MA2003 Tillämpad Matematik I, 7.5hp,

Storlek: px
Starta visningen från sidan:

Download "MA2003 Tillämpad Matematik I, 7.5hp,"

Transkript

1 MA Tillämpd Mtemtik I, 7.hp, 6--8 Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst Svrsblnketten sk lämns in! Inget tentmensomslg! Svrslterntiv i Bold Courier New sk tolks som tet i en Input Cell. Övrig tet som i en Tet Cell. Beteckningr enligt konventionen i kompendieserien "Något om...". För bedömning och betgsgränser se kursens hemsid. Lösningsförslg nslås på kursens hemsid efter tentmen. Lck till! Bertil Del A poäng med fokus på räknefärdighet för hnd, smt grundläggnde färdighet i Mthemtic.. Beräkn rgz z, då z och z betder komplekonjugt. (p) Lösningsförslg: Först w z z b b :, så rgwrctn b rctn w, Argw. w z z. z. Mthemtic väljer närmst vägen, Rätt svrslterntiv: d 7 6 b c d. För det komple tlet z är bsz och rgz. Skriv z på rektngulär form. (p) Lösningsförslg: Vi hr Pot.lgr Eulercos sin. b c d. Lös ekvtionen z z, där z betder komplekonjugt. (p) Lösningsförslg: Ansätt z b. Sedn krvet på likhet melln komple tl, med ndr ord identifier rel- och imginärdelr. b z z b b : Likhet Re : b bb Im : b b En sist ängslig test... Solvez z b. z b c d. Låt f sin,, 6. Bestäm V f. (p) Lösningsförslg: Eftersom D f, 6 kommer V sin,. Så V f,,. SinIntervl, 6 Intervl,

2 Plot Sin, Sin,,,, PlotLbels Automtic 6 sin..... sin Rätt svrslterntiv: e V f, b V f, c V f, d V f,. Lös ekvtionen 8. (p) Lösningsförslg: T hjälp v potenslgrn, 8. Solve 8 b c d 6. Lös ekvtionen ln ln ln6. (p) Lösningsförslg: Övning på logritmlgr, ln ln ln6 ln ln6 6, vrv eller. Här är flsk rot med hänsn till krvet ovn, t logritmlgen lnblnlnb gäller ju br om och b. Dett vet nturligtvis Mthemtic SolveLog Log Log6, b c d 7. Låt f tn. Bestäm f '. (p) def sin Lösningsförslg: Jobb på med deriveringsregler, tn och SD. cos f ' tn tn sincossin cos Trig. :ntn Df Tn,. f tn cos cos cos, så f '. f b c d 8. Låt f lnsin. Bestäm f '. (p) Lösningsförslg: Jobb på med lämplig deriveringsregler. f ' lnsin u sin lnu u sin u lnu sin v u lnu v sinv SD u cosv Bt tillbk cos sin Df LogSin,., så f ' cos sin.

3 cos f sin f b c d 9. Låt f. Bestäm f '. (p) Lösningsförslg: Regler & SD Df,Simplif. 6 f f 6 b c d Rätt svrslterntiv: e. För en viss tp v gs gäller smbndet pv melln trck och volm. Bestäm p då V och V 6. (p) Lösningsförslg: Lös ut p och deriver med vseende på t, eftersom vi söker hstighet tidsderivt. Sedn är det br tt sätt in givn numerisk dt Dpt Vt,t. Vt, V 't 6 p t 6 V t Vt p t 7 7 b c d. Funktionen f hr en primitiv funktion F. Grfen till F är uppritd i figuren till höger. Beräkn f. p F Lösningsförslg: Vi får direkt f F FF. b 7 c d 8 Rätt svrslterntiv: e. Beräkn. (p) Lösningsförslg: Vi får 7. 7 Rätt svrslterntiv: d

4 b 6 c d 7. Beräkn. (p) Lösningsförslg: Vi får ln lnlnln. log ln b c ln d ln. Beräkn. (p) Lösningsförslg: Äntligen vribelsubstitution! Integrnden är v tpen f gg ', där f och det som sticker i ögonen g. Så kör på med kokboken. Substitution u g. Måttet u. Gränser u uu u g u g u u lnu lnln ln ln 9. uu uu log 9 ln b ln c ln d ln 7. Bestäm sin cos i punkten. (p) Rätt svrslterntiv: e Lösningsförslg: Deriver mh kedjeregeln sin b sin cos cos cos sin c d cos, vrv sin. 6. I figuren ser vi ett m långt bmbustrå som hr brutits i vinden så tt toppen hmnr 6 m bort längs mrken. Sök brtpunktens höjd h ovn mrk. p Del B poäng med fokus på modellering och Mthemtic. Lösningsförslg: Övning i geometri, vrs ursprung kn dters till c fkr och den kinesisk boken Chui-chng sun-shu (Nio kpitel om den mtemtisk konsten). Låt h vr den sökt höjden, så får vi direkt med vår egen Ptgors

5 Solve6 h h,h h 6 Solve6 h h,h b Solve h 6,h c Solve h 6 h,h d Solve6 h h,h 7. Hur långt bort är horisonten när vi tittr ut över hvet, eller mer precist vståndet d från ögonen till horisonten? Låt Jorden vr ett klot med rdien R 67. km och behndl fllet då ögonen är.7 m ovnför vttentn. Svr i m. p Lösningsförslg: Ett klot med rdien R 67. km är väl sådär, men det är precis smm pproimtion mn gör vid beskrivning v stellitbnor i GPS. Med stöd v figuren till höger och Ptgors ännu en gång får vi svret på det som mång bdnde i Tlösnd fundert på SolveR d R h,d.r 67..h.7, d d 6. SolveR d Rh,d.R67.,h.7, d b SolveR d Rh,d.R67..h.7, d c SolveR d Rh,d. R 67..h.7, d d SolveR d Rh,d.R67..h.7, d Rätt svrslterntiv: d 8. I figuren är en cirkel inskriven i en kvdrt. Bestäm cirkelns rdie r. p Lösningsförslg: Mer geometri! Här gäller det tt teckn hlv digonlen i kvdrten på två sätt. Att modelleringsriktigt skriv den som istället för som vi ser är knske en etr utmning. r Solver Sin r c Solver Solver r Sin r Tn b Solver r Sin d Solver r Sin 9. Sök längdern v och p

