Bastermin MA0021, MA0023 vt16 del2,

Storlek: px
Starta visningen från sidan:

Download "Bastermin MA0021, MA0023 vt16 del2,"

Transkript

1 Bstermin MA00, MA00 vt6 del, Hjälmedel: Penn, suddgummi, linjl oc grdskiv! oäng/delugift Skriv tydligt oc skriv tydlig svr! Motiver väl! Endst svr cceters ej! Förenkl lltid så långt som möjligt! Lyck till! Mts Bestäm det störst oc det minst värde som funktionen f = - - ntr i intervllet ÅÅ -. Lösningsförslg: f = - - f ' = - - f ' = 0 ñ - - = 0 = = + = = = - = ÅÅ - f = f = - - =- f = f ÅÅ - = ÅÅÅ - - ÅÅ - - ÅÅ - = ÅÅ - se även ändunkter f ÅÅÅ - = ÅÅ - - ÅÅ - - ÅÅ - = ÅÅÅ f = - - = = Störst = Minst = - f_ : v. Solvef' 0, - Å, f,fv, fv, f % N Å 8,, -, 0., 0.88, -.,. Plot,,,; = ÅÅ =

2 . Beräkn 0 cos ÅÅ Lösningsförslg: cos ÅÅ d vribelsubstitution u = Å du = ÅÅÅ d ñ du = d gränsern då = 0 fl u = 0 oc = flu = 0 0 cos u u = sinu 0 = sin - sin0 = Å - 0 = Cos 0, ÅÅÅ, ÅÅÅ. Bestäm f ' då f = 0 ln Å ÿ Cosuu Lösningsförslg:. f = ln ÿ f ' = Å f ' = Å = Å ÿ-ln ÿ Å ÅÅ -lnÿ ÿ ln kvotregel -ln = Å ÅÅ = ÅÅÅ -ln f_ : Log f' log. Bestäm normlens ekvtion i den unkt där = till funktionen y = - -. Lösningsförslg: Då 0 = är y 0 = - - =- y = - - ; y' =--, y' 0 =--ÿ =- Normlens ekvtion y n beräknd med enunktsformeln Ø y t - y 0 = - y' 0-0 y t - - = ÅÅ - - ñ - y t = Å - f_ : y n Solvey f y Ø Å -, ysimlify First f'

3 Ploty. y n,f,,,, AsectRtio Automtic; Skriv det komle tlet z = Â ÿ Âÿ å rektngulär form Lösningsförslg: z = Â ÿ Âÿ Euler s identitet r Âj = rcosj +Âsinj z = Â cos +Âsin =-Âcos +Âsin =-Â - Â. Co 0 + Â = 6. Bestäm den rimitiv funktion F som ufyller F ÅÅÅ = 0 då f = sin ÅÅ + Lösningsförslg: f = sin ÅÅ + F = ÅÅ - cos ÅÅ + + C F ÅÅÅ = 0 ñ ÅÅ - cos ÿ ÅÅÅ +ÿ ÅÅÅ + C = 0 ñ ÅÅ - F = ÅÅ - cos ÅÅ þ + - þ C = 0 fl C = - þ

4 F_ Sin K F. SolveF 0, K First K + - Å cos - Å cos -. Bestäm rgumentet v + ÅÅÅ - Â. Svr ekt.(tis: Gå över till eonentiel form) Lösningsförslg : Låt w = ÅÅÅ + -  - = +  - ÿ +   + = + Â+Â- = - ++  ÅÅ Â w = + Lösningsförslg : Låt w = ÅÅÅ + Abs rg w = rctn Å + - += rctn + Å ÿ + Å += rctn +=rctn  Går över till eonentiel form Arg + = rctn = Arg -  = rctn - = ÅÅ - Abs + = Abs -  = - =  Š= Å Â - Š -- = Âÿ ÅÅÅ + = w = + rg w = Arg FullSimlify ArcTn

