TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2018
|
|
- Julia Magnusson
- för 6 år sedan
- Visningar:
Transkript
1 Institutionn fö tillämpad mkanik, Chalms id och plats: Hjälpmdl: ENAMEN I FINI ELEMENMEOD MHA 6 APRIL i M hust Odböck, lxikon och typgodkänd äkna. Lösninga Läa: Pt Möll, tl ( Bsök sal 5 samt 7. Lösninga: Anslås på anslagstavlan, avdlningn fö dynamik. Btygsättning: En fullständig och kokt lösning på n uppgift g poäng nligt vad som angs på uppgiftslappn. Smä fl ld till poängavdag. Ofullständig lösning (sva på ställt poblm saknas ll omfattand fl g int något poäng. Maximal poäng ä. Dt kävs 8 poäng fö btyg ; poäng g btyg 4; fö btyg 5 kävs 6 poäng. Obsva att ovanstånd ä btygssättning på nbat tntamn; fö godkänd xamination kävs dssutom godkända inlämningsuppgift. Rsultatlista: Anslås snast /4 på samma ställ som lösningana. Rsultatn sänds till btygsxpditionn snast vcka 7 fö kusdltaga som int ha alla inlämningsuppgift godkända vid dtta tillfäll inappotas btygt U (undkänd. Ganskning: tosdag 6/4, inst.lokal, plan i Nya M hust. änk på: Skiv så att dn som ska ätta kan läsa och föstå hu du tänk. Dn som ätta tntamn gissa int ll anta int vad du mna/tänk ndast vad som vklign skivs ha btydls vid bdömningn av n lösning. Föklaa/dfinia inföda btckninga. Rita tydliga figu. Ang i fökommand fall vad som ä positiva/ngativa iktinga (på t.x föskjutninga och kaft. Gö du antagandn utöv d som angs i uppgiftstxtn, så ang dtta xplicit och föklaa dssa /PWM
2 Btakta dt sfäiska vämldningspoblmt d du k d d < < q( α( u( u u( u dä ä n obond vaiabl och u u( dn obkanta tmpatun. Vida ä u och u givna tmpatu, samt k och α bkanta konstitutiva konstant. Givt u( kan vämflödt q( bäknas nligt Fouis lag: q du k d a: Häld dn svaga fomn (vaiationspoblmt av andvädspoblmt och gö sdan n finit lmntfomuling md tstfunktion nligt Galkins mtod. (p b: Btakta nu n styckvis linä appoximation u h ( av dn pimät obkanta u( : u h u. På tt lmnt i intvallt i i ha vi då två basfunktion, nämlign i N och i N, dä h h h i i ä lmntlängdn. Häld lmntstyvhtsmatisn. (p N N i h i c: Lös poblmt md två lika långa lmnt. (p Data: W W, m, m u C u C k, α m C m C d: Använd FE appoximationn fö att bäkna vämflödt q( dls md Fouis lag, dls md hjälp av andvillkot. Vilkt av d två vädn på q( kan föväntas vaa nämast dn analytiska lösningn? Motiva svat. (p 8 4 6/PWM
3 Man vill bstämma d spänninga σ D( u som uppkomm i tt tjockväggigt ö som blastas av tt in tyck p. vå av symmtilinjna utnyttjas, så att baa 4 dl av tt tväsnitt modllas (s figu. Om tjocklkn t i z ld ä konstant och plan spänning antas, så kan dn svaga fomn av d styand diffntialkvationna skivas y (sym. ( v D ud Γ v tdγ ( p x (sym. Hä btckna och Γ omådt spktiv andn. Vida ä D n givn konstitutiv matis (sym- mtisk och positivt dfinit, v v x v y ä n vkto md tstfunktion, u u x u y ä dn ob- t kanta föskjutningsvkton, t x σ xx n x σ xy n y ä taktionvkton och. t y σ xy n x σ yy n y Obsva att i ( ha vi int inföt andvillkon. a: Ang fö dtta fall samtliga andvillko. Utvckla sdan andintgaln i ( md hänsyn till andvillkon samt md baktand av villkon på tstfunktionna. (p b: FE fomula