Longitudinell dynamik. Fordonsdynamik med reglering. Longitudinell dynamik: Luftmotstånd. Longitudinell dynamik: Krafter
|
|
- Simon Ekström
- för 8 år sedan
- Visningar:
Transkript
1 Lonitudinell dynamik Fodonsdynamik med elein Modell med kaftjämvikt i lonitudinell led F tot = ma Jan Åslund jaasl@isy.liu.se Associate Pofesso Dept. Electical Enineein Vehicula Systems Linköpin Univesity Sweden Föeläsnin 2 Lonitudinella kafte som veka på bilen: Divande/bomsande kaft fån hjulen: F Rullmotstånd: R Gavitationskaftens komponent i lonitudinell led: R Luftmotstånd: R a Diffeentialekvation: m dv dt = F R R R a Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 1 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 2 / 30 Lonitudinell dynamik: Kafte På föeläsnin 1 ick ja ienom kaftena: Divande/bomsande kaft fån hjulen: F Rullmotstånd: R Gavitationskaftens komponent i lonitudinell iktnin dä W = m och θ s ä lutninen. R = W sin θ s Ja komme att använda konventionen att θ s ä positiv i uppfösbacka och neativ i nedfösbacka. Läoboken anta att θ s alltid ä positiv och skive R = ±W sin θ s. Lonitudinell dynamik: Luftmotstånd Luftmotståndet es av R a = ρ 2 C DA f V 2 dä ρ: Luftens densitet. C D : Koefficient som beo av fodonets fom. A f : Fontaean. V : Fodonets hastihet elativt luften. Om inet annat anes så anta vi att ρ = 1.225k/m 3 Empiisk fomel fö fontaean A f = (m 765) I tabell 3.1 kan ni hitta fontaean A f och koefficienten C D fö nåa bilmodelle. Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 3 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 4 / 30
2 Luftmotstånd: Vindtunnelfösök Fö att få liknande flödesfält fö en skalad modell som fö fodonet så skall podukten av kaakteistisk länd och hastihet vaa samma v Luftmotstånd Fiuen visa hu C D fö två lastbila beo av avståndet mellan dem 8v 3 l 3l 8 Anda faktoe som påveka flödesfältet ä Tunnelns tväsnittsaea Undelaets hastihet elativt bilen Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 5 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 6 / 30 Lyftkaft Tillämpnin: Masskattnin Anta att vi vill skatta massan m och att vi utå fån ekvationen Luftflödet e även upphov till en lyftkaft som man kan ta med i modellen R L = ρ 2 C LA f V 2 dä koefficienten C L kan kan bestämmas i ett vindtunnelpov ma = F R R R a Fö t.ex. en lastbil kan massan m vaiea mycket fån fall till fall eftesom lasten ofta utö en sto del av den totala massan. Massan kan vaa vikti att känna till t.ex. vid byte av växel elle elein av aspåda. Om vi kan mäta elle skatta allt utom m i ekvationen så kan t.ex. ett kalmanfilte användas fö att skatta massan m. Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 7 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 8 / 30
3 Masskattnin: Fall 1 Masskattnin: Fall 2 Anta att vi mäte hjulets otationshastihet och skatta hastiheten V. Potentiella poblem och svåihete: Vi skatta V, men acceleationen ä inte känd. Modelle fö den famåtdivande kaften F, ullmotståndet R och luftmotståndet R a ä ofta dålia. Lutninen θ S och dämed kaften R ä ofta helt okänd. Anta att vi även ha tillån till sinalen fån en acceleomete som mäte acceleationen i lonitudinell iktnin. Vilka födela e detta? Ekvationen fö den lonitudinella dynamiken kan skivas om till dä acceleometen mäte m(a + sin θ) = F R R a a + sin θ Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 9 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 10 / 30 Lonitudinell modell Fiu 3.1 Nu ta vi med även med momentet i modellen Fiu 3.1 visa alla kafte som veka på bilen vid en acceleation. Fö en stillastående bil på plan mak få vi W f + W = W W f l 1 W l 2 = 0 vilket e nomalkaftena W f = l 2 L W W = l 1 L W Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 11 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 12 / 30
4 Lonitudinell modell Studea nu det allmänna fallet. Om vi anta att h a = h d = h och välje momentpunkte på höjden h ovanfö punktena A och B få vi ekvationena vilka diekt e W f och W : och Wl 2 + LW f + h(f f R f ) + h(f R ) = 0 Wl 1 LW + h(f f R f ) + h(f R ) = 0 W f = l 2 L W h L (F R ) W = l 1 L W + h L (F R ) Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 13 / 30 Maximal acceleation Fö en bakhjulsdiven bil få vi F max = µw + f W = (µ + f ) ( l1 Lös ut F max F max = (µ + f )W (l 1 f h) L (µ + f )h Använde att R = f W L W + h ) L (F max R ) Fö en famhjulsdiven bil få vi på samma sätt ( l2 F max = (µ + f )W f = (µ + f ) L W h ) L (F max R ) och F max = (µ + f )W (l 2 + f h) L + (µ + f )h Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 14 / 30 Sidkafte: Intoduktion En bil som ha kommit lite snett: Sidkafte: Intoduktion Bomsa med bakhjulen så att de låse si: Röelseiktnin Röelseiktnin Vad vill famdäcken esp. bakdäcken? Famdäcken vill vida bilen motus (dålit!?) Bakdäcken vill vida bilen medus (ba!?) Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 15 / 30 Ge ett moment motus unt tyndpunkten och bilen vide si ännu me fån fädiktninen. Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 16 / 30