6 Lösningsförslg: Ytterligre geometri, tr det ldrig slut? Nu hr vi Ptgors sts och likformig tringlr, så Solve,, 8, Solve,, b Solve,, c Solve,, d Solve,,. En cmpre upplever värmen från en öppen eld som tt den är proportionell med k mot mängden ved och omvänt proportionell mot vståndet i kubik. När cmpren är m från elden lägger någon på lik mcket ved till. På vilket vstånd sk cmpren nu ställ sig för tt upplev smm värme? p Lösningsförslg: Övning i tt översätt tet! Solvek ved c Solvek ved k ved,, b Solvek ved k ved,, k ved,, d Solvek ved k ved,,. När vndrnde fiskr som ål, öring och l simmr uppströms i ett vttendrg npssr de sin frt u så tt energiåtgången per meter minimers. Om vttnet rinner med frten v u beskrivs energiåtgången v funktionen Pu ku, där k är en konstnt som bestäms v fiskens utseende. uv. Definier Pu som en funktion i Mthemtic. (p) Lösningsförslg: Vi får direkt Pu : ku u v Pu ku uv b Pu ku uv c Pu : ku uv d Pu ku uv. Rit Pu, u, 7, i rött då v, k. Pnt lrn! (p) Lösningsförslg: Efter en stund fundernde får vi PlotPu. v, k, u,, 7, PlotStle Red, AesLbel "u", "P" P u PlotPu. v. k, u,, 7, PlotStle Red, AesLbel "u", "P" b PlotPu. v, k, u,, 7, PlotStle Red, AesLbel "u", "P" c PlotPu. v, k, u,, 7, PlotStle Red, AesLbel "u", "P" d PlotPu. v. k, u,, 7, PlotStle Red, AesLbel "u", "P" 6

7 . Använd Solve för tt sök nollställe till P' u. (p) Lösningsförslg: Br gör dé! u SolveP'u, u u, u, u v Rätt svrslterntiv: d u SolveP'u, u b u SolveP'u c u SolveP'u d u SolveP'u, u. Bestäm etremvärdet. Välj den sist v tre lösningr i u. (p) Lösningsförslg: Optiml energiåtgång! Pu. u Lst 7 kv P. u Lst b u.pu c Pu d Pu. u Lst Rätt svrslterntiv: d. Bestäm volmen v skålen som uppkommer då,, roterr ett vrv kring eln. p Lösningsförslg: Vid hr vi ett tunnväggigt rör med höjden vid flld skål, så V b. b c d 6. Ett plnt snitt längs rottionseln i en rk cirkulär kon genererr en snittt S som begränss v linjern, då.,, se fig. Sök konens volm V givet tt konens topp ligger vid linjerns skärningspunkt. p S..... Lösningsförslg: Det är br lägg smmn små clindrr V r. V V. V.9 V V. V b V. V c V. V d V. 7

8 7. Sök ren A för en tunn pppskiv i form v en rätvinklig tringel som är uppriggd enligt figur. p b Lösningsförslg: Klipp upp tringeln i sml rektngulär strimlor, där ges v likformig tringlr b tt lägg smmn ll små strimlor A. c A A b A b A b A b A A b b A A b d A A b b. Nu är det br 8. En pppskiv i form v en "sinusbubbl" sin,, med konstnt tdensitet Ρ, är uppriggd enligt figur. Bestäm tngdpunktens läge G i riktningen, om vi vet tt denn bestäms v ekvtionen m G m. p Lösningsförslg: Del upp bubbln i tunn strimlor. Höjden för en sådn vid ges v sin och med konstnt tdensitet Ρ ligger dess tngdpunkt i,. Vidre är m ΡA Ρ och slutligen det efterlängtde Solve G Ρ. Sin, G G 8 Solve GΡ. Sin, G b Solve G Ρ. Sin, G c Solve GΡ. Sin, G d Solve G Ρ. Sin, G Rätt svrslterntiv: e 9. I ett cirkulärt blodkärl med rdien R m är hstighetsprofilen vrkr r ms, där rdien r, R är vståndet från centrum v blodkärlet och k en konstnt. Sök blodflödet Q. p Lösningsförslg: Betrkt tvärsnittet som en smling tunnväggig rör. Flödet genom ett sådnt är Q vra vrrr. Sedn är det br tt lägg smmn ll bidrgen Q R Q k R r r r Q kr Q R Q k R r r r Q R b Q Rk R r r r c Q R Q k R r r r Q R d Q Rk R r r r 8

9 . Pelrn på Golden Gtebron i Sn Frncisco är 7 m hög och brospnnet melln dem är 8 m. Miml segelhöjd 67 m. Gör en pproimtion v de lång kblrn melln pelrn med en prbel, , 8, och låt vr ett funktion med denn beskrivning. Bestäm nu längden v en sådn kbel. p Lösningsförslg: Först prbeln enligt givet recept Å så här ser den ut 8 ; Plot,, 8, 8, PlotStle DrkerRed, AesLbel "", "", AspectRtio Automtic 6 6 Slutligen med formeln för längden v en funktionskurv. NIntegrte ',, 8, 8.9 En enkel uppskttning ger tt längden måste vr längre än två hpotenusor och duktigt kortre än två omgångr kteter. Verkr ju ok som vslutning på dgen , , 6. Rätt svrslterntiv: d NIntegrte D,,, 8, 8 b NIntegrte D,,, 8, 8 c NIntegrte ',, 8, 8 d NIntegrte ',, 8, 8 9