poblmt ta hänsyn till andvillkon. Av din lösning ska dt famgå hu dn obkanta vkton u appoximas. Visa också hu matisn s ut fö tt nods lmnt. (p c: Antag att omådt dlas in i linäa tiangl lmnt som alla ä ungfä lika stoa, och att sdan n adaptiv h mtod används i analysn. Vilkt av d två lmntnätn ndan, dt vänsta ll höga, ska man fövänta sig bli sultatt? Motiva ditt sva. (p Ldning: c totiskt vaia alla noll skilda spänninga som ij σ ij c ij , dä c och ä konstant, och ä avståndt fån ij c ij cntum. B d: Disktisingsflt dfinias vanlign som u u h. Fökomm dt något annat disktisingsfl i dt bhandlad poblmt? I så fall vilkt? (p 8 4 6/PWM
4 Figun ndan visa n isopaamtisk avbildning av tt linät tiangl lmnt, fån tt lokalt koodinatsystm ( ξ, η till ( x, y ( x( ξ, η, y( ξ, η. I dt lokala koodinatsystmt gs basfunktionna av N ξ η N ξ N η a: Visa hu divatona och ( i,, kan bäknas. Bäkna också dssa divato fö någon av basfunktionna ( i, ll ; svat ska g i tm av hön koodinatna ( x i, y i. (p b: Bäkna lmntaan da uttyckt i koodinatna ( x i, y i, i,,. (p A A η x y x( ξ, η y( ξ, η y ( x, y ξ ( x, y A x ( x, y Lösning a: Multiplica diffntialkvationn md n tstfunktion intvallt v( och intga öv Patialintga och utvckla andtmna d du v k d d d k du v k dv du du d d k q d d d [ vq] k dv du d d d v ( q( v ( q( k dv du d d d v ( q( α v ( ( u( u k dv du d d d du Vämflödt vid, q( k, ä int känt, så vi bgänsa valt av tstfunktion till d sådana som uppfyll v(. Vaiationspoblmt bli då k dv du d α d d v ( u( α v ( u u( u, v( /PWM
5 u h FE fomuling: appoxima u Na, dä N N ( N n ( ä n advkto md valda bas- funktion och a a a n ä n kolumnvkto md (obkanta nodvaiabl. Vi bhöv n kvation fö att bstämma a ; dtta hålls om vi välj n olika (dvs linät obond tstfunktion. Md Galkins mtod väljs v N, v N,, v N n. Vi sätt in appoximationn u h Na i vaiationspoblmt och samla kvationna advis och få då ll ( K a f, dä K c k dn dn d d a α d N ( N( a α N ( u K k dn dn d K d d c α N ( N( f α N ( u Lösning b: Bidagt till styvhtsmatisn K fån tt lmnt fås som i K k dn dn dn d d d d h h -- k ---- d i h i i k( i i h Lösning c: Md två linäa lmnt ha vi t nod. Om nod och lmnt numas fån vänst till hög, ha vi nodkoodinatna m, n m och n m. Vida ä lmntlängdn h m. Elmntstyvhtsmatisna ä då n k( n n h K k( n n h K och assmbling g K K K k h n n n ( n n n ( n n n n ( n n ( n n n n k h n n n ( n n n ( n ( n n n ( n n n n Vida ha vi K c α N ( N( α f α N ( u α u så /PWM
6 ( K a f K c a a a Hänäst infö vi andvillkot a u och nota att sista kvationn int ä gilltig ftsom dn hållits md tstfunktionn v N, som int uppfyll villkot v(. Vi ha då a a a a 9 Vi ha då lösningn a,8 8. du du Lösning d: Md Fouis lag få vi h q( k k k a a ,5 d d h Randvillkot g q( α( u( u α( u h ( u α( a u,8 Eftsom dn obkanta funktionn bli bätt appoximad än dss divata, g dn sna bäkningn noggannast sultat. Lösning a: På dn oblastad ytt bgänsningslinjn,, ä nomal och tangntialspänningana. På dn in andn,, ä taktionvkton otogonal mot ytan och ha bloppt p, dvs vi ha t pn. Fö n symmtiand gäll att föskjutningn otogonalt andn ä noll och att spänningn tangntillt andn ä noll. Sammanfattningsvis: t x t y