5 Sidkafte: Intoduktion Inbomsnin Bomsa med famhjulen så att de låse si: Röelseiktnin Fiu 3.47 visa kaftena vid en inbomsnin. På samma sätt som tidiae få vi nu W f = 1 L (Wl 2 + h(f b + f W )) och W = 1 L (Wl 1 h(f b + f W )) Ge ett moment medus unt tyndpunkten och bilen tendea att vida si tillbaka mot fädiktninen. Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 17 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 18 / 30 Fiu 3.47 Bomskaftfödelnin Hu ska födelninen mellan bomskaften på fam- esp. bakhjulen vaa fö att de ska låsa si samtidit? I detta fall ä den bomsande kaften F b så sto som möjlit: F bmax = µw f W Då ä bomskaften på famdäcken F bfmax = K bf F bmax = (µ f )W f = (µ f )W (l 2 + hµ) L och på bakdäcken F bmax = K b F bmax = (µ f )W = (µ f )W (l 1 hµ) L Föhållandet mellan kaftena ä då F bfmax = K bf = l 2 + hµ F bmax K b l 1 hµ Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 19 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 20 / 30
6 Bomskaftfödelnin: Altenativ analys Fåeställninen ä nu: Givet en bomskaftfödelnin, d.v.s. K bf och K b dä K bf + K b = 1, vid vilken etadation a låse si fam- esp. bakdäcken? Ta nu baa hänsyn till bomskaft och ullmotstånd. Då få vi F b + f W = W a, Böja med att betakta famhjulen. Nomalkaften es av W f = W (l 2 + a ) L h, Bomskaften på famhjulen ä då F bf = K bf F b = K bf W f Altenativ analys Famhjulen låse si nä F bf = µw f f W f Genom att substituea in sambanden ovan få vi K bf W f = (µ f )W (l 2 + a ) L h Föhållandet mellan etadation a och avitation nä famhjulen låse si ä = (µ f )l 2 /L + K bf f f K bf (µ f )h/l Med motsvaande analys fö bakhjulen få vi: = (µ f )l 1 /L + K b f K b + (µ f )h/l Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 21 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 22 / 30 Altenativ analys: Sammanfattnin Lonitudinell elein Givet en bomskaftfödelnin Famhjulen låse si föst om Bakhjulen låse si föst om f < < f Viktia elesystem CC Cuise Contol ACC Adaptive Cuise Contol CA Collision avoidance ABS Anti-Blockie-System dä kvotena es av tidiae uttyck. Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 23 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 24 / 30
7 Relein ACC Relein ACC Använde ada elle annan senso som mäte avståndet till fodonet famfö. Relea aspåda och boms Te olika mode Fathållae Hålla avstånd till fodon famfö Bomsa fö att undvika kollision Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 25 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 26 / 30 ACC Stabilitet ACC Stabilitet: Exempel Nä elemålet ä att hålla ett ivet avstånd till fodonet famfö betakta vi två sotes stabilitet Individuell stabilitet: Relefelet å mot noll om fodonet famfö hålle konstant hastihet Kaavanstabilitet: Relefelet föstäks inte nä det popaea bakåt i en kaavan dä samtlia fodon använde samma elemetod Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 27 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 28 / 30
8 ACC Stabilitet: Exempel ACC Stabilitet: Exempel Betakta en kaavan med bila dä x i, i = 1, 2,... ä bilanas position. Definiea δ i = x i x i 1 + L des dä L des ä önskat avstånd. Enkel lonitudinell modell ẍ i = u i dä u i ä insinal. Anta att vi använde oss av följande eulato u i = k p δ i k v δi Man kan visa att öveföinsfunktionen fö två på vaanda följande elefel es av G(s) = δ i(s) δ i 1 (s) = k v s + k p s 2 + k v s + k p Föstäknin bli då G(iω) = k 2 p + k 2 v ω 2 (k p ω 2 ) 2 + k 2 v ω 2 Det ä enkelt att visa att G(iω) > 1 fö ω < 2k p, vilket medfö att vi inte ha kaavanstabilitet Källa: Vehicle Dynamics and Contol, Rajesh Rajamani Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 29 / 30 Jan Åslund (Linköpin Univesity) Fodonsdynamik med elein Föeläsnin 2 30 / 30
Longitudinell reglering: Freightliners farthållare. Fordonsdynamik med reglering. Minimera bränsleförbrukning
