TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2017
|
|
- Bengt Öberg
- för 6 år sedan
- Visningar:
Transkript
1 Institutionn för tillämpad mkanik, Chalmrs tkniska högskola ENAMEN I FINI EEMENMEOD MHA 3 AUGUSI 7 id plats: 4 8 i M hust Hjälpmdl: Ordböckr, lxikon typgodkänd räknar. ärar: Ptr Möllr, tl ( Bsökr sal ca. kl 5. samt 7.. ösningar: Btygsättning: Rsultatlista: Granskning: ösningar Anslås på kurshmsidan samt på institutionn (3 vån. i M hust snast 4/8. En fullständig korrkt lösning på n uppgift gr poäng nligt vad som angs på uppgiftslappn. Smärr fl ldr till poängavag. Ofullständig lösning (svar på ställt problm saknas llr omfattand fl gnt något poäng. Maximal poäng är. Dt krävs 8 poäng för btyg 3; poäng gr btyg 4; för btyg 5 krävs 6 poäng. Obsrvra att ovanstånd är btygssättning på nbart tntamn; för godkänd xamination krävs dssutom godkända inlämningsuppgiftr. Anslås snast 3/8 på samma ställ som lösningarna. Rsultatn sänds till btygsxpditionn snast 8/9 för kursdltagar som int har alla inlämningsuppgiftr godkända vid dtta tillfäll inrapportras btygt U (undrkänd. isdag 5/9 3 samt torsdag 7/9 3 i institutionns lokalr. änk på: Skriv så att dn som ska rätta, kan läsa förstå hur tänkr. Dn som rättar tntamn gissant llr antant vad mnar/tänkr ndast vad som vrklign skrivs har btydls vid poängsättningn. Förklara/dfinira införda btckningar. Rita tydliga figurr. Ang i förkommand fall vad som är positiva/ngativa riktingar (på t.x förskjutningar kraftr. Gör antagandn utövr d som angs i uppgiftstxtn, så ang dtta xplicit förklara dssa /PWM
2 Btrakta värmldning gnom n cylinisk trmosvägg md innrradi yttrradi. Om innrväggns tmpratur är u i värmövrgångn vid yttrväggn är konvktiv md övrgångsmotstånd α, fås tmpraturn u( r i väggn som lösningn till randvärdsproblmt u i θ u r d -- k r r u( u i < r < q( α( u( u där värmldningskofficintn k omgivningstmpraturm u är givna konstantr, samt q k är värmflödt nligt Fourir. a: Variationsformulra problmt. Du bhövr hänt ang rgularittskrav på ingånd funktionr, md dt måst klart framgå hur randvillkorn kommn i dn svaga formn. (Obsrvra att intgrationn ska göras övr n volym: intgrationsgränsr. (p dv (md lämpliga b: FE formulra problmt md tstfunktionr (viktsfunktionr nligt Galrkin. (p V rdθ dz c: Härld lmntstyvhtsmatrisn för tt lmnt md två linära basfunktionr längdn h r r, där r r är d två nodrnas koordinatr. (p d: åt,3 m,,5 m, u i 9 C, u C, k,w/m C N r r r α W/m C. Bräkna yttrväggns tmpratur gnom att lösa problmt md två lika långa linära lmnt. (p ösning a: Multiplicra diffrntialkvationn md n tstfunktion v volymn v( r intgrra övr π v -- d kr d rdθ d r d z π v kr r dv Eftr division md π partialintgration fås kr vkr. Utvckla nu randtr- mn sätt in randvillkort vid r : vkr. Här är sista trmn är obkant, så vi bgränsar valn av tstfunktion till sådana att v(. Vi har alltså variationsproblmt v( k v( r i k v( r y αu v( αu( v( k r r r 7 8 3/PWM