på Γ o t x pn x, t y pn y på u x, t y på Γ v t x, u y på Γ h Γ o Γ v Γ h Γ o Utvckla nu andintgaln gnom att sätta in kända blastninga (taktionkomponnt Γ v tdγ v dγ v ( p ndγ t v x v x y dγ v x v y Γ o Γ v Γ h t y dγ På Γ v och Γ h ä t x spktiv t y obkanta, så fö att bl av md dssa välj vi v x och v y så att v x på Γ v och v y på Γ h. Randtmn bli då v tdγ p v ndγ Γ Lösning b: Appoxima d obkanta föskjutningana, u y u yh i a iy N i, dä a ix och a iy ä obkanta nodvaiabl, mdan N i N i ( x, y ä valda basfunktion. Om vi dfinia u x u xh i a ix N i och /PWM
7 N N N n a a x a y a nx a ny N N n kan vi skiva u u h Na. Vida ska tstfunktionna nligt Galkin vaa n godtycklig linäkombination av basfunktionna (altnativt: väljs i tu och odning som N n N v N n,,,, ; låt c c vaa n kolumnvkto md god- N c c n c n n tyckligt valda kofficint. Vi ha då v Nc. Insättning i dn svaga fomn g nu ( Nc D ( Na d p ( Nc ndγ c ( N D N d a p N ndγ Eftsom c ä n godtycklig vkto måst uttyckt inom pants vaa n nollvkto, så md B N fås alltså B DBda p N ndγ ll Ka f. Fö tt lmnt md nod ha vi noll skilda basfunktion och alltså N N N N. N N N Vi få då B N N N N N N N N N N N N N N N N N N N Lösning c: Adaptivitt minska disktisingsflt, som ä stöst dä (xakta lösningns a divato ä stoa. Spänningana ä a divato av lösningn, så vi s att a divatona ä på fomn, dvs d avta md ökand adill koodinat. Elmntstolkn bö alltså växa md ökand avstånd fån oigo, vilkt passa in på båda lmntnätn. I poblmt fökomm inga punkt dä man kan fövänta sig att dn analytiska lösningn ä sigulä, så man bö int få lokala omådn md myckt små lmntstolka. Dt vänsta av d två visad disktisingana vka däfö toligast. Lösning d: D cikuläa bgänsningslinjna appoximas md polygon, så FE appoximationn gös på tt omåd som skilj sig fån. Lösning a: Isopaamtiska lmnt innbä att basfunktionna N i ( ξ, η används som fom- funktion avbildningn gös då som x( ξ, η x i N i y( ξ, η y i N i, dä ( x i, y i ä koodinatn fö nod i. Eftsom basfunktionna ä polynom, bäkna vi nklt divatona i i /PWM
8 få x i x, och motsvaand fö divatona av, dvs vi x x η i x η x y i y y och η y y i Basfunktionnas divato md avsnd på x och y (som bhövs fö att ställa upp B fås md kdjgln: η η η J dä alltså J η η. Md η dtj η J ( x x ( y y ( x x ( y y ( y y ( y y ( x x ( x x fås då d sökta divatona som J Fö t.x i fås η N N J y y ( x x ( y y ( x x ( y y x x Lösning b: Gö n vaiablsubstitution och intga i dt lokala koodinatsystmt; ftsom dtj ( x x ( y y ( x x ( y y ä konstant fö nodslmntt och lmntaan ä -- i dt lokala systmt fås tivialt A ( x x ( y y ( x x ( y y da dtjdηdξ A ( ξ /PWM
TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2018
Mkanik och maritima vtnskapr, Chalmrs Tid och plats: Hjälpmdl: TENTAMEN I FINIT ELEMENTMETOD MHA 2 8 JANUARI 28 8 i M hust Typgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (772 55. Bsökr sal ca. 5 samt
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018
Mkanik och maritima vtnskapr, Chalmrs tkniska högskola ENAMEN I FINI ELEMENMEOD MHA 9 AUGUSI 8 id och plats: 4 8 i M hust Hjälpmdl: ypgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (77) 55. Bsökr sal ca.
Matematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2017
Institutionn för tillämpad mkanik, Chalmrs tkniska högskola ENAMEN I FINI EEMENMEOD MHA 3 AUGUSI 7 id plats: 4 8 i M hust Hjälpmdl: Ordböckr, lxikon typgodkänd räknar. ärar: Ptr Möllr, tl (77 55. Bsökr
TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2016
Institutionn för tillämpad mkanik, Calmrs ENAMEN I FINI EEMENMEOD MHA 9 APRI 6 id oc plats: 4 8, Eklandagatan 86 Hjälpmdl: Ordböckr, likon oc typgodkänd räknar. ösningar ärar: Ptr Möllr, tl (77 55. Bsökr
lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.
Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tntamnsskivning i Mkanik Dl Dynamik fö M 558 Lösningsföslag. Låt v btckna kulans fat fö stöt och v kulans fat ft stöt. Låt btckna impulsn fån golvt på kulan. Enligt impulslagn gäll: ( ) : = mv cos mv cos
TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2017
Institutionn för tillämpad mkanik, Chalmrs id och plats: Hjälpmdl: ENAMEN I FINI EEMENMEOD MHA 2 9 JANUARI 27 4 8 i M hust ypgodkänd räknar. ösningar ärar: Ptr Möllr, tl (772) 55. Bsökr sal ca. 5 samt
Tentamensskrivning i Mekanik (FMEA30) Del 1 Statik- och partikeldynamik Lösningsförslag ( ) ( ) ( ) ( )
Utgåva Tntansskivning i Mkanik (FMEA30) Dl tatik- och patikldynaik 305 Lösningsföslag. a) Filägg stång + skylt! Infö spännkaftna = och = i linona, tyngdkaftn g = k ( 00g), angipand i skyltns asscnta G
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2016
Institutionn för tillämpad mkanik, Chalmrs tkniska högskola TENTAMEN I FINIT EEMENTMETOD MHA AUGUSTI Tid och plats: 8 i M hust Hjälpmdl: Ordöckr, lxikon och typgodkänd räknar. ösningar ärar: Ptr Möllr,
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Tentamen i SG1140 Mekanik II, OBS! Inga hjälpmedel. Lycka till! Problem
nsttutonn fö Man Ncholas pads tl: 79 78 post: nap@mch.th.s hmsda: http://www.mch.th.s/~nap/ S-85 ntamn S Man, 85 BS! nga hjälpmdl. Lca tll! Poblm ) En hosontll am ' md längdn l ota md n onstant nlhastght
Lösningar till Problemtentamen
KTH Mkanik 2005 10 17 Mkanik II, 5C1140, M, T, CL 2005 10 17, kl 14.00-18.00 Lösninga till Pobltntan Uppgift 1: Två cylinda d adina spktiv R sitt ihop so n stl kopp. Dn kan ota fitt king n fix hoisontll
Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 3
laiablanals I Vintn Ösikt föläsninga läscka Dt tj kapitlt i ksn bhanla bbl- och tipplintgal. Dn intgaln i känn till fån naiablanalsn b a f kan j ofta ss som aan n f mllan a och b fnktion a tå aiabl och
I ett område utan elektriska laddningar satisfierar potentialen Laplace ekvation. 2 V(r) = 0
Föeläsning 3 Motsvaa avsnitten 3. 3.2.4, 3.3.2 3.4 i Giffiths Laplace och Poissons ekvation (Kap. 3.) I ett omåde utan elektiska laddninga satisfiea potentialen Laplace ekvation 2 () = 0 och i ett omåde
Hur tror du att det påverkar de politiska besluten? Hur tror du att det påverkar dig?