Longitudinell reglering: Freightliners farthållare Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 8. Vi antar först att den givna bromsande kraften F = kx är den enda kraft som påverkar rörelsen och därmed också O
LEDIGAR TILL ROLEM I KAITEL 8 L 8. Vi anta föst att den givna bomsande kaften F = k ä den enda kaft som påveka öesen och dämed också O intängningsdjupet. Men veka ingen kaft i öeseiktningen? Fastän man
Läs merDen geocentriska världsbilden
Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade
Läs merTillbakablick: Övning 1.2. Fordonsdynamik med reglering. Stillastående bil. Sidkrafter: Frågeställning 1. R r. R g
Tillbakablick: Övning 1.2 Fordonsdynamik med reglering I c-uppgiften lutar vägen 0.5 grader och räknar man ut krafterna som verkar på bilen när bilen står still så ser det ut så här: Jan Åslund jaasl@isy.liu.se
Läs merREDOVISNINGSUPPGIFT I MEKANIK
Chiste Nbeg REDVISNINSUIFT I MEKANIK En civilingenjö skall kunna idealisea ett givet vekligt sstem, göa en adekvat mekanisk modell och behandla modellen med matematiska och numeiska metode I mekaniken
Läs merVågräta och lodräta cirkelbanor
Vågäta och lodäta cikelbano Josefin Eiksson Sammanfattning fån boken Ego fysik 13 septembe 2012 Intoduktion Vi ska studea koklinjig öelse i två dimensione - i ett plan. Våätt plan och lodätt plan Exempel
Läs merI ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0
Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde
Läs merGravitation och planetrörelse: Keplers 3 lagar
Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade
Läs merUpp gifter. c. Finns det fler faktorer som gör att saker inte faller på samma sätt i Nairobi som i Sverige.
Upp gifte 1. Mattias och hans vänne bada vid ett hoppton som ä 10,3 m högt. Hu lång tid ta det innan man slå i vattnet om man hoppa akt ne fån tonet?. En boll täffa ibban på ett handbollsmål och studsa
Läs merMatematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ
Läs merTentamen i Mekanik I del 1 Statik och partikeldynamik
Tentamen i Mekanik I del Statik och patikeldynamik TMME8 0-0-, kl 4.00-9.00 Tentamenskod: TEN Tentasal: Examinato: Pete Schmidt Tentajou: Pete Schmidt, Tel. 8 7 43, (Besöke salana ca 5.00 och 7.30) Kusadministatö:
Läs merTillbakablick: Övning 1.2. Fordonsdynamik med reglering. Stillastående bil. Sidkrafter: Frågeställning 1. R r. R g
Tillbakablick: Övning 1. Fordonsdynamik med reglering I c-uppgiften lutar vägen 0.5 grader och räknar man ut krafterna som verkar på bilen när bilen står still så ser det ut så här: Jan Åslund jaasl@isy.liu.se
Läs mer1 Två stationära lösningar i cylindergeometri
Föeläsning 6. 1 Två stationäa lösninga i cylindegeometi Exempel 6.1 Stömning utanfö en oteande cylinde En mycket lång (oändligt lång) oteande cylinde ä nedsänkt i vatten. Rotationsaxeln ä vetikal, cylindes
Läs mer1. Kraftekvationens projektion i plattans normalriktning ger att
MEKANIK KTH Föslag till lösninga vid tentamen i 5C92 Teknisk stömningsläa fö M den 26 augusti 2004. Kaftekvationens pojektion i plattans nomaliktning ge att : F ṁ (0 cos α) F ρv 2 π 4 d2 cos α Med givna
Läs merIntroduktion: Kurslitteratur. Fordonsdynamik med reglering. Introduktion: Laborationer. Introduktion. Theory of Ground Vehicles, J.Y.
Introduktion: Kurslitteratur Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Assistant Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Theory of Ground Vehicles,
Läs merω = θ rörelse i två dimensioner (repetition) y r dt radianer/tidsenhet kaströrelse: a x = 0 a y = -g oberoende rörelse i x- respektive y-led
y@md 7 6 5 4 3 1 öelse i två dimensione (epetition) kastöelse: a x = 0 a y = -g obeoende öelse i x- espektive y-led 10 0 30 kastpaabel x@md likfomig cikulä öelse d ( t) ω = θ dt adiane/tidsenhet y = konst.
Läs merV x + ΔV x ) cos Δθ V y + ΔV y ) sin Δθ V x ΔV x V y Δθ. Dela med Δt och låt Δt gå mot noll:
ABS: Tillbakablick Fordonsdynamik med reglering Jan Åslund jaasl@isyliuse Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Föreläsning 7 Man kan använda slippet
Läs merUPPGIFT 1. F E. v =100m/s F B. v =100m/s B = 0,10 mt d = 0,10 m. F B = q. v. B F E = q. E
UPPGIFT 1. B 0,10 mt d 0,10 m F B q. v. B F E q. E d e + + + + + + + + + + + + + + + + + + F E F B v 100m/s E U / d - - - - - - - - - - - - - - - - - F B F E q v B q U d Magnetfältsiktning inåt anges med
Läs merIntroduktion: Kurslitteratur. Fordonsdynamik med reglering. Introduktion: Laborationer. Introduktion. Theory of Ground Vehicles, J.Y.
