hi[^]t ;:N!lt{; I Å L Sammanfattning av enegideklaation Opean 12 2010-09-06 lndependia Enegi AB nu godkänt och skickat in e enegideklaation till Boveket Vi skicka en kopia på deklaationbn

Läs mer