E N R A P P O R T F R Å N L S U O K TO B E R 2 0 0 9 a n n A ä N a t i n A v bl F oto: P E TT E R C O H E N llt a s g i Om Sv a politik fä ung L S U S V E R I G E S U N G D O M S O R G A N I S AT I O N
24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 3 juni 2010 kl
Tntamn i FEM för ingnjörstillämpningar (SE) dn juni kl. 8-. Rsultat kommr att finnas tillgängligt snast dn juni. Klagomål på rättningn skall vara framförda snast n månad ftr. OBS! Tntand är skldig att
LÖSNINGAR TILL PROBLEM I KAPITEL 2
LÖNINGR TILL RLEM I KITEL L. Kftn h stolkn. Dss iktning ltivt koodintln ä också känd och givn v vinkln. Kftns - komponnt ä då sin, mdn - komponntn ä cos. Vi kn skiv kftn på vktofom: + sin cos ll komponntfom
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
SG Armen OA med längden b roterar med en konstant vinkelhastighet
nstitutionn fö Mani Nicholas paidis tl: 79 748 post: nap@ch.th.s hsida: http://www.ch.th.s/~nap/ S4-74 Tntan i S4 Mani 74 BS! nga hjälpdl. Lyca till! Pobl ) Vagnn i figun bosa d n onstant acclation a längs
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
2 S. 1. ˆn E 1 ˆn E 2 = 0 (tangentialkomponenten av den elektriska fältstyrkan är alltid kontinuerlig)
1 Föeläsning 11 9.1-9.2.2 i Giffiths Randvillko (Kap. 7.3.6) (Vi vänta till föeläsning 12 med att ta upp andvillkoen. Dä används de fö att bestämma eflektion och tansmission mot halvymd.) De till Maxwells
BMW i. Freude am Fahren. BMW i Wallbox. USB uppdateringsanvisning
BMW i Fud am Fahn BMW i Wallbox USB uppdatingsanvisning 5 SV BMW i Wallbox USB uppdatingsanvisning BMW i Wallbox USB uppdatingsanvisning Innhåll 8 Föbda stömladdningsstation Avtagning av höljt Ta av
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
Häng och sväng Hur gör man en mobil?
30 Enkla maskin 31 Enkla maskin Häng och sväng Hu gö man n mobil? Häng och sväng Ovanligt snygg mobil, om jag få säga dt själv. Du bhöv: någa kmtvättsgalga tunt snö avbitatång sak att hänga i mobiln som
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till! Problem
Institutionn fö Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-9 ntamn i 4 Mani II, 9 Inga hjälpmdl föutom: papp, pnna, linjal, passa. Lca till! Poblm ) L a En bhålla
10 Dimensionering av balkar med varierande tvärsnitt och krökta balkar
x ap 0 Dimensioneing av balka med 0 Dimensioneing av balka med vaieande tväsnitt oc kökta balka Tabell 0. Allmänna balkfome. Pulpetbalk l Sadelbalk l ap l Kökt balk 'x 'ap 0 x x 0 l/-c/ l/ c/ γ = c/ =
Uppgift 4. (1p) Beräkna volymen av den parallellepiped som spänns upp av vektorerna. ) vara två krafter som har samma startpunkt
Kontollskivning 8 sep 7 VRSION A Tid: 8:5- Kus: HF6 Linjä algeba och anals (algebadelen) Läae: ik Melande, Nicklas Hjelm, Amin Halilovic aminato: Amin Halilovic Fö godkänt kävs 5 poäng Godkänd KS ge bonus
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
=============================================== Plan: Låt π vara planet genom punkten P = ( x1,
Amin Halilovic: EXTRA ÖVNINGAR Räta linje och plan RÄTA LINJER OCH PLAN Räta linje: Låt L vaa den äta linjen genom punkten P = x, y, som ä paallell med vekton v = v, v, v ) 0. 2 3 P v Räta linjens ekvation
Instuderingsfrågor och övningsuppgifter i vindkraftteknik
Instudingsfgo oh öningsuppgift i indafttni. Hu myt indaft fanns dt i Sig spti äldn nligt snast sstatisti.. Hu myt ha installats oh poduats i Sig hittills i?. Nämn minst t typ a indaft, oh das anändningsomdn,
Tentamen i El- och vågrörelselära, 2014 08 28
Tentamen i El- och vågöelseläa, 04 08 8. Beäknastolekochiktningpådetelektiskafältetipunkten(x,y) = (4,4)cm som osakas av laddningana q = Q i oigo, q = Q i punkten (x,y) = (0,4) cm och q = Q i (x,y) = (0,
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna
TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna
Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning
Schrödingerekvationen i 3 dim: Väteatomen.