3 dv kr + αr y v( u( α v( u u( u i v( ösning b: Approximra dn obkanta funktionn md n linärkombination av basfunktionr u u h + N a + + N n a n Na, där N är n radvktor md basfunktionrna a är n kolumnvktor md nodvariablrna; basfunktionrna måst uppfylla N(. Sätt in approxima- h d dn tionn i variationsproblmt låt [ Na] a d dn dn n : a Ba dv kr Ba + αr. Välj nu basfunktionrna som tstfunktion tur y v( N( a α v( u ordning (Galrkins mtod; varj val gr upphov till n kvation vi samlar kvationrna rad- N dn vis, så v dv. Vi får alltså B krb Ba + α N ( N( a α N ( u N n d dn n ösning c: För tt lmnt md två linära basfunktionr N på intrvallt r r r N dn har vi -- vilkt gr att dn dn är konstant. Vi får då: h ---- h K r kr dn dn k ---- k r h r r k( r r [ ] r h r h r r k( r r ( r + r h k( r + r h ösning d: Om vi numrrar nodr lmnt inifrån utåt, får vi nodkoordinatrna r r r 3,3,4,5 m vi har lmntlängdn h, m. Vi får då K a k( r + r ,7,7 h a,7,7 K a k + r a,9,9 h,9,9 a a ( W/m C ( W/m C /PWM
4 för lmnt rspktiv. Assmblring gr då Ka,7,7,7,6,9,9,9 a ( W/m C. Dt konvktiva biagt till vänstrldt blir K c a αr 3 N N a a( W/m C mdan högrldt gr f αr 3 N u Randvillkort vid r gr att u i så vi får ( K + K c a f,7,7,7,6,9,9,9 u i a,7 a,6,9 a,9,9 3,7,7 u i D tr kvationrna har rhållits gnom att i tur ordning välja d tr basfunktionrna ( r som tstfunktion, mn uppfyllnt variationsformulringns villkor v( så första kvationn änt gilltig. Vi får då,6,9,9,9 a,7 u i lösningn a a ,663 3,9,9,9,6,7 u 4,3 i 3,4 C /PWM
5 Dt vanligast balklmntt för att approximra lösningn w( x har fyra kubiska basfunktionr, som för tt lmnt md längd gs av till lastiska linjns kvation x x3 N 3 x x3 x 3 N x x ---- x ---- x ransvrsalförskjutningn på lmntt approximras alltså som.5.5 N w w h N a där N är n radvktor md basfunktionrna på lmntt N N3 N4 a a a3 a4 a är n kolumnvktor md nodvariablrna x/ N 4 Om böjstyvhtn EI är konstant övr lmntt, blir lmntstyvhtsmatrisn K EI Elmntlastvktorn gs av f q( xn dx, där q( x är n yttr för- 6 6 dlad last (kraft/längd. a: Visa att lmntt är kompltt. (p b: Bstäm lmntlastvktorn f då lastintnsittn q är konstant övr lmntlängdn (p c: Använd två balklmnt ställ upp, samt lös, FE kvationrna Ka f för dt problm som illustrras ndan. (3p q( x q, EI, EI /PWM
6 ösning a: Approximationn på lmntt, ösning 3c: Md två lmnt, båda md längd böjstyvht EI, fås lmntstyvhtsmatrisrna nligt tsn, md nodvaw h 4 i a i ( x, är kompltt om vi kan välja nodva- dw h riablvärdn a i så att (a w h blir n godtycklig konstant, (b blir n godtycklig konstant dx d w h (c blir n godtycklig konstant. dx (a Vi sr att bara har funktionsvärdn skilda från noll vid x rspktiv x. Försök därför md c, där c är n godtycklig konstant, samt a. Man får då w h c( + c 3 x. Ansattsn kan alltså bskriva n godtycklig konstant -- + x x -- x -- 3 c förskjutning. (b N N 4 har drivatan vid x rspktiv x, mdan drivatorna av båd är noll i dssa punktr. För att ha n konstant drivata, c, på lmntt måst skillnadn i funktionsvärdnna i d bägg ändpunktrna vara c. Försök därför md, c a c : w h c + c( N + N 4 c----- x. Approxima x3 x x x cx tionn kan alltså bskriva n godtycklig drivata c, (c Vi har anadrivatorna x 3 x 3 d 6 x dx d N 4 6x dx d 6 x dx d d N 4 x 6x sr att ick konstanta trmr förkommr parvis i omväxland positiva ngativa tckn. c För att bli av md dssa måst vi ha c a --, vilkt gr d d w h x 6 c x 6 x c 4 6x 6x c dvs lmntt kan åtrg n godtycklig konstant anadrivata. ösning b: Md konstant lastintnsitt q har vi f q N dx. Intgration av d fyra givna polynomn gr trivialt f q q q q a 5 a /PWM
