Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
|
|
- Britt-Marie Andreasson
- för 6 år sedan
- Visningar:
Transkript
1 UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI 6 Skrivtid: 3 timmar Hjälpmdl: Miniräknar. Programmrbar miniräknar ska vara tömd. Skrivningn innhållr 4 frågor. Kontrollra att samtliga frågor finns md. Skrivningn gr maximalt 4 poäng. För btygt Godkänd på tntamn krävs poäng. För btygt Väl Godkänd krävs 3 poäng. Misstänkr du fl i någon tntamnsfråga, v.v. kontakta skrivningsvaktrna för vidar kontakt md ansvarig lärar från skrivstart och 6 minutr framåt. Motivra alltid dina svar gnom att g intuitiva konomiska förklaringar. Endast dirkt läsliga svar baktas. Skriv skrivningsnummr, int namn llr födlsnummr, på samtliga inlämnad ark och häfta ihop dm. LCKA TILL!
2 Fråga En slutn konomi bskrivs på kort sikt av följand förnklad variant av IS-LM modlln (variablbtckningar nligt kursbokn): () C I G () (3) C C b( t) I I di C, b, t I, d (4) M fi P, f Rgringn bstämmr dn offntliga konsumtionn ( G) och inkomstskattsatsn () t mdan cntralbankn bstämmr räntan () i. Gör analysn undr antagandt att cntralbankn hållr räntan konstant. a) Förklara vad som mnas md att n variabl i n konomisk modll är ndogn rspktiv xogn. Vilka av variablrna C, I, G och P är ndogna i modlln ovan? Motivra ditt svar. [p] b) Använd kvation ()-(3) för att ta fram tt uttryck för jämviktsinkomstn ( ) som n funktion av d xogna variablrna. [p] c) Vi tänkr oss nu att invstrarna blir mr pssimistiska om framtidn; dvs. minskar. Använd uttryckt från uppgift b) för att räkna ut förändringn i jämviktsinkomstn, dvs.. Förklara sdan om, och i så fall varför, storlkn på b, d och t påvrkar förändringn i jämviktsinkomstn. [,5p] I d) Illustrra ffktrna på konomin av invstrarnas förändrad syn på framtidn grafiskt i IS-LM diagrammt. Markra tydligt dn gamla och dn nya jämviktn i diagrammt. Förklara utförligt vad som händr på varumarknadn och pnningmarknadn. [3,5p]
3 Fråga Undr kursn har vi diskutrat n modll för hur n konsumnt väljr sin konsumtion gnom att maximra förväntad nytta nu och i framtidn givt n budgtrstriktion. a) I modlln fann vi att fyra faktorr är viktiga för dn privata konsumtionn. Ang dssa fyra faktorr och förklara för varj faktor varför dn påvrkar konsumtionn. Förklara sdan, utifrån torin, vilkn ffkt (dvs. ökar/minskar rspktiv stor/litn) följand två händlsr kan förväntas få på n konsumnts konsumtionsval: (i) En lottrivinst, och (ii) En prmannt lönhöjning. Kan ffktn av någon av dssa händlsr på konsumtionn påvrkas av om konsumntn mötr krditmarknadsrstriktionr? Motivra ditt svar. [4p] b) Låt oss nu btrakta n nskild konsumnt som lvr två priodr. Konsumntn har inga tillgångar i början av priod och lämnar inga arv ftr sig. Konsumntns arbtsinkomst i priod och är och. Konsumntns konsumtion i priod är mindr än arbtsinkomstn. Analysra hur n räntsänkning påvrkar konsumntns konsumtion i priod ( C ) och priod ( C ). Vilkn ffkt har substitutionsffktn på C? Vilkn ffkt har inkomstffktn på C? Vad blir totalffktn på C? Motivra dina svar. [3p] c) Låt oss åtr btrakta n konsumnt som lvr två priodr. Vår konsumtionstori sägr att dt optimala konsumtionsvalt i d två priodrna, C och C, måst uppfylla U '( C ) villkort U '( C ) / + r = +r, där r är ralräntan och är konsumntns subjktiva diskontringsränta. Förklara dn konomiska innbördn i dtta villkor samt vad dt innbär att n konsumnt har n låg subjktiv diskontringsränta. Förklara sdan hur storlkn på C måst förhålla sig till storlkn på C om Motivra ditt svar utifrån villkort ovan. [3p] r.
