Tentamen i Kemisk termodynamik kl 8-13
|
|
- Ann-Christin Magnusson
- för 6 år sedan
- Visningar:
Transkript
1 Tntamn i misk trmdynamik kl 83 Hjälpmdl: Räkndsa, BETA ch Frmlsamling för kursrna i kmi vid TH. Endast n uppgift pr blad! Skriv namn ch prsnnummr på varj blad! Alla använda kvatinr sm int finns i frmlsamlingn skall mtivras ch alla gjrda antagandn skall rdvisas. Maximum 10 päng pr uppgift. Vid tntamn maximras summan av antalt päng från dt snast årts kntrllskrivningar ch d två första uppgiftrna till 20 päng. 25 p inklusiv kntrllskrivningspäng krävs för gdkänd tntamn ml vattnånga kyls från 150 C till is vid -20 C. Vattnts P C är 38.2 J ml ch vattnångans ml ch vattnts förångningsvärm är kj ml. (a) Bräkna ändringn i ntrpi ( S). (5 p) (b) Bräkna dt avgivna värmt. (5 p) 2. Till högr sr ni fasdiagrammt för kldixid. (a) Vilka fasr står i jämvikt vid tt tryck på 2 bar? (2 p) (b) Hur många frihtsgradr har systmt i tripplpunktn? Varför används tripplpunktn av vattn för att dfinira tmpraturskalan? (2 p) (c) Bskriv hur man kan kmma från n punkt (T=250, p=40 bar) till n punkt (T=300, p=5 bar) utan att bsrvra två fasr. Vilkt aggrgattillstånd har CO 2 i dn första ch i dn andra punktn? (2 p) (d) Tryckmätarn på n nylign lvrrad CO 2 -tub i tt labratrium visar tt tryck på 62 bar. I vilkt/vilka aggrgattillstånd förliggr CO 2 i tubn? Bskriv hur tryck ch aggrgatinstillstånd förändras i takt md att tubn töms. (Anta att tmpraturn är knstant undr tömningn). (4 p) C P är 75.3 J ml, isns C är 33.6 J ml. Isns smältvärm är kj P
2 3. Gasr har rlativt låg löslight i vattn. Sambandt mllan gasns partialtryck ch dss löslight i vattn bskrivs ganska väl av Hnrys lag, d.v.s. p = H x. Tmpraturbrndt för Hnrys knstant för CO 2 gs av följand uttryck: ln( H /bar) = 149,1-8350/T - 19,96ln(T/) (a) Bräkna hur många ml CO 2 sm 1000 g vattn kan lösa i jämvikt md atmsfärn vid 25 C, m partialtryckt av CO 2 i atmsfärn kan antas vara 0,4 mbar. (4 p) (b) Bräkna värmmängdn sm utvcklas (llr upptas, ang vilkt!) när atmsfärn kmmr till jämvikt md 1000 g vattn vid 25 C. (6 p) 4. Stckhlms bränslcllsbussar användr vät sm bränsl. Anta att n lktrmtr sm drivr n buss bhövr n spänning på 100 V. (a) Hur många bränslcllr måst kpplas i sri för att kmma upp till dnna spänning vid n clltmpratur på 298 ch 1 bars tryck på gasrna? (3 p)? f H kj/ml S J/ml? f G /kj/ml C p J/ml H 2 (g) O 2 (g) H 2 O(l) (b) Mtrrna har n maximal ffkt på 200 kw. Hur många kg vätgas bhövs för att driva mtrrna i n timm md dnna ffkt, m vrkningsgradn är 80%?. Md vrkningsgrad mnas förhållandt mllan uttagt ch maximalt möjligt lktriskt arbt. (3 p) (c) På grund av tt fl i kylningn ökar tmpraturn i bränslclln till 350. Vilkn spänning kan maximalt rhållas pr bränslcll vid dnna tmpratur? (4 p) 5. Två kpparblck har samma massa m. Dn nas tmpratur är T 1 ch dn andras T 2. Blckn sätts i kntakt md varandra, tills tmpraturjämvikt har inträtt dm mllan. D två blckn är islrad från mgivningn. pparns spcifika värm är C v J/,gram ch vlymsändringn undr prcssn kan försummas. (a) Är prcssn rvrsibl llr irrvrsibl? Mtivra svart. (2 p) (b) Ang tt sätt för bstämning av samt härld tt uttryck för ntrpiändringn undr prcssn. Svart skall mtivras. (5 p) (c) Visa att avstt värdna på T 1 ch T är dnna ntrpiändring alltid psitiv. (3 p) Lycka till!