7 riablnumrring nligt figurn har vi a a3 a4 a för lmnt rspktiv a a3 a4 a 5 för lmnt. Vi har då Ka a EI a a 5 EI a a 5 Md lmntlastvktorr nligt 3b har vi också f q q q + q q q q q I kvationssystmt Ka f måst vi sätta a a 5 för att satisfira förskrivna translationr; associrad basfunktionr (, i,, 3, 5 änt tillåtna val av tstfunktion, så EI bara kvation 4 6 åtrstår: q ; 4 3 q EI 3 Man önskar bräkna spänningarna som uppkommr på grund av tt övrtryck p i rörtvärsnitt nligt figurn. Eftrsom problmt har två symmtrilinjr, nöjr man sig md att diskrtisra n vänstra fjärddln av områdt. Elasticittskvationrna på svag form blir då Γ 3 Γ p sym Γ sym sym p p sym A ( v D uda v tdγ y x Γ Här är D n symmtrisk positivt dfinit konstitutiv matris, u u x u y är d obkanta förskjut- Γ /PWM
8 ningarna, v v x v y n vktor md tstfunktionr traktionvktorn t på gs t x pn av x, där n x n y är komponntrna till n utåtriktad nhtsnormalvktor på ran- t y pn y dn. Vidar gs diffrntialopratorn av x y y x a: Ang randvillkorn på d båda symmtrilinjrna Γ Γ, samt på d yttr bgränsningslinjrna Γ 3 Γ 4. (p b: Finit lmntformulra problmt md tstfunktionr nligt Galrkin. Dfinira införda btckningar. (p c: FE formulringn ldr till tt kvationssystm Ka f där K är n symmtrisk positivt dfinit matris, f n bkant lastvktor a n vktor md d sökta nodvariablrna. Visa att lösningn a K f minimrar dn kvaatiska funktionn Π( x --x Kx x f dvs visa att Π( a Π( x, md likht ndast om x a (p ösning 3a: D båda yttr bgränsningslinjrna, Γ 3 Γ 4, är fria oblastad så normal tangntialspänningarna måst vara på dssa. Md btckningarna t x σ xx n x + σ xy n y t y σ xy n x + σ yy n y kan dtta uttryckas som t x t y. För n symmtrirand gällr att tangntialspänningn förskjutningn ortogonalt mot randn är. u x, t y på Γ Sammanfattningsvis: t x, u y på Γ t x, t y på ( Γ 3 Γ 4 ösning 3b: Approximra d obkanta förskjutningarna, u y u yh i a iy, där a ix a iy är obkanta nodvariablr, mdan ( x, y är valda basfunktionr. Om vi dfinirar u x u xh i a ix N N n a x y a nx a ny N n /PWM
9 kan vi skriva u u h Na. Vidar ska tstfunktionrna nligt Galrkin vara n godtycklig linärkombination av basfunktionrna (altrnativt: väljs i tur ordning som N n v N n,,,, ; låt c c vara n kolumnvktor md god- c c n c n n tyckligt valda kofficintr. Vi har då v Nc. Insättning i dn svaga formn gr nu A ( Nc D ( Na da ( Nc tdγ c ( N D NdAa N tdγ Eftrsom c är n godtycklig vktor måst uttryckt inom parnts vara n nollvktor, så md B N fås alltså B DBdAa N tdγ llr Ka f. A ösning 3c: åt x vara n godtycklig vktor a vara lösningn till Ka f a är ntydig ftrsom K är positivt dfinit. Bilda v x a ; vi har då Π( x Π( a + v -- ( a + v K( a + v ( a + v f -- ( a Ka + v Ka + a Kv + v Kv v f a f A Mn a Kv ( a Kv ( Kv a v K a v Ka ftrsom K är symmtrisk. Vi får då Π( x --a Ka a f --v Kv v Ka v + + f Π( a + --v Kv + v ( Ka f Mn Ka f v ( Ka f K är positivt dfinit så v Kv > för v, dvs då x a, så dt följr att Π( x > Π( a för x a /PWM
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018
Mkanik och maritima vtnskapr, Chalmrs tkniska högskola ENAMEN I FINI ELEMENMEOD MHA 9 AUGUSI 8 id och plats: 4 8 i M hust Hjälpmdl: ypgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (77) 55. Bsökr sal ca.
TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2016
Institutionn för tillämpad mkanik, Calmrs ENAMEN I FINI EEMENMEOD MHA 9 APRI 6 id oc plats: 4 8, Eklandagatan 86 Hjälpmdl: Ordböckr, likon oc typgodkänd räknar. ösningar ärar: Ptr Möllr, tl (77 55. Bsökr
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2016
Institutionn för tillämpad mkanik, Chalmrs tkniska högskola TENTAMEN I FINIT EEMENTMETOD MHA AUGUSTI Tid och plats: 8 i M hust Hjälpmdl: Ordöckr, lxikon och typgodkänd räknar. ösningar ärar: Ptr Möllr,
TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2018
Mkanik och maritima vtnskapr, Chalmrs Tid och plats: Hjälpmdl: TENTAMEN I FINIT ELEMENTMETOD MHA 2 8 JANUARI 28 8 i M hust Typgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (772 55. Bsökr sal ca. 5 samt
TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2017
Institutionn för tillämpad mkanik, Chalmrs id och plats: Hjälpmdl: ENAMEN I FINI EEMENMEOD MHA 2 9 JANUARI 27 4 8 i M hust ypgodkänd räknar. ösningar ärar: Ptr Möllr, tl (772) 55. Bsökr sal ca. 5 samt
TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2018
Institutionn fö tillämpad mkanik, Chalms id och plats: Hjälpmdl: ENAMEN I FINI ELEMENMEOD MHA 6 APRIL 8 4 8 i M hust Odböck, lxikon och typgodkänd äkna. Lösninga Läa: Pt Möll, tl (77 55. Bsök sal 5 samt
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 3 juni 2010 kl
Tntamn i FEM för ingnjörstillämpningar (SE) dn juni kl. 8-. Rsultat kommr att finnas tillgängligt snast dn juni. Klagomål på rättningn skall vara framförda snast n månad ftr. OBS! Tntand är skldig att
24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Institutionen för teknisk mekanik, Chalmers tekniska högskola TENTAMEN I FINIT ELEMENTMETOD (M3) MHA MARS 2002
Institutionn för tknisk mknik, Chlmrs tknisk högskol TNTAMN I FINIT LMNTMTOD (M3) MHA 0 4 MARS 00 Tid och plts: 8 45 45 i M hust Hjälpmdl: Ordöckr, lxikon och typgodkänd räknr. Lärr: Ptr Möllr, tl (77)
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
4.1 Förskjutning Töjning
Övning Stark/Svag Form, Fackvrk Rickard Shn 3--5 FEM för Ingnjörstillämpningar, SE5 rshn@kth.s 4. Förskjutning öjning a) Sökt: Visa att töjningn i lmntt är. du ösning: I grundkursn fick man lära sig att.