4 Fråga 3 En slutn konomi bskrivs av följand modll (btckningar nligt kursbokn): C(,, i, A) I( i,, K) G M P V() i ˆ z Landt har n obrond cntralbank md tt inflationsmål,. Cntralbankn användr räntan för att styra pnningpolitikn. n a) Rita upp IS-, LM- och PC-kurvorna. Rita så att och i utgångslägt. Cntralbankn upptäckr plötsligt att landts inflation övrstigr inflationsmålt. Två möjliga skäl till dt är (i) att n oväntad ftrfrågökning har sktt och (ii) att allmänhtn har tappat förtrondt för cntralbankns vilja att upprätthålla inflationsmålt. Diskutra hur cntralbankn bör agra för att försvara inflationsmålt i vart och tt av fall (i)-(ii). Bör man agra xtra kraftfullt i något av d två falln? Illustrra och motivra utförligt dina svar. [6p] b) I samband md pnningpolitik diskutras ibland Taylorrgln. Förklara innbördn i bgrppt Taylorrgln. Diskutra sdan kortfattat i vilkn utsträckning man kan hävda att vrklightns (t.x. Svrigs) pnningpolitik bskrivs av n Taylorrgl. [p] c) Svrig och många andra ländr har idag tt inflationsmål, ofta satt till två procnt. Bskriv två av d skäl som, nligt kursbokn, talar för att dt är bättr att sätta inflationsmålt till två procnt än till noll procnt. [p]
5 Fråga 4 En litn öppn konomi har flytand växlkurs. Dn förväntad framtida växlkursn, som givn (xogn). Följand modll bskrivr konomin på kort sikt (btckningar nligt kursbokn): æ + i ö = C( -T, -T, i - p, A) + I( i - p,, K) + G + NX,, ç è + i ø, tas M P = V() i + i = + i a) Förklara innbördn i räntparittsvillkort ovan. Innbär räntparittsvillkort att räntan i landt alltid måst vara lika md världsmarknadsräntan? Motivra ditt svar. [p] Vi vill nu använda modlln för att analysra ffktrna på konomin om n av landts viktigast handlspartnrs plötsligt drabbas av n kraftig lågkonjunktur; dvs. fallr. Övriga xogna variablr antas förbli oförändrad. b) Rita upp IS -, LM- och IP-kurvorna. Analysra sdan vad som händr när fallr. Vilka kurvor skiftar och varför? Vad blir ffktn på, i och? Vad händr md C, I och NX? Motivra dina svar och förklara utförligt vad som händr på varumarknadn, pnningmarknadn och valutamarknadn. Gör analysn undr antagandt att cntralbankn hållr pnningmängdn oförändrad. [5,5p] n c) Antag att och ( är cntralbankns inflationsmål) innan ändras. Hur skr anpassningn tillbaka till jämvikt om cntralbankn int agrar (dvs. om man hållr pnningmängdn oförändrad)? Hur bör cntralbankn agra? Motivra utförligt ditt svar. [,5p]
där a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Sammanfattning. Härledning av IS kurvan
F12: sid. 1 Förläsning 12 Sammanfattning Vi har studrat konomin på olika sikt, llr mr xakt, undr olika o antagandn om vad som kan ändra sig. 1. IS-LM, Mundll Flmming. Prisr är konstanta, växlkurs och ränta
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Lektionsuppgifter i regressionsanalys
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN Lktionsuppgiftr i rgrssionsanalys A A ENKEL LINJÄR REGRESSION Från n undrsökning av vilka faktorr som påvrkar prist på villor i n sydsvnsk ort insamlads n dl
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Konsumtion. Den förutseende konsumenten:1
Blanchard kapitl 16-17 Förväntningar och stabilisringspolitik Förväntningarnas roll för konsumtion och invstringar. Förväntningar i IS-LM modlln. Mr om stabilisringspolitik. Kap 16-17 sid. 1 Snast uppdatrad
Konsumtion. Ett räkneexempelr. Förväntningarnas roll för f r konsumtion och investering. Förväntningar i IS-LM modellen. Mer om stabiliseringspolitik.
Blanchard kapitl 16-17 17 Förväntningar och stabilisringspolitik 16-1 Konsumtion Förväntningarnas roll för f r konsumtion och invstring. Förväntningar i -LM modlln. Mr om stabilisringspolitik. Modrn tori
Konsumtion. Förväntningarnas roll för f r konsumtion och investering. Förväntningar i IS-LM modellen. Mer om stabiliseringspolitik.