3 Lösningsförslag till tntamn i kmisk trmdynamik (a) Dn ttala ntrpiändringn för kylning av vattnånga (150 C) till is (-20 C)gs av summan av ntrpirna för följand prcssr: a. ylning av vattnånga: 150 C till 100 C: C p ( ånga) Sa = dt = 33.6 ln = 4.23 J ml T b. ndnsatin av vattnånga vid 100 C v Sb = = = 109 J ml Tv c. ylning av vattn: 100 C till 0 C: C p ( vattn) Sc = dt = 75.3ln = J ml T d. Frysning av vattn till is vid 0 C: m Sd = = = J ml Tm. ylning av is: 0 C till -20 C: 253 C p ( is) 253 S = dt = 38.2ln = 2.91J ml T S = S = 61.7 J ml tt a b c d (b) Dt ttala avgivna värmt gs av H tt = a + b + c + d + a. ylning av vattnånga: 150 C till 100 C: = C ( ånga) dt a 423 p = 33.6 ( 423) = 1.68 kj ml b. ndnsatin av vattnånga vid 100 C b = v = kj ml c. ylning av vattn: 100 C till 0 C: = C ( vattn) dt = 75.3 ( ) = 7.53 kj ml c p d. Frysning av vattn till is vid 0 C: d = m = kj ml. ylning av is: 0 C till -20 C: 253 = C ( is) dt = 38.2 (253 ) = kj ml p tt = a + b + c + d + Svar: Dt avgivna värmt är 56.7 kj. = 56.7 kj ml
4 2. (a) Två fasr, fast ch gasfrmig (b) I triplpunktn står tr fasr i jämvikt. Gibbs: F=C-P+2=1-3+2=0. Sytmt har inga frihtsgradr. Därav följr att tmpraturn i triplpunktn är ntydigt dfinirad, triplpunktn kan alltså användas sm fixpunkt på n tmpraturskala. (c) S figur. I punkt 1 är CO 2 flytand, i punkt 2 gasfrmig. (d) Enligt fasdiagrammt förliggr CO 2 i jämvikt flytand/gasfrmig. I dnna punkt har systmt F=C-P+2=1-2+2=1 frihtsgrad. Eftrsm tmpraturn ska vara knstant, åtrstår nll frihtsgradr. Tryckt måst alltså vara knstant. När CO 2 -gas försvinnr ur tubn, måst alltså lit av dn flytand kldixidn förångas. Så snart dn flytand fasn har försvunnit, börjar tryckt minska. 3. a. Btrakta CO 2 (g) i jämvikt md 1000 g vattn. Mlbråkt x CO2 av löst CO 2 i vattn gs av: x CO2 = p CO2 / H Vid 298 är ln H = 149,1 8350/298 19,96xln298 = 7,37; H = 1581 bar x CO2 = 0,4x10-3 /1581 = 2,5x10-7. I 1000 g H 2 O är n H2O = 1000/18 = 55,55. n CO2 x CO2 x55,55 = 1,4x10-5 ml. b. Btrakta jämviktn CO 2 (g) CO 2 (aq) Vid jämvikt är µ(g) = µ(aq) Standardtillståndt för CO 2 -gas väljs sm µ (g) vid p = 1 bar. För CO 2 (aq) väljs µ (aq) vid x c2 = 1, där Hnrys lag gällr. Här har vi n ändligt utspädd lösning där a CO2 = p/ H = x CO2. Då blir: µ (g) + RTln(p CO2 /1) = µ (aq) + RTln(p/ H ) µ /T = (µ(aq) - µ(g))/t = Rln( H /1) Gibbs Hlmhltz lag gr: d( µ /T)/dT = - /T 2 = Rd{ln( H /1)}/dT är värmt för upplösning av 1 ml CO 2 (g) i vattn för att g n ändligt utspädd vattnlösning av CO 2. Vi har dln( H /1)/dT = 8350/T 2 19,96/T. Då blir: = - RT 2 (8350/T 2 19,96/T) = -R( ,96T).