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:
arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar
DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED
Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr
ICKE-HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA HÖGERLED
Armin aliloic: EXTRA ÖVNINGAR Ick-homogna linjära diffrntialkationr ICKE-OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER, ENKLA ÖGERLED Linjär diffrntialkation (DE) md konstanta kofficintr
(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:
TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2016
Insttutonn för tllämpd mknk, Clmrs Td oc plts: Hjälpmdl: TNTAMN I FINIT LMNTMTOD MHA JANUARI 6 4 8 M ust Ordöckr, lxkon oc typgodkänd räknr. Lösnngr Lärr: Ptr Möllr, tl (77 55. Bsökr sl c. 5 smt 6 3. Lösnngr:
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER
Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
Tentamen i Kemisk termodynamik kl 8-13
Tntamn i misk trmdynamik 20040-23 kl 83 Hjälpmdl: Räkndsa, BETA ch Frmlsamling för kursrna i kmi vid TH. Endast n uppgift pr blad! Skriv namn ch prsnnummr på varj blad! Alla använda kvatinr sm int finns
Tentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Del 1 Teoridel utan hjälpmedel
inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna
TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,
Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och
ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Tentamen i Linjär algebra 2010 05 21, 8 13.
LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända
Matematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
Epipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom
Epipoärgomtri dn fundamntaa matrisn Låt vara n punkt i kamracntrum rsp Låt Punktn bägg kamracntrum pipoarpant ti bägg avbidningarna ti vara dss avbidning i två bidr gnom samt d -dimnsiona motsvarightrna
6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 riangmnt ickard Shn -- FEM för Ingnjörstiämpningar, SE rshn@kth.s 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E-modu E Poissons ta På tunn påt md fria tor kan man göra antagand om
TSRT62 Modellbygge & Simulering
TSRT62 Modllbygg & Simulring Förläsning 8 Christian Lyzll Avdlningn ör Rglrtknik Institutionn ör Systmtknik Linköpings Univrsitt C Lyzll (LiTH) TSRT62 Modllbygg & Simulring 2013 1 / 22 Sammanattning: Förläsning
Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Föreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening
Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot
6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 FEM för Ingnjörstiämpningar ickard Shn 9 6 rshn@kth.s FEM anas md triangmnt 9 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E modu E Poissons ta På tunn påt kan man oftast göra antagand
i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.
Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt
Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
Algebra och geometri 5B Matlablaboration
Mariana Dalarsson, ME & Johan Svnonius, IT Algra och gomtri 5B46 - Matlalaoration 6-- Kurs: 5B46 Handldar: Karim Daho Uppgift Enligt uppgiftn gällr följand vationr: p ( x) + x a + ax + a x a (.) 7 f (
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
ANALYS AV DITT BETEENDE - DIREKTIV
Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).
NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2
Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Tentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem
Institutionn för Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-845 ntamn i 4 Mani II, 845 Hjälpmdl: Pappr, pnna, linjal. Lca till! Problm ) B l r Ett sänghjul md
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Del 1 Teoridel utan hjälpmedel
Avlningn för Hållfasthtslära Tntamn Linköpings Univrsitt Davi Lönn 010-06-01, kl. 14-18 Dl 1 Toril utan hjälpml 1. Tor, för tta profssor i Hållfasthtslära, numra profssor mritus, har använt n sträva till
Lösningsförslag: Tentamen i Modern Fysik, 5A1246,
Lösningsförslag: Tntamn i Modrn Fysik, 5A146, 6-6- Hjälpmdl: 1 A4-blad md gna antkningar (på båda sidor), Bta oh fikkalkylator samt institutionns tabllblad utdlat undr tntamn. Examinatorr: Vlad Kornivski
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
LINJÄRA SYSTEM repetitions- och tentamensfrågor. Matrisräkning (rep.)
LINJÄRA SYSTEM rptitions- och tntamnsfrågor Försökr hålla mig till ndanstånd frågställningar när jag sättr ihop tntamn. Hjälpmdl vid tntamn: Dt utdlad Fourir/Laplac-transformbladt kommr att bifogas. Miniräknar
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int
där a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv.