Introduktion: Kurslitteratur Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Theory of Ground Vehicles,
Läs merFYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING LÖSNINGSFÖRSLAG. = fn s = fmgs 2. mv 2. s = v 2. π d är kilogrammets.
FYSIKÄVINGEN KVAIFICERINGS- OCH AGÄVING 5 febuai 1998 ÖSNINGSFÖRSAG SVENSKA FYSIKERSAMFUNDE 1. Den vanliga modellen nä en kopp glide på ett undelag ä att man ha en fiktionskaft som ä popotionell mot nomalkaften
Läs merLösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)
Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll
Läs merTentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
Läs merMekanik för I, SG1109, Lösningar till problemtentamen,
KTH Mekanik 2010 05 28 Mekanik fö I, SG1109, Lösninga till poblemtentamen, 2010 05 28 Uppgift 1: En lätt glatt stång OA kan otea king en fix glatt led i O. Leden i O sitte på en glatt vetikal vägg. I punkten
Läs merLÖSNINGAR TILL PROBLEM I KAPITEL 7
LÖIGAR TILL PROLEM I KAPITEL 7 LP 7.1 Hissen komme uppifån och bomsas så att acceleationen ä iktad uppåt. Filägg pesonen fån hissgolvet. Infö nomalkaften som golvet påveka föttena med. Tyngdkaften ä. Kaftekvationen
Läs mer7 Elektricitet. Laddning
LÖSNNGSFÖSLAG Fysik: Fysik och Kapitel 7 7 Elekticitet Laddning 7. Om en positiv laddning fös mot en neutal ledae komme de i ledaen lättöliga, negativt laddade, elektonena, att attaheas av den positiva
Läs merFö. 3: Ytspänning och Vätning. Kap. 2. Gränsytor mellan: vätska gas fast fas vätska fast fas gas (mer i Fö7) fast fas fast fas (vätska vätska)
Fö. 3: Ytspänning och Vätning Kap. 2. Gänsyto mellan: vätska gas fast fas vätska fast fas gas (me i Fö7) fast fas fast fas (vätska vätska) 1 Gänsytan vätska-gas (elle vätska-vätska) Resulteande kaft inåt
Läs merFöreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.
Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga
Läs merHeureka Fysik 2, Utgåva 1:1
Heueka Fysik, 978-91-7-5678-3 Utgåva 1:1 Sidan Va Rättelse 30 Rad 6 neifån 1 gt ska esättas med 1 gt 78 Lösning, ad 3 N -6 ska esättas med N 88 Rad 8 neifån e ev ska esättas e ev och v ska esättas med
Läs mersluten, ej enkel Sammanhängande område
POTENTIALFÄLT ( =konsevativt fält). POTENTIALER. EXAKTA DIFFERENTIALER Definition A1. En kuva = ( t), och ändpunkten sammanfalle. a t b ä sluten om ( a) = ( b) dvs om statpunkten Definition A. Vi säge
Läs merr r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:
Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä
Läs merMagnetiskt fält kring strömförande ledare Kraften på en av de två ledarna ges av
Magnetism Magnetiskt fält king stömföande ledae. Kaften på en av de två ledana ges av F k l ewtons 3:e lag säge att kaften på den anda ledaen ä lika sto men motiktad. Sva: Falskt. Fältets styka ges av
Läs merLösningar till övningsuppgifter. Impuls och rörelsemängd
Lösninga till övningsuppgifte Impuls och öelsemängd G1.p m v ge 10,4 10 3 m 13 m 800 kg Sva: 800 kg G. p 4 10 3 100 v v 35 m/s Sva: 35 m/s G3. I F t 84 0,5 Ns 1 Ns Sva: 1 Ns G4. p 900. 0 kgm/s 1,8. 10
Läs merAngående kapacitans och induktans i luftledningar
Angående kapacitans och induktans i luftledninga Emilia Lalande Avdelningen fö elekticitetsläa 4 mas 2010 Hä behandlas induktans i ledninga och kapacitans mellan ledae. Figu öve alla beskivninga finns
Läs merSammanfattande redovisning av rådslag/konferens om Folkbildningens framsyn
Eic Sandstöm Diekt telefon 044-781 46 29 E-post:eic.sandstom@fuuboda.se 2003-10-20 Till Folkbildningsådet Sammanfattande edovisning av ådslag/konfeens om Folkbildningens famsyn 1. Fakta om seminaiet/ådslaget
Läs merBästa däcken fram eller bak? Fordonsdynamik med reglering. Kurvtagning: Figur 5.5
Bästa däcken fram eller bak? Fordonsdynamik med relerin Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Enineerin Vehicular Systems Linköpin University Sweden Föreläsnin 5 Vikti fråa:
Läs merFFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektofält - Föeläsningsanteckninga Chistian Fossén, Institutionen fö fysik, Chalmes, Götebog, Sveige Oct 16, 2018 11. Elektomagnetiska fält och Maxwells ekvatione Vi stata med
Läs merStorhet SI enhet Kortversion. Längd 1 meter 1 m
Expeimentell metodik 1. EXPERIMENTELL METODIK Stohete, mätetal och enhete En fysikalisk stohet ä en egenskap som kan mätas elle beäknas. En stohet ä podukten av mätetal och enhet. Exempel 1. Elektonens
Läs merTENTAMEN. Datum: 5 juni 2019 Skrivtid 14:00-18:00. Examinator: Armin Halilovic, tel
Kus: HF9, Matematik, atum: juni 9 Skivtid :-: TENTAMEN moment TEN (analys Eaminato: Amin Halilovic, tel. 79 Fö godkänt betyg kävs av ma poäng. Betygsgänse: Fö betyg A, B, C,, E kävs, 9, 6, espektive poäng.