Föläsig : Schödigkvtio i di: Vätto. Lösts v Schödig 96. Fökl spktllij få vätt och vis däd tt S. fg!!! Schödig kv i D: Ψ(, t) U( )Ψ(, t) i Ψ(, t) t Solikhtstolkig: Ψ(, t) d Noig: Ψ(, t ) d Sttioä tillståd:
ledarskap exempel kompetensutveckling med kurt ove åhs Hälsoinsatser som fungerar Konsten att välja rätt medarbetare sofia brax en hr-chef i tiden
D n n a t m a t i d n i n g p o d u c a s a v M d i a V a l u Vå/somma 2010 Hälsoinsats som funga Konstn att välja ätt mdabta sofia bax n h-chf i tidn Goda xmpl Famgångsika & fiska fötag Lönsam komptnsutvckling
Lösningsförslag till tentamen i 5B1107 Differential- och integralkalkyl II för F1, (x, y) = (0, 0)
Institutionen fö Matematik, KTH, Olle Stomak. Lösningsföslag till tentamen i 5B117 Diffeential- och integalkalkyl II fö F1, 2 4 1. 1. Funktionen f(x, y) = xy x 2 +y 2 (x, y) (, ), (x, y) = (, ) ä snäll
Delårsrapport 2014-08-31
TRELLEBORGS KOMMUN Srvlcriämndn 2014-09-22 Dlårsrapprt 2014-08-31 Sammanfattning Nämndsttal (tkr) Dlår 140831 Årsbudgt 2014 Prgns 2014 Avvikls Vrksamhtns intäktr 260 267 386 016 385 016-1 000 Vrksamhtns
Den geocentriska världsbilden
Den geocentiska väldsbilden Planetens Mas osition elativt fixstjänona fån /4 till / 985. Ganska komliceat! Defeent Innan Koenikus gällde va den geocentiska väldsbilden gällande. Fö att föklaa de komliceade
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Tentamen 1 i Matematik 1, HF sep 2015, kl. 8:15-12:15
Tentamen i Matemati, HF sep, l 8:-: Examinato: min Halilovic Undevisande läae: Fedi Begholm, Jonas Stenholm, Elias Said Fö godänt betyg ävs av max poäng Betygsgänse: Fö betyg, B, C, D, E ävs,,, espetive
Vi börjar med att dela upp konen i ett antal skivor enligt figuren. Tvärsnittsareorna är då cirklar.
3.6 Rotationsvolme Skivmetoden Eempel Hu kan vi beäkna volmen av en kopp med jälp av en integal? Vi visa ett eempel med en kon dä volmen också kan beäknas med fomeln V = π 3 Vi böja med att dela upp konen
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
Min cykel. 5 Cykelhjälm Det är viktigt att använda cykelhjälm när man cyklar. Men hur ska cykelhjälmen sitta på huvudet för att ge bäst skydd?
Min cykl Sidan Innhåll 4 På väg hm Ands och Osca ha båttom hm. Osca måst lämna matvaona han vait och handlat innan han och Ands kan cykla till täningn. 5 Cyklhjälm Dt ä viktigt att använda cyklhjälm nä
Per Sandström och Mats Wedin
Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786
Tentamen 1 i Matematik 1, HF1903, 22 september 2011, kl
Tentamen i Matematik, HF9, septembe, kl 8.. Hjälpmedel: Endast fomelblad (miniäknae ä inte tillåten) Fö godkänt kävs poäng av 4 möjliga poäng (betygsskala ä A,B,C,D,E,FX,F). Betygsgänse: Fö betyg A, B,
(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
Tvillingcirklar. Christer Bergsten Linköpings universitet. Figur 1. Två fall av en öppen arbelos. given med diametern BC.
