Lösningsförslag: Tentamen i Modern Fysik, 5A1246,
|
|
- Ludvig Engström
- för 7 år sedan
- Visningar:
Transkript
1 Lösningsförslag: Tntamn i Modrn Fysik, 5A146, 6-6- Hjälpmdl: 1 A4-blad md gna antkningar (på båda sidor), Bta oh fikkalkylator samt institutionns tabllblad utdlat undr tntamn. Examinatorr: Vlad Kornivski oh Bngt Lund-Jnsn Tntamn har 8 problm som vardra gr 5 poäng. För godkänt krävs prliminärt 16 p. Vid minst 14 p kommr möjlight att komplttra till btyg 3 att finnas. 1. μ - i vila söndrfallr till - oh nutrinr. Bräkna maximala hastightn hos - som bildas. Nutrinrna antas masslösa. (Tips: Vid bräkning av lktronns kintiska nrgi får dss vilonrgi försummas.) Vilonrgin hos μ - (m μ ) övrgår till kintisk nrgi hos lktronn oh nutrinrna samt till lktronns vilomassa. Om vilomassorna bortss ifrån, kan lktronns kintiska nrgi vara högst hälftn av myonns vilonrgi ftrsom rörlsmängdn skall bvaras. Dtta gr att lktronns totala nrgi är E = ½ m μ m = γ m vilkt gr γ = m μ /(m ) 1 14,3 ur vilkt hastightn γ 1 gs av β =, γ. A hydrogn atom initially at rst undrgos a transition from th first xitd stat to th ground stat with an mission of a photon. Find th vloity aquird by th atom as a rsult. What is th prntag diffrn btwn th nrgy of th mittd photon and th nrgy of th givn atomi transition. (5p)
2 3. A linar bam of partils is normally inidnt onto a plat with a doubl-slit and forms an intrfrn pattrn on a srn bhind th doubl-slit. Show that any attmpt to dtrmin (using som mirosopi dttor/indiator) through whih slit any individual inidnt partil has passd dstroys th intrfrn pattrn. For simpliity assum that th diffration angls ar small. (Hint: rall th Hisnbrg mirosop gdankn xprimnt.) (5p) 4. A partil with nrgy E is inidnt onto a barrir of hight U suh that E<U. Find (a) th rfltion offiint; (b) probability dnsity as a funtion of th position of th partil P(x); () mak an approximat graph of th found P(x) and ompar it with th lassially xptd distribution. (5p)
3 5. A partil is plad in a sphrially symmtri potntial of radius a, with U(r<a)= and U(r=a)=. (a) Find th allowd nrgy valus and th proprly normalizd s-wav funtions (l=). [Hint: solv th radial Shrödingr quation by substituting ψ(r)=χ(r)/r]. (b) Find and skth th probability dnsity and th radial probability dnsity. () Find th most probabl valu of r.
4 6. Vid n mätning av radioaktivitt av tt prov ftr aktivring rhölls mätsrin ndan. a) Hur många olika nuklidr bstår provt minst av? (p) b) Bräkna dssas halvringstidr. (p) ) Hur många kärnor av dssa nuklidr fanns vid tidn t =? (1p) Tid (s) Antal söndrfall ln (söndrfall/s) pr s Gnom att rita upp tt diagram av logaritmn som funktion av tidn sr man att dt rör sig om två distinka söndrfallskonstantr. Gnom att btraka antal söndrfall pr tidsnht vid 1 rspktiv s syns tydligt att dn na halvringstidn är nära 1 s. ln 3 Mha söndrfallskonstantn = s -1 kan bidragt från söndrfalln från T 1/ av komponntn md dn längr halvringstidn vid, 5, 1 oh s bräknas md R = R -t där R 485. till 485, 469, 453 oh 4 vilkt gr att söndrfallratn av dn kortlivad nuklidn är 4158, 793, 1398, 61. Av dtta sr man att dn kortlivad nuklidn har n halvringstid som är nära 5 s. R ln 61 ln 4158 Söndrfallskonstantn är = R t Vid tidn t = förväntas vi ha N = R / kärnot av vardra nuklidn dvst totalt N 4158/ / ,7 1 5 kärnor 7. Comptonspridning kan användas båd för att mäta riktning oh nrgi hos fotonr i kärnfysikxprimnt. För tt visst prparat mätts tt spktrum hos omptonspridda lktronr som tydligt motsvarar n i stort sätt monokromatisk gamma-strålning. Dn maximala lktronnrgin mätts till 341 kv. Bräkna våglängdn för dn inkommand monokromatiska strålningn. (Tips: för att förnkla bräkningn kan notras att 341 kv utgör /3 av lktronns vilonrgi) (5p)