5 8. Bestäm f ' då f = - ln 9 Lösningsförslg: f = - ln 9 f = u 9 u = - ln = ÅÅ v - lnv v = f ' = Å df du * Å du dv * Å dv d = 9 u 8 * - v * = 9 - ln 8 * - ÅÅÅ ÿ = 9 - ln 8 ÿ - D Log 9,Simlify 9 - log - 8 ÅÅÅ 9. Bestäm f ' med jäl v derivtns definition då f = + Lösningsförslg: f ' = lim f +- f Å = lim + Å ++- Å + lim + Å +- ÅÅ = lim + ÅÅÅ ÅÅÅ ÅÅÅ Å f_ : f' - ÅÅÅ lim +- Å = lim = = + - Å + = - Å

6 0. Kurvn y = - begränsr tillsmmns med linjern y = oc y = +. ett område i först kvdrnten. Bestäm ren v dett område. Du beöver br ställ u integrlern. Lösningsförslg: Let brytunktern + = ñ ÅÅ = fl = ÅÅ 0 - = + ñ + = 0 fl = 0 skll vr i först kvdrnten = ÅÅ - - = ñ + - = 0 fl =- + + = skll vr i först kvdrnten =-- + =- ögr delren 0 ÅÅ + - = 0 ÅÅ - ÅÅ = - ÅÅ Å ÿ Å 0 - ÿ Å 0 - ÿ - ÿ = Å 0-0 Å Å Å Å Å vänstr delren ÿ = ÿ ÿ9 - ÿ 9 9 = = Å = Å Å 0 = Å + Å + = + = Å 8 + Å = Å +9 = Å = Å 9.e = Å Å Å totlre = 9 f_ : g_ : _ :. Solvef Lst. Solvef g Lst. Solve g Lst 0 ÅÅ - Å 0 = + 0 Å = 0 0 A f A g A A

7 Grics`FilledPlot` FilledPlot, g, f,, 0,, AsectRtio Automtic;

MA0021, MA0022, MA0023

MA0021, MA0022, MA0023 Bastermin MA00, MA00, MA00 vt del, 0-08- Hjälmedel: Penna, suddgummi, linjal och gradskiva! oäng/delugift. Skriv tydligt och skriv tydliga svar! Motivera väl! Endast svar acceteras ej! Förenkla alltid

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V Intervllet [,] är ändligt, dvs gränsern, är reell tl och INTE ± V Funktionen f () är egränsd i intervllet

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

Mat-1.1510 Grundkurs i matematik 1, del III

Mat-1.1510 Grundkurs i matematik 1, del III Mt-.50 Grundkurs i mtemtik, del III G. Gripenberg TKK december 00 G. Gripenberg TKK) Mt-.50 Grundkurs i mtemtik, del III december 00 / 59 Vribelbyte F gx))g x) dx = d F gx)) dx dx = / b F gx)) = F gb))

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I,.hp, 9-8- Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst vrsblnketten sk lämns in! Inget tentmensomslg! vrslterntiv

Läs mer

Komplexa tal. j 2 = 1

Komplexa tal. j 2 = 1 Komplex tl De komplex tlen nvänds när mn behndlr växelström inom elektroniken. Imginär enheten beteckns i elektroniken med j (i, som nvänds i mtemtiken, är ju upptget v strömmen). Den definiers v j = 1

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

y > 0, 0 < y <1 y växande, 0 < y < 1

y > 0, 0 < y <1 y växande, 0 < y < 1 Lösningsförslg till tentmensskrivning i Diff & Trns I, 5B12 och Diff & Trns I för LV, 5B122 Fredgen den 2 ugusti 24, kl 14-19 DEL1: 1 Betrkt differentilekvtionen y y (y -1)(y - 3), där y y(t) och t nger

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I,.hp, 8-- Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst vrsblnketten sk lämns in! Inget tentmensomslg! vrslterntiv

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.