Läs mer1 Rörelse och krafter
1 Röelse och kafte 101. Man bö da vinkelätt mot vektyget. Kaften F beäknas då genom att momentet M = F! l " F = M l Sva: 40 N = 110 0,45 N = 44 N 10. a) Maximalt moment få Ebba i de ögonblick då kaften
Läs merÖvning 3 Fotometri. En källa som sprider ljus diffust kallas Lambertstrålare. Ex. bioduk, snö, papper.
Övning 3 Fotometi Lambetstålae En källa som spide ljus diffust kallas Lambetstålae. Ex. bioduk, snö, pappe. Luminansen ä obeoende av betaktningsvinkeln θ. Om vinkeln ändas ändas I v men inte L v. L v =
Läs merTemperaturmätning med resistansgivare
UMEÅ UNIVESITET Tillämpad fysik och elektonik Betil Sundqvist Eik Fällman Johan Pålsson 3-1-19 ev.5 Tempeatumätning med esistansgivae Laboation S5 i Systemteknik Pesonalia: Namn: Kus: Datum: Åtelämnad
Läs merDen enkla standardkretsen. Föreläsning 2. Exempel: ugn. Av/på-reglering. PID-reglering Processmodeller. r e u y
Föeläsning 2 Den enkla standadketsen PID-egleing Pocessmodelle e Reglato Pocess Negativ åtekoppling fån mätsignalen Reglaton bestämme stsignalen tifån eglefelet (contol eo)e= Rekommendead läsning: Feedback
Läs merTransient beteende. Fordonsdynamik med reglering. Transient beteende. Figur Använder ett koordinatsystem som är fixt i förhållande till bilen.
Transient beteende Använder ett koordinatsystem som är fixt i förhållande till bilen. Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular
Läs merFör att bestämma virialkoefficienterna måste man först beräkna gasens partitionsfunktion då. ɛ k : gasens energitillstånd.
I. Reella gase iialkoefficientena beo av fomen på molekylenas växelvekningspotential i en eell gas. Bestämmandet av viialkoefficientena va en av den klassiska statistiska mekanikens huvuduppgifte. Fö att
Läs mer===================================================
min Halilovic: EXTR ÖVNINGR 1 av 8 vstånsbeäkning VSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERT KOORDINTSYSTEM ) vstånet mellan två punkte Låt = ( x1, och B = ( x, y, z) vaa två punkte i ummet
Läs merLEDNINGAR TILL PROBLEM I KAPITEL 10. från jorden. Enligt Newtons v 2 e r. där M och m är jordens respektive F. F = mgr 2
LEDNINGA TILL POBLEM I KAPITEL LP Satelliten ketsa king joden oc påvekas av en enda kaft, gavitationskaften fån joden Enligt Newtons v e allänna gavitationslag ä den = G M e () v dä M oc ä jodens espektive
Läs merKap.7 uppgifter ur äldre upplaga
Ka.7 ugifte u älde ulaga 99: 7. Beäkna aean innanfö s.k. asteoidkuvan jj + jyj Absolutbeloen ha till e ekt att, om unkten (a; b) kuvan, så gälle detsamma (a; b) (segelsymmeti m.a.. -aeln), ( a; b) (segelsymmeti
Läs merVi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.
3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen
Läs merLÖSNINGAR TILL PROBLEM I KAPITEL 8
LÖSIGR TILL PROLEM I KPITEL 8 LP 8. Vi anta föst att den gina bomsande kaften F k ä den enda kaft som påeka öelsen och dämed också intängningsdjupet. Men eka ingen kaft i öelseiktningen? Fastän man i talspåk
Läs merKurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15
Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs
Läs mer21. Boltzmanngasens fria energi
21. Boltzmanngasens fia enegi Vi vill nu bestämma idealgasens fia enegi. F = Ω + µ; Ω = P V (1) = F = P V + µ (2) Fö idealgase gälle P V = k B T så: F = [k B T µ] (3) men å anda sidan vet vi fån föa kapitlet
Läs mer=============================================== Plan: Låt π vara planet genom punkten P = ( x1,
Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation
Läs mer2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)
1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells
Läs merKontrollskrivning Mekanik
Institutionen fö fysik, kemi och biologi (IFM) Macus Ekholm TFYA6/KTR Kontollskivning Mekanik novembe 06 8:00 0:00 Kontollskivningen bestå av 3 uppgifte som totalt kan ge 4 poäng. Fö godkänt betyg (G)
Läs mer14. Potentialer och fält
4. Potentiale och fält Vågekvationena fö potentialena educeas nu till [Giffiths,RMC] Fö att beäkna stålningen fån kontinueliga laddningsfödelninga och punktladdninga måste deas el- och magnetfält vaa kända.