Blanchard kapitl 16-17 17 Förväntningar och stabilisringspolitik Förväntningarnas roll för f r konsumtion och invstring. Förväntningar i IS-LM modlln. Mr om stabilisringspolitik. Kap 16-17 sid. 1 Snast
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT
UPPSALA UNIVERSITET Nationalekonomiska institutionen SKRIVN. NR. Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT Syftet
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
www.liberhermods.se Kurskatalog 2008 Liber Hermods för en lysande framtid
www.librhrmods.s Kurskatalog 2008 Libr Hrmods för n lysand framtid 1898 n a d s lärand t l b i x s fl d o m r H Libr Välkommn till Libr Hrmods! hos oss når du dina mål Från och md januari 2008 bdrivr Libr
Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
Ekosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT
UPPSALA UNIVERSITET Nationalekonomiska institutionen SKRIVN. NR. Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT Syftet
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Arbetsmarknad - marknadsformer. Förra gången. Svensk arbetsmarknad. Arbetsutbudets komponenter
Förra gångn Prisbildning Rala och nominlla tröghtr Marknadsformr Ej fri konkurrns man sättr prist Bilatrala rlationr, optimalt Prisr trögrörliga Olika branschr Övr tidn Arbtsmarknad - marknadsformr Monopol
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
ANALYS AV DITT BETEENDE - DIREKTIV
Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalekonomiska institutionen SKRIVN. NR. Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. TENTAMEN A/INTERNATIONELL
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Tentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalekonomiska institutionen SKRIVN. NR. Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. TENTAMEN A/INTERNATIONELL
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
Lust och risk. ett spel om sexuell hälsa och riskbeteenden
Lust och risk tt spl om sxull hälsa och riskbtndn 2 / 11 GR Upplvlsbasrat Lärand GR Utbildning Upplvlsbasrat Lärand (GRUL) syftar till att utvckla, utbilda och gnomföra vrksamht md dn upplvlsbasrad pdagogikn
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
TSRT62 Modellbygge & Simulering
TSRT62 Modllbygg & Simulring Förläsning 8 Christian Lyzll Avdlningn ör Rglrtknik Institutionn ör Systmtknik Linköpings Univrsitt C Lyzll (LiTH) TSRT62 Modllbygg & Simulring 2013 1 / 22 Sammanattning: Förläsning
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT
UPPSALA UNIVERSITET Nationalekonomiska institutionen Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT Syftet med facit är
4.1 Förskjutning Töjning
Övning FEM för Ingnjörstillämpningar Rickard Shn 9 5 rshn@kth.s Enaliga Problm och Fackvrk 7 7 7 59 4. Förskjutning öjning a) ε ε. Sökt: Visa att töjningn i lmntt är ( ) ösning: I hållfn fick man lära
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
Öppenhet på olika marknader. Öppenhet för handel och kapitalrörelser. Export och Import i USA
Förläsning 1 Dn öppna konomin Vad innbär öppnht? Vad bstämmr valt mllan utländska och inhmska tillgångar och varor? Vad btydr växlkurs- och ftrfrågförändringar för BNP och handlsbalans? Öppnht på olika
SAMMANFATTNING... 3 1. INLEDNING... 4. 1.1 Bakgrund... 4 1.2 Inledning och syfte... 4 1.3 Tillvägagångssätt... 5 1.4 Avgränsningar... 5 1.5 Metod...
Rvisionsrapport 2010 Malmö stad Granskning av policy och riktlinjr samt intrn kontroll mot mutor tc. Jakob Smith och Josabth Alfsdottr dcmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1. INLEDNING...