villingcikla histe Begsten Linköpings univesitet En konfiguation av cikla som fascineat genom tidena ä den sk skomakakniven, elle abelos I denna tidskift ha den tidigae tagits upp av Bengt Ulin (005 och
Gravitation och planetrörelse: Keplers 3 lagar
Gavitation och planetöelse: Keples 3 laga (YF kap. 13.5) Johannes Keple (1571-1630) utgick fån Copenicus heliocentiska väldsbild (1543) och analyseade (1601-1619) data fån Tycho Bahe, vilket esulteade
Klassisk elektrodynamik Växelverkan mellan laddade partiklar och elektromagnetiska fält
Institutionn fö miin oh vå Avlningn fö aiofysik Hälsounivsittt Klassisk lktoynamik Växlvkan mllan laa patikla oh lktomagntiska fält Guun Alm Calsson Dpatmnt of Miin an Ca Raio Physis Faulty of Halth Sins
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
Matematisk statistik Kurskod HF1012 Skrivtid: 8:15-12:15 Lärare och examinator : Armin Halilovic
Tentamen TEN, HF0, juni 0 Matematisk statistik Kuskod HF0 Skivtid: 8:-: Läae och examinato : Amin Halilovic Hjälpmedel: Bifogat fomelhäfte ("Fomle och tabelle i statistik ") och miniäknae av vilken typ
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIKPROV, LÅNG LÄROKURS 904 BESKRIVNING AV GODA SVAR De beskivninga av svaens innehåll och oängsättninga som ges hä ä inte bindande
i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
TSRT62 Modellbygge & Simulering
TSRT62 Modllbygg & Simulring Förläsning 8 Christian Lyzll Avdlningn ör Rglrtknik Institutionn ör Systmtknik Linköpings Univrsitt C Lyzll (LiTH) TSRT62 Modllbygg & Simulring 2013 1 / 22 Sammanattning: Förläsning
TENTAMEN. Kursnummer: HF0021 Matematik för basår I. Rättande lärare: Niclas Hjelm Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kusnumme: HF Memik fö så I Momen: TEN Pogm: Teknisk så Rände läe: Nicls Hjelm Emino: Nicls Hjelm Dum: -- Tid: :-: Hjälmedel: Fomelsmling: ISBN 98-9--9-8 elle ISBN 98-9--- un neckning. Ing nd fomelsmling
TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED
Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Miljö Malmö stad, Gatukontot, maj 2003 Tafiksäka skolan ä famtagt av Upab i Malmö på uppdag av och i samabt md Malmö stad, Gatukontot. Txt: Run Andbg Illustation: Las Gylldoff Miljö Sidan Innhåll 4 Miljö
ρ. Farten fås genom integrering av (2):
LEDNINGAR TILL PROBLEM I KAPITEL 6 (4-76) LP 6.45 y t Ifö dt tulig kooditsystmt md koodit s = id tid t = då bil stt, och bskto t och ligt figu. s Bgylsillkot ä O x t = s = s = Accltio gs dt llmä uttyckt
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
r r r r Innehållsförteckning Mål att sträva mot - Ur kursplanerna i matematik Namn: Datum: Klass:
Innehållsföteckning 2 Innehåll 3 Mina matematiska minnen 4 Kosod - Lodätt - Vågätt 5 Chiffe med bokstäve 6 Lika med 8 Fomel 1 10 Konsumea mea? 12 Potense 14 Omketsen 16 Lista ut mönstet 18 Vilken fom ä
Ekosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
Skineffekten. (strömförträngning) i! Skineffekten. Skineffekten. Skineffekten. Skineffekten!
14 15 Stömma alsta magnetfält." Magnetfältet fån en lång ak stömföande tåd: (stömfötängning i B Fältet bilda cikla unt tåden, oienteade enligt högehandsegeln B = i 2" 16 J 17 Stömfötängningen beo av fekvensen
Tentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
VIKTIGA SÄKERHETSANVISNINGAR
INSTRUKTIONSBOK VIKTIGA SÄKERHETSANVISNINGAR Dnna symaskin ä int avsdd fö användning av pson (inklusiv ban) md ducad fysiska, snsoiska ll mntala fömågo, ll i avsaknad av fanht ll kunskap såvida d int ha
Kostnad per brukare. Vård och omsorg om äldre och personer med funktionsnedsättning 2014
Kostnd p buk Våd och omsog om äld och pson md funktionsndsättning 2014 Kostnd p buk Våd och omsog om äld och pson md funktionsndsättning 2014 Upplysning om innhållt: Cmill Eiksson, cmill.iksson@skl.s
2012 Tid: läsningar. Uppgift. 1. (3p) (1p) 2. (3p) B = och. då A. Uppgift. 3. (3p) Beräkna a) dx. (1p) x 6x + 8. b) x c) ln. (1p) (1p)
Tentamen i Matematik HF9 (H9) feb Läae:Amin Halilovic Tid:.5 7.5 Hjälpmedel: Fomelblad (Inga anda hjälpmedel utöve utdelat fomelblad.) Fullständiga lösninga skall pesenteas på alla uppgifte. Betygsgänse:
Föreläsning 1. Elektrisk laddning. Coulombs lag. Motsvarar avsnitten 2.12.3 i Griths.