Läs mer6 KVANTSTATISTIK FÖR IDEALA GASER
Kvantstatistik fö ideala gase 6 6 KVANTSTATISTIK FÖR IDEALA GASER 6. Fomuleing av det statistiska poblemet Vi betakta en gas av identiska patikla inneslutna i en volym V vilken befinne sig i ämvikt vid
Läs merNivåmätning Fast material Flytande material
Nivåmätning Fast mateial Flytande mateial Nivåmätning fö pocessindustin Nivåkontoll fö: Övefyllnadsskydd Batchkontoll Poduktmätning Lagekontoll Säkehetslam Skiljeyto Industie: Koss o Asfalt Olja o Gas
Läs merRepetion. Jonas Björnsson. 1. Lyft ut den/de intressanta kopp/kropparna från den verkliga världen
Repetion Jonas Björnsson Sammanfattning Detta är en kort sammanfattning av kursen Mekanik. Friläggning Friläggning består kortfattat av följande moment 1. Lyft ut den/de intressanta kopp/kropparna från
Läs merTvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.
villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och
Läs merInlämningsuppgifter till 21/2 2003
Inlämningsuppgifte till / 003. Föenkla µ / µ / Lena A.,9,0,7,83 Niklas E.,5,,73,8 My E. 9,3,,7,9 Sanda F. 8,33a,3,7,9. Skiv om följande uttyck utan ottecken i nämnaen: x + x 3. Skiv om utan ottecken i
Läs merx=konstant V 1 TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.
Amin Halilovic: EXTRA ÖVNINGAR Tangentplan Linjäa appoimatione TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vaa en dieentieba unktion i punkten a b
Läs mer2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)
Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:
Läs merTentamen i dynamik augusti 14. 5kg. 3kg
Tentamen i dynamik auusti 14 Uppift. Två massor, en på 5k och en på 3k, är sammankopplade av en tråd med konstant länd. Massorna lider friktionsfritt läns stänerna. Massorna är uppträdda på stänerna. En
Läs mer===================================================
Amin Halilovic: EXTRA ÖVNINGAR 1 av 9 Avstånsbeäkning AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avstånet mellan två punkte Låt A = ( x1, och B = ( x, y, z ) vaa två punkte
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 0-0-7 Hjälpmedel: Fomelsamlig med tabelle i statistik oc äkedosa Fullstädiga lösiga efodas till samtliga uppgifte. Lösigaa skall vaa väl motiveade
Läs merDatum: 11 feb Betygsgränser: För. Komplettering sker. Skriv endast på en. finns på omslaget) Uppgift. Uppgift 2 2. Uppgift. Beräkna.
Tetame i Matematisk aals, HF5 atum: feb Skivti: 8:-: Läae: Maia Aakela, Joas Steholm, Ami Halilovic Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 7 8 Fö gokät betg kävs av ma poäg Betgsgäse:
Läs merSkineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!
14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen
Läs merRelationsalgebra. Relationsalgebra består av en mängd operatorer som tar en eller två relationer som input och producerar en ny relation som resultat.
Database: Relationsalgeba 2-11 Relationsalgeba Relationsalgeba bestå av en mängd opeatoe som ta en elle två elatione som input och poducea en ny elation som esultat. De fundamentala opeationena ä unäa
Läs merElektriska Drivsystems Mekanik (Kap 6)
Elektiska Divsystems Mekanik (Kap 6) Newtons ana lag! En av e mea viktiga ynamiska ekvationena fö elektiska maskine. L ä beteckna vinkelhastigheten och kallas töghetsmoment. och L beteckna ivane moment
Läs merTentamen 1 i Matematik 1, HF1903, 22 september 2011, kl
Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,
Läs mer1 av 9. vara en icke-nollvektor på linjen L och O en punkt på linjen. Då definierar punkten O och vektorn e r ett koordinataxel.