201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f. Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna

Läs mer

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22)

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22) Krzysztof Marciniak, ITN Linköings universitet tfn 0-6 0 krzma@itn.liu.se Lösningar till tentamen TEN i Envariabelanalys I (TNIU ) för BI 0-04- kl. 08.00.00. a) Gränsvärdet är av ty 0 0 så enligt faktorsatsen

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I, 7.5hp, -- Hjälpmedel: Penn, rdergummi oh rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst Svrsblnketten sk lämns in! Inget tentmensomslg! Svrslterntiv

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel

Lösningsförslag till deltentamen i IM2601 Fasta tillståndets fysik. Torsdagen den 15 mars, Teoridel Millerindex Lösningsförslg till deltentmen i IM61 Fst tillståndets fysik Torsdgen den 15 mrs, 1 Teoridel 1. ) Millerindex för ett tompln bestäms med följnde principiell metod. i) Bestäm plnets skärningspunkter

Läs mer

Inför tentamen i Analys I och II, TNA008

Inför tentamen i Analys I och II, TNA008 Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

TentamensKod:

TentamensKod: ENEGITEKNIK 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4ET07 Bt TentmensKod: ------------------------------------------------------------------------------------------------------- Tentmensdtum:

Läs mer

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b

Sats 3: Egenskaper. (a) (b) f(x) dx = 2 f(x) dx. (c) (Af(x) + Bg(x))dx. g(x) dx = A. (d) (e) Om a b och f(x) g(x) (f) Triangelolikheten: Om a b Sts 3: Egenskper () f(x) dx = 0 (b) f(x) dx = b f(x) dx (c) (Af(x) + Bg(x))dx = A f(x) dx + B g(x) dx (d) f(x) dx + c c f(x) dx = b f(x) dx (e) Om b och f(x) g(x) f(x) dx g(x) dx (f) Tringelolikheten:

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE.

============================================================ V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE. GENERALISERADE INTEGRALER ============================================================ När vi definierr Riemnnintegrl ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b].

V1. Intervallet [a,b] är ändligt, dvs gränserna a, b är reella tal och INTE ±. är begränsad i intervallet [a,b]. Armin Hlilovic: ETRA ÖVNINGAR Generliserde integrler GENERALISERADE INTEGRALER När vi definierr Riemnnintegrl f ( ) d ntr vi tt följnde två krv är uppfylld: V. Intervllet [,] är ändligt, dvs gränsern,

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Numerisk Integration En inledning för Z1

Numerisk Integration En inledning för Z1 Numerisk Integrtion En inledning för Z1 Jörgen Löfström Reviderd v TG 1 Olik typer v fel 1.1 Avrundningsfel och trunkeringsfel Vid ll numerisk beräkning förekommer två huvudtyper v fel, vrundningsfel och

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.

Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B. Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller vbildning ) rån en mängd A till en mängd B är en regel som till någr element i A ordnr högst ett element i B. Att

Läs mer

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22)

Lösningar till tentamen TEN1 i Envariabelanalys I (TNIU 22) Krzysztof Marciniak, ITN Linköings universitet tfn 0-36 33 0 krzma@itn.liu.se Lösningar till tentamen TEN i Envariabelanalys I (TNIU ) för BI 0--4 kl. 08.00 3.00. Enligt den geometriska betydelsen av derivatan

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

MA2001 Envariabelanalys

MA2001 Envariabelanalys MA2001 Envariabelanalys Något om derivator del 1 Mikael Hindgren 11 november 2018 Derivatans definition Exempel 1 s-t-graf för ett föremål i rörelse. s(0) = 0. s s = v t Hastigeten konstant: Rät linje

Läs mer

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING.

TILLÄMPNINGAR AV INTEGRALER. VOLYMBERÄKNING. Armin lilovic: EXTA ÖNINGA olmeräkning TILLÄMPNINGA A INTEGALE. OLYMEÄNING. uvud verktg för volmeräkning är duelintegrl som tillör kursen i flervrielnls, men någr volmeräkningr kn vi gör med jälp v enkelintegrl.