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I, 7.5hp, -- Hjälpmedel: Penn, rdergummi oh rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst Svrsblnketten sk lämns in! Inget tentmensomslg! Svrslterntiv

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I,.hp, 9-8- Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst vrsblnketten sk lämns in! Inget tentmensomslg! vrslterntiv

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpd Mtemtik I,.hp, 8-- Hjälpmedel: Penn, rdergummi och rk linjl. Vrken räknedos eller formelsmling är tillåtet! Tentmen består v frågor! Endst vrsblnketten sk lämns in! Inget tentmensomslg! vrslterntiv

Läs mer

Tillämpad Matematik I Övning 4

Tillämpad Matematik I Övning 4 HH/ITE/BN Tillämpd Mtemtik I, Övning 8 6 Tillämpd Mtemtik I Övning 6 8 Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm,

Läs mer

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00

TENTAMEN. Matematik för basår I. Massimiliano Colarieti-Tosti, Niclas Hjelm & Philip Köck :00-12:00 Kursnummer: Moment: Progrm: Rättnde lärre: TENTAMEN HF00 Mtemtik för bsår I TENA / TEN Tekniskt bsår Mssimilino Colrieti-Tosti, Nicls Hjelm & Philip Köck Nicls Hjelm 0-0-6 08:00-:00 Emintor: Dtum: Tid:

Läs mer

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT.

ORTONORMERAT KOORDINAT SYSTEM. LÄNGDEN AV EN VEKTOR. AVSTÅND MELLEN TVÅ PUNKTER. MITTPUNKT. TYNGDPUNKT. SFÄR OCH KLOT. Armin Hlilovi: EXTRA ÖVNINGAR v Vektorer oh koordinter i D-rummet ORTONORMERAT KOORDINAT SYSTEM LÄNGDEN AV EN VEKTOR AVSTÅND MELLEN TVÅ PUNKTER MITTPUNKT TYNGDPUNKT SFÄR OCH KLOT INLEDNING För tt bild

Läs mer

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM

ORTONORMERADE BASER I PLAN (2D) OCH RUMMET (3D) ORTONORMERAT KOORDINAT SYSTEM Armin Hlilovi: EXTRA ÖVNINGAR 1 v 1 Ortonormerde bser oh koordinter i 3D-rummet ORTONORMERADE BASER I PLAN D OCH RUMMET 3D ORTONORMERAT KOORDINAT SYSTEM Vi säger tt en bs i rummet e r, e r, e r z e r,

Läs mer

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp

Övningstentamen i MA2003 Tillämpad Matematik I, 7.5hp Övningstentamen i MA Tillämpad Matematik I,.hp Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpad Matematik I, 7.5hp, 7--7 Hjälpmedel: Penna, radergummi och rak linjal. arken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast varsblanketten ska lämnas in! Inget

Läs mer

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför?

Geometri. 4. Fyra kopior av en rätvinklig triangel kan alltid sättas ihop till en kvadrat med hål som i följande figur varför? Geometri 1. Linjen är isektris till vinkeln. Sträkorn, oh är lik lång. Hur stor är vinkeln? vgör utn mätningr! 4. Fyr kopior v en rätvinklig tringel kn lltid sätts ihop till en kvdrt med hål som i följnde

Läs mer

MA002X Bastermin - matematik VT16

MA002X Bastermin - matematik VT16 MA00X Bstermin - mtemtik VT6 Något om trigonometri Mikel Hindgren februri 06 Cirkelns ekvtion Exempel Beräkn vståndet melln punktern (4, 6) och (, ). 7 6 5 4 d (, ) 4 = (4, 6) 6 = 4 4 5 6 Pythgors sts:

Läs mer

MA2003 Tillämpad Matematik I, 7.5hp,

MA2003 Tillämpad Matematik I, 7.5hp, MA Tillämpad Matematik I, 7.hp, 9-6- Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av frågor! Endast Svarsblanketten ska lämnas in! Inget

Läs mer

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1

1 e x2. lim. x ln(1 + x) lim. 1 (1 x 2 + O(x 4 )) = lim. x 0 x 2 /2 + O(x 3 ) x 2 + O(x 4 ) = lim. 1 + O(x 2 ) = lim = x = arctan x 1 UPPSALA UNIVERSITET Svr till tent i mtemtik Mtemtisk institutionen Anlys MN Distns Jons Elisson 7-- Skrivtid: - 5. Observer tt problemen inte står i svårighetsordning. All svr sk motivers. Det kn krävs

Läs mer

a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0

a sin 150 sin 15 BC = BC AB 1.93 D C 39º 9.0 18 Trigonometri Övning 18.1 I tringeln är sidorn och lik lång. Tringelns störst vinkel är 10. eräkn förhållndet melln sidorn och. Svr med tre gällnde siffror. Mätning i figur godts ej. Tringeln är likbent.

Läs mer

Sfärisk trigonometri

Sfärisk trigonometri Sfärisk trigonometri Inledning Vi vill nvänd den sfärisk trigonometrin för beräkningr på storcirkelrutter längs jordytn (för sjöfrt och luftfrt). En storcirkel är en cirkel på sfären vrs medelpunkt smmnfller

Läs mer

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen...

Trigonometri. 2 Godtyckliga trianglar och enhetscirkeln 2. 3 Triangelsatserna Areasatsen Sinussatsen Kosinussatsen... Trigonometri Innehåll 1 Rätvinklig tringlr 1 Godtyklig tringlr oh enhetsirkeln 3 Tringelstsern 4 3.1 restsen.............................. 4 3. Sinusstsen.............................. 5 3.3 Kosinusstsen.............................