5 Maximal nrgiövrföring fås när dn spridda fotonn är riktat mot dn inkommand, dvs då spridningvinkln vinkln θ = π. Då gällr att dn spridda fotonns h våglängd är ' = m Övrförd nrgi, dvs lktronns kintiska nrgi, är h h h h m h m h hf hf h = = E h m h ' = = = ' ( ) ( m h) m Dtta stuvas om: h h h = = m m E m ± h m 4 h m E 14V nm 511kV 1.4 nm nm ( 1 1 3) nm.43nm Följand diagram visar spktrum för övrgångar i HBr-molkylr. Bräkna kraftkonstantn för dnna molkyl. (5p) Övrgångarna motsvarar n ändring av vibrationskvanttalt n nht samtidigt md tt antal olika rotationsövrgångar vardra md Δl = ± 1. En övrgång i mittn saknas. Dnna motsvarar Δl = oh gr då nrgin för vibrationsövrgångn:.317 V.
6 ΔE Vi har då att ΔE = hω. Dn söka kraftkonstantn gs av K = ( ω) μ = μ h Där dn rdudurad massan för HBr är μ = m m H m m H Br Br =.9953u ΔE.317V Vi får K = μ -16 h V s (jmfr 41 N/m i tabll 11. i bokn) kg / u kg 383 N/m kg
Föreläsning 10 Kärnfysiken: del 2
Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt
Läs merTid 09:00-15:00, fredag 3 mars Hjälpmedel: formelsamling, räknare, physics handbook
STOCKHOLS UIVERSITET FYSIKU Tntamn Kvantfysik 6p för Fyun Tid 9:-15:, frdag 3 mars 6. Hjälpmdl: formlsamling, räknar, physis handbook 1 a Ang d partiklslag som har färg. För varj partikl ang tt möjligt
Läs merHittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Läs merKontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
Läs mer24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Läs merTENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
Läs merFöreläsning 5 och 6 Krafter; stark, elektromagnetisk, svag. Kraftförening
Förläsning 5 och 6 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot
Läs merATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
Läs merTentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Läs merTENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
Läs merTENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:
Läs merOm i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Läs merKurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
Läs merRäkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
Läs merInlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.
Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars
Läs merUmeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Läs merLösningar till tentamen i Kärnkemi ak den 18 december 2000
Lösningar till tntamn i Kärnkmi ak dn 8 dcmbr 2000 Dl A Vilkn nrgi har d fotonr som utsänds vid annihilation av n positron? (2p) Svar: 5 kv 2 Hur förändras oftast jonladdningn när jonr md hög nrgi passrar
Läs merFörra gången: fördelningar Omfattande system med många partiklar kan praktiskt bara beskrivas i statistiska termer.
örläsning 5 örra gångn: fördlningar Omfattand systm md många partiklar kan praktiskt bara bskrivas i statistiska trmr. Antal partiklar inom nrgiintrvall E till E +de gs av dn = D (E ) N (E ) de där D (E
Läs merUndervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Läs merTentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
Läs mer1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Läs mer9. Beskriv principen för en Na(I)-scintillationsdetektor (skiss och text). (5p) Svar: Se figur 8.6 och avsnitt 8.5 i läroboken.
Lösningar till tntamn i kärnkmi ak dn 15 dcmbr 21 (korrigrad 21-12-19) Dl A 1 Bskriv hur nrgitillförsln till lktrodrna i n Alvarz acclrator skr? (3p) Svar: Alvarz accllratorn är n linjär accllrator md
Läs merAtomer: rörelsemängdsmoment och spinn. Pauliprincipen och periodiska systemet.