Läs mer

Lösningsförslag till fråga 5

Lösningsförslag till fråga 5 Lösningsförslg till fråg 5 Smmnfttning Följnde lceringr för unktern, som frmgår v Tbell, är de bäst vi hr funnit. Utförligre beskrivningr v ders lägen följer i texten: Fråg ), n unkter i en kvdrt n Plcering

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

Area([a; b] [c; d])) = (b a)(d c)

Area([a; b] [c; d])) = (b a)(d c) Aren och integrl Summor Huvudämne i föreläsningen är reor v gurer i plnet och integrler. Integrl är ett egrepp som låter de nier reor v gurer i plnet, och speciellt eräkn reor melln grfer v funktioner

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola

Derivata och integral tolkning av definitionerna med hjälp av Maxima. Per Jönsson, Malmö högskola Derivt oc integrl tolkning v definitionern med jälp v Mxim Per Jönsson, Mlmö ögskol 1 Derivtns definition Betrkt en funktion f(x). Differenskvoten f(x + ) f(x) kn geometriskt tolks som riktningskoefficienten

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

Dagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer

Dagens ämnen. Repetition: kvadratiska former och andragradskurvor Andragradsytor System av differentialekvationer Dgens ämnen Repetition: kvdrtisk former oh ndrgrdskurvor Andrgrdsytor System v differentilekvtioner Rng, signtur oh tekenkrktär Sts 9.1.11. Låt Q: E R, dim E = n vr en kvdrtisk form. Då gäller λ min u

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I, 7.hp, 6--8 Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst Svrsblnketten sk lämns in! Inget tentmensomslg!

Läs mer

6 Greens formel, Stokes sats och lite därtill

6 Greens formel, Stokes sats och lite därtill 6 Greens formel, tokes sts och lite därtill 6.1 Greens formel i låter de två sklärvärd funktionern P (, ) och Q(, ) vr kontinuerligt deriverbr i ett öppet område i -plnet. Området begränss v en positivt

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Beräkningsvetenskap Per Lötstedt, tel. 47 2986 Saleh Rezaeiravesh Tentamen i Beräkningsvetenskap II, 5.0 hp, 206-0-4 Skrivtid: 4 00 7 00 (OBS!

Läs mer

Tillämpad Matematik I Övning 4

Tillämpad Matematik I Övning 4 HH/ITE/BN Tillämpd Mtemtik I, Övning 8 6 Tillämpd Mtemtik I Övning 6 8 Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm,

Läs mer

Om stationära flöden och Gauss sats i planet

Om stationära flöden och Gauss sats i planet Om sttionär flöden och Guss sts i plnet Anders Källén MtemtikCentrum LTH nderskllen@gmil.com Smmnfttning Här diskuterr vi den mtemtisk formuleringen v det uppenbr fktum tt om vi hr en ström v prtiklr genom

Läs mer

Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln

Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln Bastermin HT, Matematik Högskolan i Halmstad Version 00-08-0/0-08-5 Bertil Nilsson/Mats Gunnarsson Häfte A Algebra Negativa tal, Parenteser, Potenser, Bråk, Kvadreringsreglerna, Konjugatregeln. Förenkla

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1

Ï x: 0 Æ 1 Ì [ ] y > 0, 0 < y <1 y växande, 0 < y < 1 Tentmensskrivning i Mtemtik IV, 5B2 Fredgen den 2 ugusti 24, kl 4-9 Hjälmedel: BETA, Mthemtics Hndook Redovis lösningrn å ett sådnt sätt tt eräkningr och resonemng är lätt tt följ Svren skll ges å reell

Läs mer

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation

Föreläsning 10, Numme K2, GNM Kap 6 Integraler & GNM 8:3C Richardsonextrapolation Föreläsning, Numme K2, 72 GNM Kp 6 Integrler & GNM 8:C Richrdsonextrpoltion yc yd y y y2 yb H c d b A = H ( ) y +y 2 = H 2 { h 2 y + } A = A +A 2 +A = 2 y 2 = h 2 y +y c +y d + 2 y b 2 (y +y c )+ h 2 (y