Läs mer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer

Preliminär version 2 juni 2014, reservation för fel. Tentamen i matematik. Kurs: MA152G Matematisk Analys MA123G Matematisk analys för ingenjörer Lösningsförslg Högskoln i Skövde SK, JS) Preliminär version juni 0, reservtion för fel. Tentmen i mtemtik Kurs: MA5G Mtemtisk Anlys MAG Mtemtisk nlys för ingenjörer Tentmensdg: 0-05- kl.0-9.0 Hjälpmedel

Läs mer

16 Area- och volymberäkningar, areor av buktiga

16 Area- och volymberäkningar, areor av buktiga Nr 6, ril -5, Ameli 6 Are- och volmberäkningr, reor v buktig tor 6. Någr reberäkningr Eemel (96e) Beräkn ren som begränss v =,=, = och =. 3.5.5.5.5.5.5 3 Lösning: En möjlighet är tt del tn enligt den streckde

Läs mer

Matematiska uppgifter

Matematiska uppgifter Element Årgång 59, 976 Årgång 59, 976 Först häftet 3020. Lös på enklste sätt ekvtionssystemet (Svr: x = v = 2 och y = u = 2) x + 7y + 3v + 5u = 6 8x + 4y + 6v + 2u = 6 2x + 6y + 4v + 8u = 6 5x + 3y + 7v

Läs mer

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler

TATA42: Föreläsning 12 Rotationsarea, tyngdpunkter och Pappos-Guldins formler TATA4: Föreläsning 1 Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 15 november 18 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer,

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 5: Integrler Institutionen för mtemtik KTH 30 november 4 december Integrler Integrler är vd vi sk håll på med denn veck och näst. Vi kommer tt gör följnde: En definition v vd begreppet betyder En

Läs mer

TATA42: Föreläsning 11 Kurvlängd, area och volym

TATA42: Föreläsning 11 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 4 mrs 8 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*)

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är (*) Armin Hlilovic: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En cirkel är mängden v de punkter i plnet vrs vstånd till en given

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS 905 BESKRIVNING AV GODA SVAR De beskrivningr v svrens innehåll och poängsättningr som ges här är inte bindnde för studentexmensnämndens bedömning Censorern beslutr om de kriterier

Läs mer

10. Tillämpningar av integraler

10. Tillämpningar av integraler 90 10 TILLÄMPNINGAR AV INTEGRALER 10. Tillämpningr v integrler 10.1. Riemnnsummor I det här vsnittet sk vi se hur integrler nvänds för tt beräkn re v en pln t, volm v rottionskroppr, längd v en kurv, re

Läs mer

TMV151/TMV181. Fredrik Lindgren. 19 november 2013

TMV151/TMV181. Fredrik Lindgren. 19 november 2013 TMV151/TMV181 Fredrik Lindgren Mtemtisk vetenskper Chlmers teknisk högskol och Göteborgs universitet 19 november 2013 F. Lindgren (Chlmers&GU) Envribelnlys 19 november 2013 1 / 24 Outline 1 Mss, moment

Läs mer

Bastermin MA0021, MA0023 vt16 del2,

Bastermin MA0021, MA0023 vt16 del2, Bstermin MA00, MA00 vt6 del, 06-08-8 Hjälmedel: Penn, suddgummi, linjl oc grdskiv! oäng/delugift Skriv tydligt oc skriv tydlig svr! Motiver väl! Endst svr cceters ej! Förenkl lltid så långt som möjligt!

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 5 november 28 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn

Läs mer

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1

Några integraler. Kjell Elfström. x = f 1 (y) = arcsin y. . 1 y 2 Vi låter x och y byta roller och formulerar detta resultat som en sats: cos x = 1 F r å g L u n d o m m t e m t i k Mtemtikcentrum Mtemtik NF Någr integrler Kjell Elfström Invers funktioner Om f är en funktion, och ekvtionen f() = till vrje V f hr en entdigt bestämd lösning D f, så

Läs mer

TATA42: Föreläsning 4 Generaliserade integraler

TATA42: Föreläsning 4 Generaliserade integraler TATA42: Föreläsning 4 Generliserde integrler John Thim 29 mrs 27 Vi hr stött på begreppet tidigre när vi diskutert Riemnnintegrler i föregående kurs. Denn gång kommer vi lite mer tt fokuser på frågn om

Läs mer

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46

x 12 12 = 32 12 x 11 + 11 = 26 + 11 x 20 + 20 = 45 + 20 x=3 x=5 x=6 42 = 10x x + 10 = 15 x + 10 10 = 15 10 11 + 9 = 20 x = 65 x + 36 = 46 Vilket tl sk stå i rutn så tt likheten stämmer? + Lös ekvtionen så tt likheten stämmer. = + 9 = + = + = = Det sk stå 9 i rutn. Subtrher båd leden med. r -termen sk vr kvr i vänstr ledet. Skriv rätt tl

Läs mer

1 Föreläsning IX, tillämpning av integral

1 Föreläsning IX, tillämpning av integral Föreläsning IX, tillämpning v integrl. Volym v någr kroppr.. Skiv- oc sklmetodern, m.m. Vi kn tänk oss en limp (röd) som längsledes är genomorrd v eln,. Limpn skivs i n lik tjock skivor, lltså med tjocklek

Läs mer

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3

19 Integralkurvor, potentialer och kurvintegraler i R 2 och R 3 Nr9,3mj-5,Ameli 9 Integrlkurvor, potentiler och kurvintegrler i R och R 3 9. Integrlkurvor En integrlkurv r(t) ((t), (t)) till ett vektorfält F(, ) är en kurv där vektorfältet är en tngent till kurvn i

Läs mer

Nautisk matematik, LNC022, Lösningar

Nautisk matematik, LNC022, Lösningar Nutisk mtemtik, LN022, 2012-05-21 Lösningr 1. () För vilken eller vilk vinklr v melln 0 oh 180 är sin v = 0, 25? Räknren ger oss v 14, 5, då finns okså lösningen 180 14, 5 = 165, 5 i det givn intervllet.