6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 riangmnt ickard Shn -- FEM för Ingnjörstiämpningar, SE rshn@kth.s 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E-modu E Poissons ta På tunn påt md fria tor kan man göra antagand om
Kommunrevisionen i Åstorp ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO. Bengt Sebring Februari 2004 Sida: 1 Ordförande GRANSKNINGSRAPPORT 4/2003
Kommunrvisionn ÅSTORPS KOMMUN GRANSKNING AV SJUKFRÅNVARO Bngt Sbring Fbruari 2004 Sida: 1 Kommunrvisionn Innhållsförtckning Sammanfattning... 3 1. Inldning... 4 1.1 Uppdrag... 4 1.2 Avgränsning... 4 1.3
Arkitekturell systemförvaltning
Arkitkturll systmförvaltng Mal Norström, På AB och Lköpgs Univrsitt mal.norstrom@pais.s, Svärvägn 3C 182 33 Danry Prsntrat på Sunsvall vcka 42 2009. Sammanfattng Många organisationr har grupprat sa IT-systm
TENTAMEN l A/INTERNATIONELL MAKROEKONOMI. TORSDAGEN DEN 31 maj Sätt ut skrivningsnummer, ej namn eller födelsenummer, på samtliga inlämnade ark.
UPPSALA UNIVERSITET Nationalekonomiska institutionen SKRIVN.NR.... Lämnat kl.... TENTAMEN l A/INTERNATIONELL MAKROEKONOMI TORSDAGEN DEN 31 maj 2012 Skrivtid: Hjälpmedel: 3 timmar Miniräknare ANVISNINGAR
ENTREPRENÖRSLÖSNINGAR INOM VÅRD, SKOLA OCH OMSORG
Forskning och studir kring kvinnors arbtsliv, karriärutvckling, hälsa och gna förtagand. Förlag som spridr kunskapn ENTREPRENÖRSLÖSNINGAR INOM VÅRD, SKOLA OCH OMSORG MONICA RENSTIG VD, forskar,dbattör
6.14 Triangelelement (CST Constant Strain Triangle)
Övning 4 FEM för Ingnjörstiämpningar ickard Shn 9 6 rshn@kth.s FEM anas md triangmnt 9 6.4 riangmnt (CS Constant Strain riang) Givt: unn påt, h E modu E Poissons ta På tunn påt kan man oftast göra antagand
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
REDOVISNING AV UPPDRAG SOM GOD MAN FÖR ENSAMKOMMANDE BARN OCH BEGÄRAN OM ARVODE (ASYLPERIOD)
1(5) REDOVISIG AV UPPDRAG SOM GOD MA FÖR ESAMKOMMADE BAR OCH BEGÄRA OM ARVODE (ASYLPERIOD) Asylpriod priod då barnt int har prmannt upphållstillstånd God mannn har rätt till tt skäligt arvod för uppdragt
Åstorps kommun. Revisionsrapport nr 4/2010. Granskning av kommunens kommunikation med medborgarna
Rvisionsrapport nr 4/2010 Åstorps kommun Granskning av kommunns kommunikation md mdborgarna Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning
Modersmål - på skoj eller på riktigt
Lärarhögskolan i Stockholm Institutionn för samhäll, kultur och lärand Vårtrminn 2006 C- uppsats, 15 poäng Modrsmål - på skoj llr på riktigt En studi av modrsmålsundrvisningns utvckling, dss potntial och
Ett sekel av samarbete
johanns jansson / nordn. org Första nordiska mött för hushållsvtar hölls i Sorø i Danmark år 1909, dt sista i finländska Åbo år 2009. Ett skl av samarbt Ett skl. Så läng sdan är dt danskan Magdalna Lauridsn
Tentamen i Kemisk termodynamik kl 8-13
Tntamn i misk trmdynamik 20040-23 kl 83 Hjälpmdl: Räkndsa, BETA ch Frmlsamling för kursrna i kmi vid TH. Endast n uppgift pr blad! Skriv namn ch prsnnummr på varj blad! Alla använda kvatinr sm int finns
TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel
TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,
Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT
UPPSALA UNIVERSITET Nationalekonomiska institutionen Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas. MED FACIT Syftet med facit är
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag
A Distributions ktör på DISTRIBUTIONSFÖRARE 1(5) Arbtsplatsförlagd dl av tstmodul, validring llr utbildning När du dokumntrar dn arbtsplatsförlagda dln i ndanstånd chcklista gör då ävn bdömning inom säkrhts-,
Referensexemplar. Vi önskar er Lycka till! 1. Välkommen till Frö-Retaget
t g a t R Frö ar pl m x ns r f R 1 1. Välkommn till Frö-Rtagt Hj, nu ska du och dina klasskompisar starta rt alldls gna förtag. Vi på FramtidsFrön har valt att kalla dt Frö-Rtag. Md Frö mnar vi att du
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
INFORMATIONSFOLDER FRÅN HUMANUS. Nya. Arbetslivsinriktat rehabiliteringsstöd Outplacement
INFORMATIONSFOLDER FRÅN HUMANUS Nya r t h g i l j ö m t v i l s t b r ia Arbtslivsinriktat rhabilitringsstöd Outplacmnt & WWW.HUMANUS.SE Rhabilitringsplan 3 vckor Nulägsanalys, kartläggning och slutrdovisning
INFORMATIONSFOLDER FRÅN HUMANUS. Nya. Arbetslivsinriktat rehabiliteringsstöd Outplacement
INFORMATIONSFOLDER FRÅN HUMANUS Nya r t h g i l j ö m t v i l s t b r ia Arbtslivsinriktat rhabilitringsstöd Outplacmnt & WWW.HUMANUS.SE Rhabilitringsplan 3 vckor Nulägsanalys, kartläggning och slutrdovisning
HOMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER
Armin alilovi: EXTRA ÖVNINGAR omogna linjära diffrntialkvationr OMOGENA LINJÄRA DIFFERENTIALEKVATIONER MED KONSTANTA KOEFFICIENTER Linjär diffrntialkvation (DE) md konstanta koffiintr är n kvation av följand
SKRIVNING I A/GRUNDLÄGGANDE MIKRO- OCH MAKROTEORI. 14 maj Sätt ut skrivningsnummer, ej namn eller födelsenummer, på alla sidor.
UPPSALA UNIVERSITET Nationalekonomiska institutionen Skr nr. SKRIVNING I A/GRUNDLÄGGANDE MIKRO- OCH MAKROTEORI 14 maj 2016 Skrivtid: Hjälpmedel: 5 timmar Miniräknare ANVISNINGAR Sätt ut skrivningsnummer,
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Växa i trafikn Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Växa
S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com
AVM 960 AVM 961 AVM 971 S D K N O F I.hirlpool.com 1 S INNAN APPARATN MONTRAS INSTALLATION KONTROLLRA ATT ugnsutrymmt är tomt för installationn. KONTROLLRA att apparatn int är skadad innan dn montras i
energibyggare EnergiTing Sydost 2015-11-12 Co-funded by the Intelligent Energy Europe Programme of the European Union
EnrgiTing Sydost 2015-11-12 Intraktiv utbildning för byggnadsarbtar och installatörr Ldand branschaktörr står bakom En utbildningskampanj md syft att öka byggnadsarbtar och installatörrs komptns för lågnrgibyggand
ICEBREAKERS. Version 1.0 Layout: Kristin Rådesjö Per Wetterstrand
Icbrakrs 2 / 10 Götborgs Rgionn och GR Utbildning GR är n samarbtsorganisation för 13 kommunr i Västsvrig tillsammans har mdlmskommunrna 900 000 invånar. Förbundts uppgift är att vrka för samarbt övr kommungränsrna
KOMPATIBILITET! Den här mottagaren fungerar med alla självlärande Nexa-sändare inklusive Nexa Gateway.!
Manual EJLR-1000 Läs avsnittt Viktig information innan du installrar dn här produktn Dt kan vara farligt att int följa säkrhtsanvisningarna. Flaktig installation innbär dssutom att produktns vntulla garanti
Yrkes-SM. tur och retur. E n l ä r a r h a n d l e d n i n g k r i n g Y r k e s - S M
Yrks-SM tur och rtur E n l ä r a r h a n d l d n i n g k r i n g Y r k s - S M Yrks-SM 2010 Dt prfkta studibsökt Dn 19-21 maj 2010 arrangras nästa svnska mästrskap i yrksskicklight. Platsn är Götborg och
Margarin ur miljö- och klimatsynpunkt.