5 Vid 298 är = 9970 J/ml. Prcssn är alltså xtrm. Dt ttalt avgivna värmt är n CO2 x = 1,4x10-5 x( ) = - 0,28 J. 4. (a) raktin: 2 H 2 + O 2 2 H 2 O? G=2 (-237,13)-0-2 0=-474,26 kj/ml z=4 E=? G/zF=(-474, )/( )=1,23 V antal cllr för att uppnå 100 V: n=100 V/1,23 V=81,4 dt bhövs minst 82 cllr. (b) 1 timm =3600 s, w l =? G=E Q=1,23 Q=P t= = Ws Q= /1,23= C Q=n F n=q/f= /96500=6, ml mtsvarar 1 H-atm: m 1 =n M=6, ,008 = 6,11 kg vät. 80% vrkningsgrad: m 2 =m 1 /0,8=7,64 kg vät. (c) E vid 350 :? H(T 2 )=? H(T 1 ) +?? C p dt =? H(T 1 ) + C p (T 2 -T 1 )= =-571, ,58( )=-571, , = -568, kj/ml? S(T 2 )=? S(T 1 ) +? (? C p /T)dT =? S(T 1 ) +? C p? (1/T)dT = =? S(T 1 ) +? C p ln(t 2 /T 1 ) = -326,68+63,58 ln(350/298) = -326, ,58 0,16 = -316,50 J/ml? G(T 2 )=? H(T 2 )-T? S(T 2 )=-568, (-316,50)= -457, J/ml E=-? G/(z F)=-(-457, )/( )= 1,19 V
6 5. Eftrsm d två blckns tmpraturr är lika, kan värmflödt ndast sk i n riktning, nämlign från dn varmar till dn kallar krppn. Alltså är prcssn irrvrsibl. a. Eftrsm blckn har samma massa, blir sluttmpraturn T s = (T 1 + T 2 )/2. Prcssn är irrvrsibl, mn kan tänkas uppdlad i följand rvrsibla dlstg: 1. Tmpraturn av blck 1 ändras rvrsiblt gnm kntakt md n tänkt rsrvar från T 1 till (T 1 + T 2 )/2. ds 1 = mc v dt/t; Intgrra mllan T 1 ch (T 1 + T 2 )/2 S 1 = mc v ln{(t 1 + T 2 )/2T 1 } 2. Tmpraturn av blck 2 ändras rvrsiblt gnm kntakt md n tänkt rsrvar från T 2 till (T 1 + T 2 )/2. S 2 = mc v ln{(t 1 + T 2 )/2T 2 } 3. Blckn sätts i kntakt md varandra vid dn gmnsamma tmpraturn T s. En vntull värmövrföring är här rvrsibl ch rsultrar därför i förändrad ntrpi, ftrsm: S 3 = q/t s + (-q)/t s = 0 Dn ttala ntrpiändringn S tt = S = mc v ln{(t 1 + T 2 ) 2 /4T 1 T 2 } = = mc v ln(t s 2 /T 1 T 2 ) b. Eftrsm båd m ch c v är psitiva, måst ln{t s 2 /T 1 T 2 } alltid vara psitiv m S tt ckså skall vara dt. Dtta krävr att T s 2 /T 1 T 2 skall vara störr än 1. Btckna md = T s -T 1, där kan vara psitiv llr ngativ. Då är T 1 = T s ch T 2 = 2T s T 1 = 2T s (T s ) = T s +. Då blir argumntt för lgaritmn = T s 2 /{(T s - )(T s + )} = T s 2 /(T s 2 2 ). Eftrsm 2 alltid är psitivt, blir kvtn alltid störr än 1. Alltså är S tt alltid psitiv, vilkt skull bvisas.