Förläsning 1 Atomr: rörlsmängdsmomnt och spinn. Pauliprincipn och priodiska systmt. Från kvantmkanikn, lösning till Schrödingrkvationn i 3 dimnsionr, har vi att lktronrna har rörlsmängdsmomnt L ( 1) Klassiskt
Läs merRäkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
Läs mer2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Läs merTryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
Läs merFöreläsning 6 och 7 Krafter; stark, elektromagnetisk, svag. Kraftförening
Förläsning 6 och 7 Kraftr; stark, lktromagntisk, svag. Kraftförning Partiklfysik introduktion Antimatria, MP 13-1 Fynman diagram Kraftr och växlvrkan, MP 13-2 S ävn http://particladvntur.org/ 1 2 3 Mot
Läs merFasta tillståndets fysik.
Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.
Läs merTentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Läs meri) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
Läs merDEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Läs merDel 1 Teoridel utan hjälpmedel
inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst
Läs merTentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Läs merEkosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
Läs mer(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:
Läs merStatistisk mekanik (forts) Kanonisk ensemble. E men. p 1. Inledande statistisk mekanik:
Förläsg 4 Förra gåg: Dt totala rörlsmägdsmomtt J = L+S är ocså vatsrat. J j( j där j s, s,..., s, s J z m j där m j j, j,..., j, j Foto som utsäds(absorbras vd övrgågar har sp= gör att j att ädras. Ildad
Läs merdär a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Läs merLösta exempel och gamla tentor i Materialfysik för E, IF1602 M. Göthelid Materialfysik, KTH-Electrum, Kista
Lösta xmpl oc gamla tntor i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Lösa xmpl oc gamla tantr i Matrialfysik för E, IF6 M. Götlid Matrialfysik, KTH-Elctrum, Kista (/8 Innållsförtckning
Läs merUppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
Läs merTentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
Läs merMatematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
Läs merUppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna
TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:
Läs merAnmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
Läs merTentamen i SG1140 Mekanik II, Hjälpmedel: Papper, penna, linjal. Lycka till! Problem
Institutionn för Mani Nicholas paidis tl: 79 748 post: nap@mch.th.s hmsida: http://www.mch.th.s/~nap/ 4-845 ntamn i 4 Mani II, 845 Hjälpmdl: Pappr, pnna, linjal. Lca till! Problm ) B l r Ett sänghjul md
Läs merFöreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Läs merSlumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Läs merRelativistisk energi. Relativistisk energi (forts) Ekin. I bevarad energi ingår summan av kinetisk energi och massenergi. udu.
Föreläsning 3: Relativistisk energi Om vi betraktar tillskott till kinetisk energi som utfört arbete för att aelerera från till u kan dp vi integrera F dx, dvs dx från x 1 där u = till x där u = u, mha
Läs merTentamen i FEM för ingenjörstillämpningar (SE1025) den 3 juni 2010 kl
Tntamn i FEM för ingnjörstillämpningar (SE) dn juni kl. 8-. Rsultat kommr att finnas tillgängligt snast dn juni. Klagomål på rättningn skall vara framförda snast n månad ftr. OBS! Tntand är skldig att
Läs merGRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD
GRAFISK PROFILMANUAL SUNDSVALL NORRLANDS HUVUDSTAD INLEDNING Sundsvall Norrlands huvudstad Sundsvall Norrlands huvudstad, är båd tt nuläg och n önskan om n framtida position. Norrlands huvudstad är int
Läs merBilaga 1 Kravspecifikation
Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.
Läs merlim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.
Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt
Läs merTENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel
TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,
Läs merspänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
Läs merTNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Läs merLINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Läs merVid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
Läs merRevisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
Läs merUppskatta lagerhållningssärkostnader
B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,
Läs merTRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
Läs merLösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Läs merBengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002
ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
Läs merwhere β R. Find the numbers β for which the operator är diagonalizable, and state a basis of eigenvectors for each of these β.
MÄLARDALEN UNIVERSITY School of Education, Cultur and Communication Dpartmnt of Applid Mathmatics Examinr: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA53 Linar Algbra Dat: 206-06-08 Writ tim: 5 hours
Läs merTEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
Läs merKontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Läs merKomplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).