Läs mer

$1)1-.!?$ÄiÂÄ ÜG aý* J_5=1%

$1)1-.!?$ÄiÂÄ ÜG aý* J_5=1% :!"#$!!$ %& '$& & &: (7G (%"# I! "!"7':!#"!! *"! :TR--! [$`Q QQ([$ 0, $!, A$!4#!,'$! $!"! D #$!!$8!$ -!"!8!$0! $% H # # < O @ ': < \ -(4 \4(^# 7 Z 9 N #D? U! ':,c*",c ': 9T9 &*Nc9@R'9@W@CE '9 'L 9J!0&:9I^;&*

Läs mer

Lösningar till uppgifter i magnetostatik

Lösningar till uppgifter i magnetostatik Lösningr till uppgifter i mgnetosttik 16-1-14 Uppgift 1 Metodvl: Biot-Svrts lg ing symmetrier som kn nvänds. Biot-Svrts lg evluerd i origo r = är B = µ 4π dr r r = µ dr r 4π r Linjeelementet dr bestäms

Läs mer

Studieplanering till Kurs 3b Grön lärobok

Studieplanering till Kurs 3b Grön lärobok Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång

Läs mer

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5)

= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5) Matematikcentrum Matematik NF Räta linjen. Ange riktningskoefficient och skärningspunkter me alarna för följane linjer. a) y = 5 b) = y + 5 c) y = 5 + ) + y + = 0 e) y 4 = 0 f) + y = g) y 5 = h) y = 4

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013

Analys grundkurs B lab 1. Stefan Gustafsson Per Jönsson Fakulteten för Teknik och Samhälle, 2013 Anlys grundkurs B lb 1 Stefn Gustfsson Per Jönsson Fkulteten för Teknik och Smhälle, 13 1 Viktig informtion om lbortionern Lbortionsdelen på kursen i kursen Anlys grundkurs B exminers genom tt mn gör två

Läs mer

= y(0) 3. e t =Ce t, y = =±C 1. 4 e t.

= y(0) 3. e t =Ce t, y = =±C 1. 4 e t. Löningförlg till tentmenkrivning i SF16 Differentilekvtioner I Tidgen den 8 jnuri 1, kl 14-19 Hjälpmedel: BETA, Mthemtic Hndbook Redovi löningrn på ett ådnt ätt tt beräkningr och reonemng är lätt tt följ

Läs mer

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015

KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 KOMPLETTERANDE MATERIAL TILL KURSEN MATEMATIK II, MATEMATISK ANALYS DEL A VT 2015 ANDRZEJ SZULKIN 1. Supremum, infimum och kontinuerlig funktioner I ppendix A3 i [PB2] definiers begreppen supremum och

Läs mer

KONTROLLSKRIVNING. Matematik I för basåret. och Jonas Stenholm

KONTROLLSKRIVNING. Matematik I för basåret. och Jonas Stenholm KONTROLLSKRIVNING Kursnuer: Moen: Progr: Rände lärre: Einor: Du: Tid: Hjälpedel: Oning oc beygsgränser: HF00 Meik I ör bsåre KS Teknisk bsår Håkn Sröberg, Mrin Arkelyn oc Jons Senol Nicls Hjel 0-- 8. 0.00

Läs mer

Tentamen i ETE115 Ellära och elektronik, 25/8 2015

Tentamen i ETE115 Ellära och elektronik, 25/8 2015 Tentmen i ETE5 Ellär och elektronik, 5/8 05 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. Bestäm Thévenin-ekvivlenten

Läs mer

MA2018 Tillämpad Matematik III-ODE, 4.0hp,

MA2018 Tillämpad Matematik III-ODE, 4.0hp, MA2018 Tillämpad Matematik III-ODE,.0hp, 2018-08-13 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten

Läs mer

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning.