Läs mer

Finaltävling den 20 november 2010

Finaltävling den 20 november 2010 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Finltävling den 20 november 2010 Förslg till lösningr Problem 1 Finns det en tringel vrs tre höjder hr måtten 1, 2 respektive 3 längdenheter? Lösning

Läs mer

13 Generaliserade dubbelintegraler

13 Generaliserade dubbelintegraler Nr 3, 4 pril -5, Ameli 3 Generliserde dubbelintegrler 3. Generliserde enkelintegrler Integrerbrhet är definiert för funktioner som är begränsde och definierde på ett ändligt intervll. ett kn i mång fll

Läs mer

Lösningsförslag till fråga 5

Lösningsförslag till fråga 5 Lösningsförslg till fråg 5 Smmnfttning Följnde lceringr för unktern, som frmgår v Tbell, är de bäst vi hr funnit. Utförligre beskrivningr v ders lägen följer i texten: Fråg ), n unkter i en kvdrt n Plcering

Läs mer

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj

Kontrollskrivning 3 till Diskret Matematik SF1610, för CINTE1, vt 2019 Examinator: Armin Halilovic Datum: 2 maj Kontrollskrivning 3 till Diskret Mtemtik SF60, för CINTE, vt 209 Emintor: Armin Hlilovic Dtum: 2 mj Version B Resultt: Σ p P/F Etr Bonus Ing hjälpmedel tillåtn Minst 8 poäng ger godkänt Godkänd KS nr n

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsl Universitet Mtemtisk Institutionen Thoms Erlndsson RÄTA LINJER, PLAN, SKALÄRPRODUKT, ORTOGONALITET MM VERSION MER OM EKVATIONSSYSTEM Linjär ekvtionssystem och den geometri mn kn härled ur dess är

Läs mer

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3

Volum av rotationskroppar. Båglängd, rotationsytor. Adams 7.1, 7.2, 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Adms 7., 7., 7.3 Volum v rottionskroppr. Båglängd, rottionsytor. Integrtion v rtionell uttryck, prtilbråksuppdelning. Exempel med invers substitutioner.

Läs mer

Läsanvisningar för MATEMATIK I, ANALYS

Läsanvisningar för MATEMATIK I, ANALYS Läsnvisningr för MATEMATIK I, ANALYS Läsnvisningrn är tänkt i först hnd för dig som läser kursen mtemtik I på distns, och de sk vägled dig på din res genom nlysen. Stoffet är i stort sett portionert på

Läs mer

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng

TENTAMEN HF0021 TEN1. Program: Examinator: Datum: Tid: :15-17:15. , linjal, gradskiva. Lycka till! Poäng TENTMEN Kursnummer: Moment: Progrm: Rättnde lärre: Emintor: Dtum: Tid: Hjälpmedel: Omfttning oc etgsgränser: H Mtemtik för sår I TEN Tekniskt sår Nicls Hjelm Nicls Hjelm -8- :-7: ormelsmling: ISBN 78--7-77-8

Läs mer

Gör slag i saken! Frank Bach

Gör slag i saken! Frank Bach Gör slg i sken! Frnk ch På kppseglingsbnn ser mn tävlnde båtr stgvänd lite då och då under kryssrn. En del v båtrn seglr för styrbords hlsr och ndr för bbords. Mn kn undr vem som gör rätt och hur mn kn

Läs mer

Tillämpning av integraler

Tillämpning av integraler CTH/GU LABORATION 3 MVE6 - /3 Mtemtisk vetenskper Inledning Tillämpning v integrler Vi skll se på två tillämpningr v integrler. Först ren oh volymen v rottionskropp sedn omkretsen v en ellips. Rottionskroppr

Läs mer

RÄKNEOPERATIONER MED VEKTORER. LINJÄRA KOMBINATIONER AV VEKTORER. ----------------------------------------------------------------- Låt u vr en vektor med tre koordinter u. Vi säger tt u är tredimensionell

Läs mer

Matematisk Modellering Övning 1

Matematisk Modellering Övning 1 HH/IDE/BN Mtemtisk Modellering, Övning 0.5 0-0.5-0 4 0 4 Mtemtisk Modellering Övning Allmänt Övningsuppgiftern är eempel på uppgifter, eller delr v uppgifter, du kommer tt möt på tentmen. Undntg utgör

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v 6 Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

Materiens Struktur. Lösningar

Materiens Struktur. Lösningar Mteriens Struktur Räkneövning 1 Lösningr 1. I ntriumklorid är vrje N-jon omgiven v sex Cl-joner. Det intertomär vståndet är,8 Å. Ifll tomern br skulle växelverk med Coulombväxelverkn oh br med de närmste

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys SF1625 Envribelnlys Föreläsning 13 Institutionen för mtemtik KTH 27 september 2017 SF1625 Envribelnlys Anmäl er till tentn Anmäl er till tentn nu. Det görs vi min sidor. Om det inte går, mejl studentexpeditionen

Läs mer

9. Bestämda integraler

9. Bestämda integraler 77 9. Bestämd integrler Låt f vr en icke-negtiv, begränsd funktion på [,b]. Vi hr lltså 0 f(x) ll x [,b] för någon konstnt B. B för Problem: Beräkn ren A v den yt som begränss v kurvn y = f(x), x b, x-xeln

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 2005 3. Del I, 10 uppgifter utan miniräknare 4. Del II, 8 uppgifter med miniräknare 6 Kurs plnering.se NpMC vt005 (5) Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS C VÅREN 005 Del I, 0 uppgifter utn miniräknre 4 Del II, 8 uppgifter med miniräknre 6 Förslg på lösningr till uppgifter

Läs mer

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017

Lösningsförslag till tentamen i SF1683 och SF1629 (del 1) 23 oktober 2017 KTH, Mtemtik Mri Sprkin Lösningsförslg till tentmen i SF683 och SF629 (del ) 23 oktober 207 Tentmen består v sex uppgifter där vrder uppgift ger mximlt fr poäng. Preliminär betgsgränser: A 2 poäng, B 9,

Läs mer

Räkneövning 1 atomstruktur

Räkneövning 1 atomstruktur Räkneövning 1 tomstruktur 1. Atomerns lägen i grfen (ett mteril som består v endst ett end tomlger v koltomer och vrs upptäckt gv Nobelpriset i fysik, 010) ligger i de gitterpunkter som viss i figuren