TENTAMEN 0 jan 0 HF00 och HF008 Momn: TEN Analys, hp, skrflg namn Kursr: Analys och lnjär algbra, HF008, lärar: Frdrk Brgholm och Ing Jovk, Lnjär algbra och analys, HF00, lärar: Armn Hallovc Eamnaor: Armn
Läs mer1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,
Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och
Läs merRörelsemängd och energi
Föreläsning 3: Rörelsemängd och energi Naturlagarna skall gälla i alla interial system. Bl.a. gäller att: Energi och rörelsemängd bevaras i all växelverkan mu p = Relativistisk rörelsemängd: 1 ( u c )
Läs merRevisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
Läs merRevisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
Läs merSvar: Inbromsningssträckan ökar med 10 m eller som Sören Törnkvist formulerar svaret på s 88 i sin bok Fysik per vers :
FYSIKTÄVLINGEN KVALIFICERINGS- OCH LAGTÄVLING 1 februari 001 LÖSNINGSFÖRSLAG SVENSKA FYSIKERSAMFNDET 1. Enligt energiprincipen är det rörelseenergin som bromsas bort i friktionsarbetet. Detta ger mv sambandet
Läs merTentamen (TEN1) TMEL08 Eltekniska system
ISY/Elktrnika krtar ch ytm Tntamn (TEN) TMEL08 Eltknika ytm Tid: 5 ktbr 08, klckan 4 8 Plat: Lärar: TERE, TER4, TER Sivrt Lndgrn Tntamn btår av 6 prblm à 0 päng. För fll päng kräv att löningarna är flltändiga
Läs merBengt Sebring September 2003 Sida: 1 Ordförande GRANSKNINGSRAPPORT 3/2003
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2003-06-30 Bngt Sbring Sptmbr 2003 Sida: 1 Kommunrvisionn 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
Läs merHOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER
Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand
Läs merFöreläsning 6. Kapitel 4. Fouriertransform av analog signal, FT Fouriertransform av digital signal, DTFT fortsättning
Digital sigalbhadlig ESS4 Förläsig 6 Dfiitio: Fourirtrasform av tidsdiskrt sigal DF, sid 5 Digital sigalbhadlig ESS4 Kapitl 4 Fourirtrasform av aalog sigal, F Fourirtrasform av digital sigal, DF fortsättig
Läs merEKOTRANSPORT 2030. Vägen till en fossiloberoende fordonsflotta. #eko2030
FOTO: CHINAFACE #ko2030 mmmnn m m o k o ä k l V Vä ssnn oom n n r r f ttiillll kkoonf hållbaarraa ns ffrraam mtid tt occhh rröörrlliigghh rtrr ort trtraannssppo EKOTRANSPORT 2030 Vägn till n fossilobrond
Läs merÅstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna
Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning
Läs merVågrörelselära & Kvantfysik, FK januari 2012
Räkneövning 8 Vågrörelselära & Kvantfysik, FK2002 9 januari 2012 Problem 40.1 Vad är våglängden för emissionsmaximum λ max, hos en svartkropps-strålare med temperatur a) T 3 K (typ kosmiska mikrovågsbakgrunden)
Läs merSEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Läs merTentamen i Elektronik grundkurs ETA007 för E1,D1 och Media
Tntamn i Elktrnik grundkurs ET7 för E,D ch Mdia 6-- Tntamn mfattar päng. 3 päng pr uppgift. päng gr gdkänd tntamn. Tillått hälpmdl är räkndsa. För full päng krävs på var uppgift fullständiga lösngar utgånd
Läs merINTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
Läs merKristianstads. kommun. uuj.de- Justerare: Jan-Ake Wendel PROTOKOLL. KRF Kommunala Rådet för Funktionsnedsatta. Kommunala rådet för funktionsnedsatta
Omsorgsförvaltningn KRF Kommunala Rådt för Funktionsndsatta Tid och plats: Klockan 13.15-16.00 Östra hust, rum 108 Kommunala rådt för funktionsndsatta Ldamötr Alic Back, Afasiförningn Knut Thorstnsson.