Amin Haliloic: EXTRA ÖVNINGAR a 9 Base och koodinate i D-ummet BASER CH KRDINATER Vektoe i ett plan Vektoe i ummet BASER CH KRDINATER FÖR VEKTRER SM LIGGER PÅ EN RÄT LINJE Vi betakta ektoe som ligge på
Läs mer9 Rörelse och krafter 2
9 Röelse och afte Kastöelse 9.1 Just då stenen ä i banans hösta punt och ände fö att böja öa si nedåt ä den still i etialled. Stenens acceleation ä noll i hoisontalled unde hela öelsen. Sa: Sant 9. a)
Läs merLE2 INVESTERINGSKALKYLERING
LE2 INVESTERINGSKALKYLERING FÖRE UPPGIFTER... 2 2.1 BANKEN... 2 2.2 CONSTRUCTION AB... 2 2.3 X OCH Y... 2 UNDER UPPGIFTER... 3 2.4 ETT INDUSTRIFÖRETAG... 3 2.5 HYRA ELLER LEASA... 3 2.6 AB PRISMA... 3
Läs merPotentialteori Mats Persson
Föeläsning 3/0 Potentilteoi Mts Pesson Bestämning v elektiskt fält Elektosttikens ekvtione: Det elektisk fältet E bestäms v lddningsfödelningen ρ vi Guss sts E d = ρdv elle uttyckt på diffeentilfom V E
Läs merTENTAMEN. Datum: 11 feb 2019 Skrivtid 8:00-12:00. Examinator: Armin Halilovic Jourhavande lärare: Armin Halilovic tel
Kus: HF9, Matematik, atum: feb 9 Skivti 8:-: TENTAMEN momet TEN aals Eamiato: Ami Halilovic Jouhavae läae: Ami Halilovic tel 8 79 8 Fö gokät betg kävs av ma poäg Betgsgäse: Fö betg A, B, C,, E kävs, 9,
Läs merTFYA16/TEN2. Tentamen Mekanik. 29 mars :00 19:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen fö fysik, kei och biologi (IM) Macus Ekhol TYA16/TEN2 Tentaen Mekanik 29 as 2016 14:00 19:00 Tentaen bestå av 6 uppgifte so vadea kan ge upp till 4 poäng. Lösninga skall vaa välotiveade sat
Läs merDynamiken hos stela kroppar
Natulaga cbemen VT 6 Lekton 4 Dnamken hos stela koa Matn Sevn Insttutonen fö fsk Umeå unvestet -Sol boes (lke EATHLINGS) look sll, on t ou thnk, Koas? -Sll? Yes, Kang, but taste. Mmm! Novoe cow le Dagens
Läs merTentamen. TSFS 02 Fordonsdynamik med reglering 14 januari, 2017, kl. 8 12
Tentamen TSFS 02 Fordonsdynamik med reglering 14 januari, 2017, kl. 8 12 Hjälpmedel: Miniräknare. Ansvarig lärare: Jan Åslund, 281692. Totalt 50 poäng. Betygsgränser: Betyg 3: 23 poäng Betyg 4: 33 poäng
Läs merGrundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: Ladokkod: tentamen 145TG (41N19) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 1 juni 17 Tid: 9.-13. Hjälpmedel: Hjälpmedel
Läs merLösningsförslag nexus B Mekanik
Lösningsföslag 1 Mekanik 101. Stenen falle stäckan s. s gt 9,8 1, 6 m 1,6 m Sva: 1 m 10. Vi kan använda enegipincipen: mv mgh v gh Hastigheten vid nedslaget bli då: v gh 9,85 m/s 6 m/s Sva: 6 m/s 10. a)
Läs merHärled utgående från hastighetssambandet för en stel kropp, d.v.s. v B = v A + ω AB
. Härled utgående från hastighetssambandet för en stel kropp, d.v.s. v B v A + ω AB motsvarande samband för accelerationer: a B a A + ω ω AB + a AB. Tolka termerna i uttrycket för specialfallet plan rörelse
Läs merFörra föreläsningen. Reglerteknik AK F6. Repetition frekvensanalys. Exempel: experiment på ögats pupill. Frekvenssvar.
Regleteknik AK F6 Föa föeläsningen Nquistskiteiet (stabilitet) Stabilitetsmaginale Amplitud- och fasmaginal. Stabilitet. Rotot 3. Koefficient-villko (Routh-Huwitz) Läsanvisning: Kapitel 6 Repetition fekvensanals
Läs meri) oändligt många lösningar ii) exakt en lösning iii) ingen lösning?