Läs mer

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är

Definition. En cirkel är mängden av de punkter i planet vars avstånd till en given punkt är Armin Hlilovi: EXTRA ÖVNINGAR Andrgrdskurvor NÅGRA VIKTIGA ANDRAGRADSKURVOR: CIRKEL, ELLIPS, HYPERBEL OCH PARABEL CIRKEL Definition. En irkel är mängden v de punkter i plnet vrs vstånd till en given punkt

Läs mer

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag

SF1626 Flervariabelanalys Tentamen 8 juni 2011, Svar och lösningsförslag SF166 Flervribelnlys Tentmen 8 juni 11, 8. - 13. Svr och lösningsförslg Del A (1 estäm en ekvtion för tngentplnet till ytn z + y z 3 1 i punkten (, y, (1, 1,. (3p b Punkten (, y, z (1.1,.9, t ligger på

Läs mer

N atom m tot. r = Z m atom

N atom m tot. r = Z m atom Räkneövning fri elektroner och reciprok gittret 1. Silver, Ag, hr fcc-struktur, tomnummer 47, tomvikten 17,87 u, yttre elektronkonfigurtionen 4d 1 5s 1 och densiteten 149 kg/m 3. ) Beräkn tätheten n v

Läs mer

Uttryck höjden mot c påtvåolikasätt:

Uttryck höjden mot c påtvåolikasätt: Sinusstsen Beviset i PB gger å tre resultt som nog få gmnsieelever är förtrogn med. Vrje tringel hr en s.k. omskriven cirkel en cirkel som går genom ll tre hörnen : C Uttrck höjden mot c åtvåoliksätt:

Läs mer

Exponentiella förändringar

Exponentiella förändringar Eonentiell förändringr Eonentilfunktionen - llmänt Eonentilfunktionen r du tidigre stött å i åde kurs oc 2. En nyet är den eonentilfunktion som skrivs y = e. (Se fig. nedn) Tlet e, som är mycket centrlt

Läs mer

Sidor i boken

Sidor i boken Sidor i boken -5 Vi räknr en KS För tt ni sk få en uppfttning om hur en KS kn se ut räknr vi här igenom den end KS som givits i denn kurs! Totlt kn mn få poäng. Om mn lycks skrp ihop 7 poäng eller mer

Läs mer

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00

Tentamen 1 i Matematik 1, HF dec 2016, kl. 8:00-12:00 Tentmen i Mtemtik, HF9 9 dec 6, kl. 8:-: Emintor: Armin Hlilovic Undervisnde lärre: Erik Melnder, Jons Stenholm, Elis Sid För godkänt betyg krävs v m poäng. Betygsgränser: För betyg A, B, C, D, E krävs,

Läs mer

Tillämpad Matematik I Övning 2

Tillämpad Matematik I Övning 2 HH/ITE/BN Tillämpd Mtemtik I, Övning Tillämpd Mtemtik I Övning Allmänt Övningsuppgiftern, speciellt Tpuppgifter i först hnd, är eempel på uppgifter du kommer tt möt på tentmen. På denn är du ensm, så det

Läs mer

MA2018 Tillämpad Matematik III-ODE, 4.0hp,

MA2018 Tillämpad Matematik III-ODE, 4.0hp, MA208 Tillämpad Matematik III-ODE, 4.0hp, 208-05-28 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten

Läs mer

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER

HF1703, Inledande matematik (Byggproduktion) DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER DEN TRIGONOMETRISKA ENHETSCIRKELN OCH TRIGONOMETRISKA FUNKTIONER Den trigonometrisk enhetscirkeln är en cirkel med rdie = och mittpunkt i origo B(0,) C(,0) O D(0,) I en rätvinklig tringel definierr vi

Läs mer

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl

Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt

Läs mer

Tentamen i ETE115 Ellära och elektronik, 3/6 2017

Tentamen i ETE115 Ellära och elektronik, 3/6 2017 Tentmen i ETE115 Ellär och elektronik, 3/6 17 Tillåtn hjälpmedel: Formelsmling i kretsteori. Oserver tt uppgiftern inte är sorterde i svårighetsordning. All lösningr skll ges tydlig motiveringr. 1 8 V

Läs mer

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3.

Inledande kurs i matematik, avsnitt P.6. Vi ritar upp enhetscirkeln och vinkeln 2π 3. Inlednde kurs i mtemtik, vsnitt P6 P6 eräkn sin P61 eräkn os 4 Vi ritr upp enhetsirkeln oh vinkeln Vi sk nvänd enhetsirkeln oh symmetrier i denn för tt estämm os 4 Den punkt på enhetsirkeln med vinkeln

Läs mer

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna

Integralen. f(x) dx exakt utan man får nöja sig med att beräkna CTH/GU STUDIO TMVb - / Mtemtisk vetenskper Integrlen Anlys och Linjär Algebr, del B, K/Kf/Bt Inledning Mn kn inte lltid bestämm integrler f() d ekt utn mn får nöj sig med tt beräkn pproimtioner. T.e. e

Läs mer

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13

Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13 LINKÖPINGS UNIVERSITET Mtemtisk Institutionen Jokim Arnlind Tentmen i Anlys B för KB/TB (TATA9/TEN 5-6- kl 8 3 Ing hjälpmedel är tillåtn. Vrje uppgift kn ge mximlt 3 poäng. Betygsgränser: 8p för etyg 3,

Läs mer

Kvalificeringstävling den 2 oktober 2007

Kvalificeringstävling den 2 oktober 2007 SKOLORNAS MATEMATIKTÄVLING Svensk Mtemtikersmfundet Kvlifieringstävling den oktober 007 Förslg till lösningr 1 I en skol hr vr oh en v de 0 klssern ett studieråd med 5 ledmöter vrder Per är den ende v