Läs merarctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar
DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +
Läs merPer Sandström och Mats Wedin
Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786
Läs merTentamen i Kemisk termodynamik kl 8-13
Tntamn i misk trmdynamik 20040-23 kl 83 Hjälpmdl: Räkndsa, BETA ch Frmlsamling för kursrna i kmi vid TH. Endast n uppgift pr blad! Skriv namn ch prsnnummr på varj blad! Alla använda kvatinr sm int finns
Läs merTransformkodning. Transformkodning. Transformkodning. Transformkodning Grundläggande idé. Linjära transformer. Linjära transformer ( ) ( ) ( )
6 8 6 Grudläggad idé Atag att vi parar ihop lmt i bild i bloc om två Om vi väljr att aat oordiatsystm, t.x rotrar gradr 8 6 6 och plottar dssa par som xy oordiatr i graf 6 ( rad frå Labild) 8 6 8 6 8 så
Läs mer247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Läs merThis exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Läs merRobin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
Läs merKurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Läs merBengt Sebring September 2000 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2000
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV RESEKOSTNADER OCH REPRESENTATION Bngt Sbring Sptmbr 2000 Sida: 1 Ordförand Kommunrvisionn INNEHÅLLSFÖRTECKNING 1. Inldning... 2 2. Rsultat av granskningn...
Läs merKöpeavtal för del av Gorsinge 1:1
JÄNSULÅAND Samhällsbyggnadskontort Dnr KS/:5-3 Mark- och xploatringsnhtn -04- /2 Handläggar Frdrik Granlund 02-2 95 Kommunfullmäktig Köpavtal för dl av Gorsing : Förslag till bslut Kommunstyrlsn förslår
Läs merInvestering = uppoffring av konsumtion i dag för högre konsumtion i framtiden
Ivstrg = uppoffrg av osumto dag för högr osumto framtd Vad är förtagsooms vstrg? Rsurs som a aväds udr låg td. Asaffgar udr tdsprod som mdför btalgar udr flra tdsprodr framåt. Ivstrgar förtagsprsptv. Dl
Läs merReferensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget
t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du
Läs merKrav på en projektledare.
Crtifiring av projktldar. PIE. EKI. LiU. Run Olsson vrsion 20050901 sid 1 av 5 Krav på n projktldar. Intrnationlla organisationr som IPMA och PMI har formulrat vilka krav som ska ställas på n projktldar.
Läs merEpipolärgeometri och den fundamentala matrisen. Epipolarlinje. Epipoler. Exempel. vara dess avbildning i två bilder genom
Epipoärgomtri dn fundamntaa matrisn Låt vara n punkt i kamracntrum rsp Låt Punktn bägg kamracntrum pipoarpant ti bägg avbidningarna ti vara dss avbidning i två bidr gnom samt d -dimnsiona motsvarightrna
Läs merFöretag - Skatteverkets kontroll på webben
Förtag - Skattvrkts kontroll på wbbn Du har nu möjlight att stämma av mot Skattvrkts kontrollr innan du lämnar in din dklaration. På dt här sättt så slippr du som förtagar n hl dl onödiga frågor från Skattvrkt.
Läs merenergibyggare EnergiTing Sydost 2015-11-12 Co-funded by the Intelligent Energy Europe Programme of the European Union
EnrgiTing Sydost 2015-11-12 Intraktiv utbildning för byggnadsarbtar och installatörr Ldand branschaktörr står bakom En utbildningskampanj md syft att öka byggnadsarbtar och installatörrs komptns för lågnrgibyggand
Läs mer6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 riangmnt ickard Shn -- FEM för Ingnjörstiämpningar, SE rshn@kth.s 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E-modu E Poissons ta På tunn påt md fria tor kan man göra antagand om
Läs merLektionsuppgifter i regressionsanalys
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN Lktionsuppgiftr i rgrssionsanalys A A ENKEL LINJÄR REGRESSION Från n undrsökning av vilka faktorr som påvrkar prist på villor i n sydsvnsk ort insamlads n dl
Läs merTentamen: Atom och Kärnfysik (1FY801)
Tentamen: Atom och Kärnfysik (1FY801) Torsdag 1 november 2012, 8.00-13.00 Kursansvarig: Magnus Paulsson (magnus.paulsson@lnu.se, 0706-942987) Kom ihåg: Ny sida för varje problem. Skriv ditt namn och födelsedatum
Läs mer