Margarin ur miljö- och klimatsynpunkt. Dt är skillnad på och smör. Ävn när dt gällr miljön. Till barn i förskola och skola rkommndrar Livsmdlsvrkt och lätt för smör och smörblandad produktr. En ny analys
SKRIVNING I A/GRUNDLÄGGANDE MIKRO- OCH MAKROTEORI 3 DECEMBER 2016
UPPSALA UNIVERSITET Nationalekonomiska institutionen Skr nr. SKRIVNING I A/GRUNDLÄGGANDE MIKRO- OCH MAKROTEORI 3 DECEMBER 2016 Skrivtid: Hjälpmedel: 5 timmar Miniräknare ANVISNINGAR Sätt ut skrivningsnummer,
Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002
ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
Per Sandström och Mats Wedin
Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786
OLYCKSUNDERSÖKNING. Teglad enplans villa med krypvind Startutrymme: Torrdestillation av takkonstruktion Insatsrapport nr: 2012012917
BRANDUTREDNINGSPROTOKOLL Datum: 20121130 Vår rfrns: Grt Andrsson Dnr: 2013-000138 Er rfrns: MSB Uppdragsgivar: Uppdrag: Undrsökningn utförd: Bilagor: Landskrona Räddningstjänst Brandorsak, brandförlopp
5~ Atomer, joner och kemiska reaktioner
146 Atomr, jonr och kmiska raktionr 5~---------------------------- --Ifl nhå 11 1 sid. 148 I atomns inr sid. 152 Priodiska systmt Mtallr Jonr -- sid. 156 sid. 162 Syror och basr 2 sid. 166 Saltr sid. 170
Vad påverkar investerare att välja hållbara investeringar? www.gu.s e
Vad påvrkar invstrar att välja hållbara invstringar? Vad är hållbara invstringar? TRE EXEMPEL Aktiv förvaltning Gustavia Blu Engin: svnskförvaltad fond inom förnybar nrgi och miljötknik. Fondn har tt globalt
Tentamen i FEM för ingenjörstillämpningar (SE1025) den 3 juni 2010 kl
Tntamn i FEM för ingnjörstillämpningar (SE) dn juni kl. 8-. Rsultat kommr att finnas tillgängligt snast dn juni. Klagomål på rättningn skall vara framförda snast n månad ftr. OBS! Tntand är skldig att
arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar
DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +
Revisionsrapport 2010. Hylte kommun. Granskning av samhällsbyggnadsnämndens och tillsynsnämndens styrning och ledning. Iréne Dahl, Ernst & Young
Rvisionsrapport 2010 Hylt kommun Granskning av samhällsbyggnadsnämndns och tillsynsnämndns styrning och ldning Irén Dahl, Ernst & Young Augusti 2010 Hylt kommun Rvisorrna Innhållsförtckning SAMMANFATTNING...
Inlämningsuppgift 2 i Digital signalbehandling ESS040, HT 2010 Måndagen den 22 november 2010 i E:B.
Ilämigsuppgift i Digital sigalbhadlig ESS040, T 00 Mådag d ovmbr 00 i EB. I kurs gs två obligatoriska ilämigsuppgiftr som kombiras md frivilliga duggor. Ilämigsuppgiftra är obligatoriska och rsättr 6 timmars
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Enkelt planförfarande Tilläggsbestämmelser. Detaljplan för Stenkyrka Ringvideområdet Gotlands kommun. Antagen Laga kraft
Dnr 2011/375 09-P-212 Innhållr: Planbskrivning Plankarta Enklt anförfarand Tilläggsbstämmlsr Dtaljan för Stnkyrka Ringvidområdt Gotlands kommun Samhällsbyggnadsförvaltningn 2011-09-07 Antagn 2011-12-14
Tentamen i Samhällsekonomi (NAA132)
Mälardalens högskola, nationalekonomi Tentamen i Samhällsekonomi (NAA132) Examinationsmoment: TEN1, 6 högskolepoäng Lärare: Johan Lindén Datum och tid: 2018-06-04, 8.30-12.30 Hjälpmedel: miniräknare Betygsgränser,
TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
Malmö stad, Gatukontoret, maj 2003 Trafiksäkra skolan är framtaget av Upab i Malmö på uppdrag av och i samarbete med Malmö stad, Gatukontoret.
Cykln Malmö stad, Gatukontort, maj 2003 Trafiksäkra skolan är framtagt av Upab i Malmö på uppdrag av och i samarbt md Malmö stad, Gatukontort. Txt: Run Andrbrg Illustrationr: Lars Gylldorff Min cykl Sidan
Öppenhet påp. olika marknader. Öppenhet för f r handel och kapitalrörelser. Handelsbalansunderskott. relser
Blanchard kapil 18-19 19 Dn öppna konomin Vad innbär öppnh? Vad bsämmr val mllan uländska och inhmska illgångar och varor? Vad bydr växlkursv xlkurs- och frfrågf gförändringar för f r BNP och handlsbalans?
Bilaga 1 Kravspecifikation
Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.