Tillämpning - Ray Tracing och Bézier Ytor. TANA09 Föreläsning 3. Icke-Linjära Ekvationer. Ekvationslösning. Tillämpning. TANA09 Föreläsning 3 Tillämpning - Ry Trcing och Bézier Ytor z = B(x, y) q o Ekvtionslösning Tillämpning Existens Itertion Konvergens Intervllhlveringsmetoden Fixpuntsitertion Newton-Rphsons metod Anlys

Läs mer

TEN2. Moment: Program: Rättande. lärare: st & Jonas Stenholm Niclas Hjelm Datum: Tid: lösningar. Lycka till!

TEN2. Moment: Program: Rättande. lärare: st & Jonas Stenholm Niclas Hjelm Datum: Tid: lösningar. Lycka till! TENTAMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omttning oc betygsgränser: HF HF Mtemtikk C TEN Tekniskt bsår Anders Clennder, Svnte Grnqvis st & Jons Stenolm Nicls

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

EGENVÄRDEN och EGENVEKTORER

EGENVÄRDEN och EGENVEKTORER EGENVÄRDEN och EGENVEKTORER Definition. (Linjär vbildning) En funktion T från R n (n-dimensionell vektorer) till R m (m-dimensionell vektorer) säges vr en linjär vbildning ( linjär funktion eller linjär

Läs mer

TMV225 Kapitel 3. Övning 3.1

TMV225 Kapitel 3. Övning 3.1 TMV225 Kapitel 3 Övning 3. Bestäm gränsvärdet och bestäm δ som funktion av ε. a) lim 3 [ 2 3 + 5] Vi har givet att 3, och då funktionen är kontinuerlig får vi gränsvärdet ȳ 5 genom att stoppa in. Per definition

Läs mer

ENVARIABELANALYS - ETT KOMPLEMENT

ENVARIABELANALYS - ETT KOMPLEMENT ENVARIABELANALYS - ETT KOMPLEMENT DAN STRÄNGBERG Innehåll Smmnfttning. Vd som börjde som föreläsningsnteckningr till en repetitionskurs i envribelnlys hr utvecklts till dett kompendium som är ment som

Läs mer

TATA42: Tips inför tentan

TATA42: Tips inför tentan TATA42: Tips inför tentn John Thim 25 mj 205 Syfte Tnken med dett kort dokument är tt ge lite extr studietips inför tentn. Kursinnehållet definiers så klrt fortfrnde v kursplnen och kurslitterturen så

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2012-08-16 kl. 8.00-13.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

TENTAMEN: DEL B Reglerteknik I 5hp

TENTAMEN: DEL B Reglerteknik I 5hp TENTAMEN: DEL B Reglerteknik I 5hp Tid: Fredag 4 mars 204, kl. 3.00-6.00 Plats: Magistern Ansvarig lärare: Hans Norlander, tel. 08-473070. Hans kommer och svarar på frågor ungefär kl 4.30. Tillåtna hjälpmedel:

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpad Matematik I, 7.hp, 9-6- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas in! Inget

Läs mer

Mat Grundkurs i matematik 1, del III

Mat Grundkurs i matematik 1, del III Mt-1.1510 Grundkurs i mtemtik 1, del III G. Gripenberg TKK 2 december 2010 G. Gripenberg (TKK) Mt-1.1510 Grundkurs i mtemtik 1, del III 2 december 2010 1 / 59 Vribelbyte b F (g(x))g (x) dx = b d F (g(x))

Läs mer

Tentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för:

Tentamen 41K02B En1. Provmoment: Ladokkod: Tentamen ges för: ENEGITEKNIK I 7,5 högskoleoäng rovmoment: Ldokkod: Tentmen ges för: Tentmen 4K0B En Nmn: ------------------------------------------------------------------------------------------------------- ersonnummer:

Läs mer

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232)