Knagg Knaggarna kan t.x. användas vid förbindning mllan ar och ar. I kombination md fäst är bärförmågan stor vid vältand och lyftand kraftr. Knaggarna tillvrkas av 2,0 ± 0,13 mm galvanisrad stålplåt och
7.2 Vägg med isolering
9 3 rshn@kth.s Värmtranport 7 73 7 9 7. Vägg md isoring En vägg bfinnr sig i stady stat n vintrdag. Väggn bstår av cm yttrmatria och cm isoring. Givt: k. W cm k.6 W cm h. W cm Sökt: mpraturprofi gnom väggn
Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.
Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars
Bengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV RESEKOSTNADER OCH REPRESENTATION Bngt Sbring Sptmbr 2000 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING 1. Inldning... 2 2. Rsultat av granskningn...
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com
AVM 960 AVM 961 AVM 971 S D K N O F I.hirlpool.com 1 S INNAN APPARATN MONTRAS INSTALLATION KONTROLLRA ATT ugnsutrymmt är tomt för installationn. KONTROLLRA att apparatn int är skadad innan dn montras i
TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
Lektionsuppgifter i regressionsanalys
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN Lktionsuppgiftr i rgrssionsanalys A A ENKEL LINJÄR REGRESSION Från n undrsökning av vilka faktorr som påvrkar prist på villor i n sydsvnsk ort insamlads n dl
Uppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
Per Sandström och Mats Wedin
Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786
Arkitekturell systemförvaltning
Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm
SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag
SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är
Laboration 1 Svartkroppsstrålning Wiens lag
Ivar Gustavsson/ Jan Södrstn Matmatiska vtnskapr Götborg 8 novmbr 009 Linjär Algbra och Numrisk Analys TMA 671, 010 Laboration 1 Svartkroppsstrålning Wins lag Strålningsflödt vid svartkroppsstrålning till
om de är minst 8 år gamla
VIKTIGA SÄKERHETSINSTRUKTIONER LÄS NOGGRANT OCH SPARA FÖR FRAMTIDA REFERENS VÄRM INTE UPP OCH ANVÄND INTE BRANDFARLIGA MATERIAL i llr nära ugnn. Ångor kan skapa n risk för brand llr xplosion. ANVÄND INTE
Delårsrapport 2014-08-31
TRELLEBORGS KOMMUN Srvlcriämndn 2014-09-22 Dlårsrapprt 2014-08-31 Sammanfattning Nämndsttal (tkr) Dlår 140831 Årsbudgt 2014 Prgns 2014 Avvikls Vrksamhtns intäktr 260 267 386 016 385 016-1 000 Vrksamhtns
(x 3 + y)dxdy. D. x y = x + y. + y2. x 2 z z
UPPAA UNIVERITET Matematiska institutionen Abrahamsson, 4715, 7-57 (tyf, 47119, 77-517) Prov i matematik IT, K, X, W, EI, MI, NVP samt fristående kurs. Flerdimensionell analys och Analys MN 5-1-9 krivtid:
Transformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )
6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så
TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel
TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,
Institutionen för tillämpad mekanik, Chalmers tekniska högskola TENTAMEN I HÅLLFASTHETSLÄRA F MHA AUGUSTI 2014
Institutionen för tillämpad mekanik, halmers tekniska högskola TETME I HÅFSTHETSÄR F MH 81 1 UGUSTI 14 Tid och plats: 14. 18. i M huset. ärare besöker salen ca 15. samt 16.45 Hjälpmedel: ösningar 1. ärobok
Förra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer.
örläsning 5 örra gångn: fördlningar Omfattand systm md många partiklar kan praktiskt bara bskrivas i statistiska trmr. Antal partiklar inom nrgiintrvall E till E +de gs av dn = D (E ) N (E ) de där D (E
Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002
ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
11. Egenvärden och egenvektorer
11 Egnvärdn och gnvktorr 82 Egnvktor och gnvärd: dfinition 83 Egnvktorr och gnvärdn för projktionr, spglingar och rotationr i 2 och 3 dimnsionr 84 Karaktäristiskt polynom, karaktäristisk kvation och gnvärdn
re (potensform eller exponentialform)
Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r
Elementær diskret matematikk, MA0301, våren 2011
Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = 9 8 7 6 På liknan sätt får vi att t