Läs mer

Mängder i R n. Funktioner från R n till R p

Mängder i R n. Funktioner från R n till R p Kpitel 1 Mängder i R n. Funktioner från R n till R p 1.1. Euklidisk rummet R n : geometri Som vnligt betecknr vi med R n mängden v ll reell n-tiplr = ( 1, 2,..., n ) med origo (nollvektorn) = (,,...,)

Läs mer

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION

UPPTÄCK OCH DEFINIERA SAMBANDET MELLAN TVÅ OMRÅDEN SOM DELAS AV GRAFEN TILL EN POTENSFUNKTION OLIVI KVRNLÖ UPPTÄCK OCH DEINIER SMNDET MELLN TVÅ OMRÅDEN SOM DELS V GREN TILL EN POTENSUNKTION Konsultudrg rågeställning I den här ugiften sk vi undersök smbndet melln reorn i en kvdrt med sidn l.e. i

Läs mer

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper

Integraler. 1 Inledning. 2 Beräkningsmetoder. CTH/GU LABORATION 2 MVE /2013 Matematiska vetenskaper CTH/GU LABORATION MVE6 - / Mtemtisk vetenskper Inledning Integrler Iblnd kn mn inte bestämm integrler exkt utn mn får nöj sig med tt beräkn pproximtioner. T.ex. e x dx kn inte beräkns exkt, eftersom det

Läs mer

Kan det vara möjligt att med endast

Kan det vara möjligt att med endast ORIO TORIOTO yllene snittet med origmi ed endst någr få vikningr kn mn få frm gyllene snittet och också konstruer en regelbunden femhörning. I ämnren nr 2, 2002 beskrev förfttren hur mn kn rbet med hjälp

Läs mer

Inför tentamen i Analys I och II, TNA008

Inför tentamen i Analys I och II, TNA008 Inför tentmen i Anlys I och II, TNA008. Gränsvärden () Definition v gränsvärde då x ± ; se Definition.2 och.29 i F.A. (b) Definition v gränsvärde då x. Höger och vänster gränsvärde. Se Definition.9,.2

Läs mer

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger )

Algebraiska uttryck: Introduktionskurs i matematik. Räknelagar: a = b a. a b. Potenser: 1. = ( n gånger ) Intrduktinskurs i mtemtik 1 v 5 Algerisk uttrk: Räknelgr: lgen distriutiv lgr ssitiv lgr kmmuttiv, Ptenser: 1 n L n gånger --------------------------------------- n udd tl, jämnt tl n, n n n 4 4.. ---------------------------------------

Läs mer

TATA42: Föreläsning 2 Rotationsarea, tyngdpunkter och Pappos-Guldins formler

TATA42: Föreläsning 2 Rotationsarea, tyngdpunkter och Pappos-Guldins formler TATA4: Föreläsning Rottionsre, tngdpunkter och Pppos-Guldins formler John Thim 7 mrs 16 1 Rottionsre När vi sk beräkn rottionsre kommer vi tt utför liknnde mnövrr som vi gjorde för rottionsvolmer, men

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA00 Tillämpad Matematik II, 7.5hp, 09-0-6 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas

Läs mer

Föreläsning 7: Trigonometri

Föreläsning 7: Trigonometri ht06 Föreläsning 7: Trigonometri Trigonometrisk identiteter En identitet är en likhet som håller för ll värden på någon vriel. Tex så gäller tt ( + ) + + för ll,. Dett skrivs ilnd som ( + ) + +, men vi

Läs mer

Lösningar till tentamen i EF för π3 och F3

Lösningar till tentamen i EF för π3 och F3 Lösningr till tentmen i EF för π3 och F3 Tid och plts: 31 oktober, 14, kl. 14.19., lokl: Vic 3BC. Kursnsvrig lärre: Gerhrd Kristensson. Lösning problem 1 Vi beräknr potentilen från en stv och multiplicerr

Läs mer

GEOMETRISKA VEKTORER Vektorer i rummet.

GEOMETRISKA VEKTORER Vektorer i rummet. GEOMETRISKA VEKTORER Vektorer i rummet. v Någr v de storheter som förekommer inom nturvetenskp kn specificers genom tt ders mätetl nges med ett end reellt tl. Exempel på sådn storheter, som klls sklär

Läs mer

En skarp version av Iliev-Sendovs hypotes

En skarp version av Iliev-Sendovs hypotes School of Mthemtics nd Systems Engineering Reports from MSI - Rpporter från MSI En skrp version v Iliev-Sendovs hypotes Elin Berggren Feb 009 MSI Report 09005 Växjö University ISSN 650-647 SE-35 95 VÄXJÖ

Läs mer

9. Vektorrum (linjära rum)

9. Vektorrum (linjära rum) 9. Vektorrum (linjär rum) 43. Vektorrum (linjärt rum) : definition och xiom 44. Exempel på vektorrum v funktioner. 45. Hur definierr mn subtrktion i ett vektorrum? 46. Underrum 47. Linjärkombintioner,

Läs mer

24 Integraler av masstyp

24 Integraler av masstyp Nr, mj -5, Ameli Integrler v msstyp Kurvintegrler v msstyp Vi hr hittills studert en typ v kurvintegrl, R F dr, där vi integrerr den komponent v ett vektorfält F som är tngentiell till kurvn ( dr) i punkter

Läs mer

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur.

f(x)dx definieras som arean av ytan som begränsas av y = f(t), y = 0, t = a och t = b, se figur. Föreläsning. Integrl En förenkl efinition Antg tt f(x) å x b och tt f(x) är kontinuerlig är. Den bestäm integrlen b f(x)x efiniers som ren v ytn som begränss v y = f(t), y =, t = och t = b, se figur. Insättningsformeln