Föeläsning 1 Motsvaa avsnitten 2.12.3 i Giths. Elektisk laddning Två fundamentala begepp: källo och fält. I elektostatiken ä källan den elektiska laddningen och fältet det elektiska fältet. Två natulaga
Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening
Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot
Tentamen Mekanik F del 2 (FFM520)
Tentamen Mekanik F del 2 (FFM520) Tid och plats: Tisdagen den 25 maj 2010 klockan 08.30-12.30 i V. Hjälpmedel: Physics Handbook, Beta, Lexikon, typgodkänd miniäknae samt en egenhändigt skiven A4 med valfitt
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Föreläsning 7. Signalbehandling i multimedia - ETI265. Kapitel 5. LTI system Signaler genom linjära system
Sigalbhadlig i multimdia - ETI65 Förläsig 7 Sigalbhadlig i multimdia - ETI65 Kapitl 5 LTI systm Sigalr gom lijära systm LTH 5 dlko Grbic (mtrl. frå Bgt adrsso Dpartmt of Elctrical ad Iformatio Tchology
Kurs: HF1903 Matematik 1, Moment TEN1 (Linjär Algebra) Datum: 28 augusti 2015 Skrivtid 8:15 12:15
Kus: HF9 Matematik Moment TEN Linjä Algeba Datum: 8 augusti 5 Skivtid 8:5 :5 Examinato: Amin Halilovic Undevisande läae: Elias Said Fö godkänt betyg kävs av max poäng Betygsgänse: Fö betyg A B C D E kävs
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )
6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så
@Anticimex' Byg g n ad sb e skriv n i n g Bosfads bygg n ad. Stomme, material: Byggnadsår/ ombyggnadsår: 1963/ Hustyp/antal våningar:
BESI KT I GS PROTOKOLL - Antiimx Fösäkingsbsiktning v småhus Byg g n d sb skiv n i n g Bsfds bygg n d J I m '- ' uq I Byggndså/ mbyggndså: 193/ Hustyp/nt våning: 2-pns phus Tktyp, tkbäggning : Ppp, ågutnd
INNEHÅLLSFÖRTECKNING. DELARNAS NAMN Delarnas namn... 3 Standardtillbehör... 4 Förvaringsfack... 5 Förlängningsbord... 5
Instuktionsbok 1 DELARNAS NAMN Dlanas namn... 3 Standadtillbhö... 4 Fövaingsfack... 5 Fölängningsbod... 5 FÖRBEREDELSER Ansluta maskinn till vägguttagt... 6 Funktionsknappa... 7 Rgla syhastightn... 8
ERCO Hi-trac strömskena
72 2000 0q (RAL9002) Längd 2000mm Produktbskrivning Panl-profil: aluminium, pulvrlackrad. Ovansidan: tomprofil, för fastsättning av övrkoppling llr täckprofilr. Undrsidan: strömskna. 4 isolrad kopparldar
Tentamen 1 i Matematik 1, HF1903 tisdag 8 januari 2013, kl
Tentmen i Mtemtik, HF9 tisdg 8 jnui, kl 8.. Hjälpmedel: ndst fomelbld miniäkne ä inte tillåten Fö godkänt kävs poäng v 4 möjlig poäng betgsskl ä,,c,d,,f,f. Den som uppnått 9 poäng få betget F och h ätt