TENTAMEN 7-Dec-8, HF6 och HF8 Moment: TEN (Linjä lgeb, hp, skiftlig tentmen Kuse: Anls och linjä lgeb, HF8, Linjä lgeb och nls HF6 Klsse: TIELA, TIMEL, TIDAA Tid: 8-, Plts: Cmpus Flemingsbeg Läe: Nicls
Läs merFöreläsning 7 Molekyler
Föeläsning 7 Molekyle Joniska bindninga Kovalenta bindninga Vibationsspektum Rotationsspektum Fyu0- Kvantfysik Kovalenta och joniska bindninga Atomena få en me stabil odning av elektonena i de yttesta
Läs merGrundläggande mekanik och hållfasthetslära
Gundläggande mekanik och hållfasthetsläa 7,5 högskolepoäng Pomoment: tentamen Ladokkod: A145TG (41N19A) Tentamen ges fö: Enegiingenjöe åskus 1 Tentamensdatum: 18-6-1 Tid: 14.-18. Hjälpmedel: Hjälpmedel
Läs merBiomekanik, 5 poäng Kinetik
Teori: F = ma Dessutom gäller, som i statien, Newtons 3: lag! Newtons lagar 1. Tröghetslagen: En ropp utan yttre raftpåveran förblir i sitt tillstånd av vila eller liformig, rätlinjig rörelse.. Accelerationslagen:
Läs merArbetsmiljöuppföljning IFO-FH enhet: Barn- och familjeenheten
Abetsmiljöuppföljig 2014 IFO-FH ehet: Ba- och familjeehete Iehållsföteckig 1 Uppföljig vå... 3 1.1 Abetsskado, otillåte påveka och tillbud... 3 1.2 Sjukfåvao... 3 1.3 Lågtidsfiska... 3 1.4 Abetsmiljöod
Läs merIE1206 Inbyggd Elektronik
IE6 Inbyggd Elektonik F F3 F4 F Ö Ö PIC-block Dokumentation, Seiecom Pulsgivae I, U, R, P, seie och paallell KK AB Pulsgivae, Menypogam Stat ö pogammeingsguppuppgit Kichos laga Nodanalys Tvåpolsatsen RR
Läs merTa ett nytt grepp om verksamheten
s- IT ä f f A tem, sys knik & Te Ta ett nytt gepp om veksamheten Vå övetygelse ä att alla föetag kan bli me lönsamma, me effektiva och me välmående genom att ha ätt veksamhetsstöd. Poclient AB gundades
Läs merUpp gifter. 3,90 10 W och avståndet till jorden är 1, m. våglängd (nm)
Upp gifte 1. Stålningen i en mikovågsugn ha fekvensen,5 GHz. Vilken våglängd ha stålningen?. Vilka fekvense ha synligt ljus? 3. Synligt ljus täffa ett gitte. Vilka fäge avböjs mest espektive minst?. Bestäm
Läs merBILDFYSIK. Laborationsinstruktioner LABORATIONSINSTRUKTIONER. Fysik för D INNEHÅLL. Laborationsregler sid 3. Experimentell metodik sid 5
LABORATIONSINSTRUKTIONER Laboationsinstuktione Fysik fö D BILDFYSIK INNEHÅLL Laboationsegle sid 3 Expeimentell metodik sid 5 Svängande fjäda och stava sid 17 Geometisk optik sid 21 Lunds Tekniska Högskola
Läs merTentamen Mekanik F del 2 (FFM521 och 520)
Tentamen Mekanik F del (FFM51 och 50 Tid och plats: Lösningsskiss: Fredagen den 17 januari 014 klockan 08.30-1.30. Christian Forssén Obligatorisk del 1. Endast kortfattade lösningar redovisas. Se avsnitt
Läs merBästa däcken fram eller bak? Fordonsdynamik med reglering. Kurvtagning: Figur 5.5
Bästa däcken fram eller bak? Fordonsdynamik med reglering Jan Åslund jaasl@isy.liu.se Associate Professor Dept. Electrical Engineering Vehicular Systems Linköping University Sweden Föreläsning 5 Viktig
Läs merTentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan
Tentamen i matematisk statistik, Statistisk Kvalitetsstyning, MSN320/TMS070 Lödag 2006-12-16, klockan 14.00-18.00 Examinato: Holge Rootzén Jou: Jan Rolén, tfn: 0708-57 95 48 Betygsgänse GU: G: 12-21.5,
Läs merYlioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIKPROV, LÅNG LÄROKURS 904 BESKRIVNING AV GODA SVAR De beskivninga av svaens innehåll och oängsättninga som ges hä ä inte bindande
Läs merLösningar och svar till uppgifter för Fysik 1-15 hösten -09
Lösninga och sa till uppgifte fö ysik -5 hösten -09 Röelse. a) -t-diaga 0 5 0 (/s) 5 0 5 0 0 0 0 0 0 50 t (s) b) Bosstäckan ges a 0 + s t 5 /s + 0 /s 5.0 s 6.5 < 00 Rådjuet klaa sig, efteso bosstäckan
Läs merTentamen i Energilagringsteknik 7,5 hp
UMEÅ UNIVERSIE illämpad fysik och elektonik Las Bäckstöm Åke Fansson entamen i Enegilagingsteknik 7,5 hp Datum: -3-5, tid: 9. 5. Hjälpmedel: Kusboken: hemal Enegy Stoage - systems and applications, Dince
Läs merθ = M mr 2 LÖSNINGAR TILL PROBLEM I KAPITEL 10 LP 10.1
LÖNINGR TILL PRLE I KPITEL 10 LP 10.1 Kuln och stången påeks föutom et gin kftpsmomentet tyngkften, en ektionskft och ett kftmoment i eln. Vken tyngkften elle ektionskften ge något kftmoment me seene på
Läs merDitt nya drömboende finns här. I Nykvarn. 72 toppmoderna hyresrätter 1-4 rum och kök i kv. Karaffen.
Ditt nya dömboende finns hä. I Nykvan. 72 toppmodena hyesätte 1-4 um och kök i kv. Kaaffen. Fötätning i centalt läge. Kaaffen bestå av två punkthus om sex våninga samt två tevånings vinkelhus, samtliga
Läs mer