Läs mer

Kompletterande formelsamling i hållfasthetslära

Kompletterande formelsamling i hållfasthetslära Kompletternde formelsmling i hållfsthetslär Görn Wihlorg LTH 004 Spänningstillståndet i ett pln, vinkelätt mot en huvudspänningsriktning ϕ cos ϕ+ sin ϕ + sinϕcosϕ ϕ sinϕ+ cos ϕ Huvudspänningr och huvudspänningsriktningr

Läs mer

TATA42: Föreläsning 1 Kurvlängd, area och volym

TATA42: Föreläsning 1 Kurvlängd, area och volym TATA4: Föreläsning Kurvlängd, re och volm John Thim 5 pril 6 Kurvlängd Vi börjr med tt betrkt situtionen då en kurv i plnet ges på prmeterform: ((t), (t)). Dett innebär tt både - och -koordintern simultnt

Läs mer

Integraler och statistik

Integraler och statistik Föreläsning 8 för TNIU Integrler och sttistik Krzysztof Mrcinik ITN, Cmpus Norrköping, krzm@itn.liu.se www.itn.liu.se/krzm ver. 4 - --8 Inledning - lite om sttistik Sttistik är en gren v tillämpd mtemtik

Läs mer

Tentamen ellära 92FY21 och 27

Tentamen ellära 92FY21 och 27 Tentmen ellär 92FY21 och 27 201-08-22 kl. 8 13 Svren nges på seprt ppper. Fullständig lösningr med ll steg motiverde och eteckningr utstt sk redoviss för tt få full poäng. Poängen för en helt korrekt löst

Läs mer

Studieplanering till Kurs 3b Grön lärobok

Studieplanering till Kurs 3b Grön lärobok Studieplnering till Kurs 3b Grön lärobok Den här studieplneringen hjälper dig tt häng med i kursen. Plneringen följer lärobokens uppdelning i kpitel och vsnitt. Iblnd får du tips på en inspeld genomgång

Läs mer

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp

Övningstentamen i MA2004 Tillämpad Matematik II, 7.5hp Övningstentamen i MA00 Tillämpad Matematik II, 7hp Tentamen består av 30 frågor! Endast Svarsblanketten ska lämnas in! Inget tentamensomslag! Hjälpmedel: Penna, radergummi och linjal Varken räknedosa eller

Läs mer

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov

Matte KONVENT. Ma te ma tik. Länktips: Mattecentrum.se Matteboken.se Formelsamlingen.se Pluggakuten.se. Innehåll: Pluggtips Formelsamling Kursprov Mtte KONVENT Plgg tillsmmns inför de ntionell proen i mtemtik M te m tik Länktips: Mttecentrm.se Mtteoken.se Formelsmlingen.se Plggkten.se 5 Innehåll: Plggtips Formelsmling Krspro I smrete med retsgirorgnistionen

Läs mer

Uppsala Universitet Matematiska Institutionen T Erlandsson

Uppsala Universitet Matematiska Institutionen T Erlandsson Uppsl Universitet Mtemtisk Institutionen T Erlndsson TENTAMEN 5--4 Anlys MN SVAR OCH ANVISNINGAR FRÅGOR... 4. 5. x-xeln 6. y = x + x + 7. y = sin x + 8. y = xe x + 9. y = e x. y = x +.. + x. x = 4. 5.

Läs mer

MA2018 Tillämpad Matematik III-ODE, 4.0hp,

MA2018 Tillämpad Matematik III-ODE, 4.0hp, MA2018 Tillämpad Matematik III-ODE,.0hp, 2018-08-13 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 20 frågor! Endast Svarsblanketten

Läs mer

Generaliserade integraler

Generaliserade integraler Generliserde integrler Mtemtik Breddning 2.5 Frm till denn punkt hr vi endst studert integrler där funktionen som skll integrers vrit begränsd. Dessutom hr det intervll över vilket vi integrerr vrit begränst

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggnde mtemtisk sttistik Diskret och kontinuerlig slumpvribler Uwe Menzel, 208 uwe.menzel@slu.se; uwe.menzel@mtstt.de www.mtstt.de Diskret och kontinuerlig slumpvribler Slumpvribel (s.v.): vribel

Läs mer

Lösningar till repetitionstentamen i EF för π3 och F3

Lösningar till repetitionstentamen i EF för π3 och F3 Lösningr till repetitionstentmen i EF för π3 oh F3 Lösning problem Från Poyntingvektorn (r, t = E(r, t H(r, t = A ẑ η 0 konstterr vi tt vågens utbredningsriktning ê är vilket leder till tt dess vågvektor

Läs mer

Appendix. De plana triangelsatserna. D c

Appendix. De plana triangelsatserna. D c ppendix e pln tringelstsern Pythgors sts: I en rätvinklig tringel gäller, med figurens etekningr: 2 = 2 + 2 1 2 evis: Vi utnyttjr likformigheten melln tringlrn, oh. v denn får vi, med figurens etekningr:

Läs mer

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321)

Tentamen för FYSIK (TFYA68), samt ELEKTROMAGNETISM (TFYA48, 9FY321) Tentmen för FYK (TFYA68), smt LKTROMAGNTM (TFYA48, 9FY321) 2013-01-09 kl. 14.00-19.00 Tillåtn hjälpmedel: Physics Hndbook (Nordling, Östermn), miniräknre, smt formelsmling som bifogs denn tentmen men består

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010:

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Föreläsning 16-17, 2010: Uppsl Universitet Mtemtisk Institutionen Bo Styf Envribelnlys, 0 hp STS, X 00-0-7 Föreläsning 6-7, 00: Genomgånget på föreläsningrn 6-0. Här gick vi inte igenom något nytt mteril, utn räknde igenom Blndde

Läs mer

MA2004 Tillämpad Matematik II, 7.5hp,

MA2004 Tillämpad Matematik II, 7.5hp, MA00 Tillämpad Matematik II, 7.5hp, 08-0-06 Hjälpmedel: Penna, radergummi och rak linjal. Varken räknedosa eller formelsamling är tillåtet! Tentamen består av 0 frågor! Endast Svarsblanketten ska lämnas

Läs mer