Lösningsskiss för tentamen Vektorfält och klassisk fysik (FFM234 och FFM232) Lösningsskiss för tentmen Vektorfält och klssisk fysik (FFM34 och FFM3) Tid och plts: Måndgen den 3 oktober 07 klockn 4.00-8.00 i Mskinslrn. Lösningsskiss: Christin Forssén Dett är enbrt en skiss v den

Läs mer

`

` 1 2 3 4 2 5 2 6 7 8 9 : ; < 8 9 ; 7 9 : = < 8 > 8 9 7? 8 @ A 7 B : ; < B = C D E F G H I J K L G M M E I H E N O G J E H I P I K L Q R L H E I S P R H L P H E P T F L D U S L J V W X C D Y I J J I Z I

Läs mer

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp Övningstentamen i MA Tillämpad Matematik I,.hp Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2011 3. Kravgränser 4. Del I, 8 uppgifter utan miniräknare 5. Del II, 9 uppgifter med miniräknare 8 Kurs plnering.se NpMC vt011 1(9) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 011 Krvgränser 4 Del I, 8 uppgifter utn miniräknre 5 Del II, 9 uppgifter med miniräknre 8 Förslg på lösningr

Läs mer

SERIER OCH GENERALISERADE INTEGRALER

SERIER OCH GENERALISERADE INTEGRALER SERIER OCH GENERALISERADE INTEGRALER MARTIN TAMM. Inledning Då och då hr vi i tidigre urser ställts inför problemet tt hnter summor med oändligt mång termer, t e Eempel. () eller Eempel. () = ( ) = + +

Läs mer

Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid:

Rättande lärare: Niclas Hjelm & Sara Sebelius Examinator: Niclas Hjelm Datum: Tid: TENTAMEN Kursummer: HF00 Mtemtik för bsår I Momet: TENA /TEN Progrm: Tekiskt bsår Rättde lärre: Nicls Hjelm & Sr Sebelius Emitor: Nicls Hjelm Dtum: Tid: 08-06-0 :00-7:00 Hjälpmedel: Formelsmlig: ISBN 978-9-7-779-8

Läs mer

Tentamen ETE115 Ellära och elektronik för F och N,

Tentamen ETE115 Ellära och elektronik för F och N, Tentmen ETE5 Ellär och elektronik för F och N, 009 087 Tillåtn hjälpmedel: formelsmling i kretsteori och elektronik. Oserver tt uppgiftern inte är ordnde i svårighetsordning. All lösningr skll ges tydlig

Läs mer

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien.

0 a. a -Â n 2 p n. beskriver på sedvanligt sätt en a-periodisk utvidgning av f. Nedanför ritas en partialsumma av Fourierserien. Sinus- och cosinusserier I slutet v kursen där vi skll lös differentilekvtioner på ändlig intervll v typen H, L, behöver vi konstruer Fourierserier med en viss typ v uppförnde i intervllens ändpunkter.

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna 21-25. Föreläsning 21, 27/1 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning, 7/ 00: Genomgånget på föreläsningrn - 5. Generliserde integrler. Vi hr vist tt den bestämd integrlen I b f

Läs mer

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018

Föreläsning 7. SF1625 Envariabelanalys. Hans Thunberg, 13 november 2018 Föreläsning 7 SF1625 Envariabelanalys 13 november 2018 SF1625 CDEPR1, CENMI1, CLGYM TEMI2 HT18 F7 1 / 23 Dagens teman: exponentialfunktioner och logaritmer standardgränsvärden tillväxtproblem SF1625 CDEPR1,

Läs mer

TENTAMEN Reglerteknik 3p, X3

TENTAMEN Reglerteknik 3p, X3 OBS: Kontrollera att du har fått rätt tentamen! Denna tentamen gäller i första hand för Reglerteknik 3p. På sista sidan av tentamen finns ett försättsblad, som ska fyllas i och lämnas in tillsammans med

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Tentamen i ETE115 Ellära och elektronik, 3/6 2017

Tentamen i ETE115 Ellära och elektronik, 3/6 2017 Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V

Läs mer