Delårsrapport 2014-08-31
TRELLEBORGS KOMMUN Srvlcriämndn 2014-09-22 Dlårsrapprt 2014-08-31 Sammanfattning Nämndsttal (tkr) Dlår 140831 Årsbudgt 2014 Prgns 2014 Avvikls Vrksamhtns intäktr 260 267 386 016 385 016-1 000 Vrksamhtns
Kontinuerliga fördelningar. b), dvs. b ). Om vi låter a b. 1 av 12
KONTINUERLIGA STOKASTISKA VARIABLERR Allmänt om kontinurliga sv Dfinition En stokastisk variabl kallas kontinurlig om fördlningsfunktionnn ξ är kontinurlig Egnskar av fördlningsfunktion: Fördlningsfunktionn
Umeå Universitet 2007-12-06 Institutionen för fysik Daniel Eriksson/Leif Hassmyr. Bestämning av e/m e
Umå Univrsitt 2007-12-06 Institutionn för fysik Danil Eriksson/Lif Hassmyr Bstämning av /m 1 Syft Laborationns syft är att g ökad förståls för hur laddad partiklars rörls påvrkas av yttr lktromagntiska
Undervisande lärare: Fredrik Bergholm, Elias Said, Jonas Stenholm Examinator: Armin Halilovic
Tntamn i Matmatik, HF9, 8 oktobr, kl 5 75 Undrvisand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm Eaminator: Armin Halilovic Hjälpmdl: Endast utdlat ormlblad (miniräknar är int tillåtn För godkänt
Tentamen i Elektronik grundkurs ETA007 för E1,D1 och Media
Tntamn i Elktrnik grundkurs ET7 för E,D ch Mdia 6-- Tntamn mfattar päng. 3 päng pr uppgift. päng gr gdkänd tntamn. Tillått hälpmdl är räkndsa. För full päng krävs på var uppgift fullständiga lösngar utgånd
Räkneövning i Termodynamik och statistisk fysik
Räknövning i rmodynamik och statistisk fysik 004--8 Problm En Isingmodll har två spinn md växlvrkansnrginu s s. Ang alla tillstånd samt dras oltzmann-faktorr. räkna systmts partitionsfunktion. ad är sannolikhtn
24 poäng. betyget Fx. framgår av. av papperet. varje blad.
Kurs: HF93 Matmatik, Momnt TEN (Analys) Datum: 9 januari 5 Skrivtid 3:5 7:5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said, Jonas Stnholm, Håkan Strömbrg För godkänt btyg krävs av ma poäng. Btygsgränsr:
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tntamn TMV20 Inldand Diskrt Matmatik, D/DI2 207-2-20 kl. 08.30 2.30 Examinator: Ptr Hgarty, Matmatiska vtnskapr, Chalmrs Tlfonvakt: Ivar Simonsson (alt. Ptr Hgarty), tlfon: 037725325 (alt. 0705705475)
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN
LINJÄRA DIFFERENTIALEKVATIONER AV FÖRSTA ORDNINGEN Linjär diffrntialkvation (DE) av första ordningn är n DE som kan skrivas på följand form Q( () Formn kallas standard form llr normalisrad form Om Q (
Uppskatta lagerhållningssärkostnader
B 13 Uppskatta lagrhållningssärkstnadr Md lagrhållningssärkstnadr ass alla d kstnadr sm hängr samman md ch ppstår gnm att artiklar hålls i lagr. Dt är fråga m rsaksbtingad kstnadr ch därmd särkstnadr,
Kontrollskrivning Introduktionskurs i Matematik HF0009 Datum: 25 aug Uppgift 1. (1p) Förenkla följande uttryck så långt som möjligt:
Kontrollskrivning Introduktionskurs i Matmatik HF9 Datum: 5 aug 7 Vrsion A Kontrollskrivningn gr maimalt p För godkänd kontrollskrivning krävs p Till samtliga uppgiftr krävs fullständiga lösningar! Inga
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 22 dec 2016 Skrivtid 8:00-12:00
TENTAMEN Kurs: HF9 Matmatik, momnt TEN anals atum: dc Skrivtid 8:-: Eaminator: Armin Halilovic Rättand lärar: Erik Mlandr, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr: För btg
Ekosteg. En simulering om energi och klimat
Ekostg En simulring om nrgi och klimat E K O S T E G n s i m u l r i n g o m n rg i o c h k l i m a t 2 / 7 Dsign Maurits Vallntin Johansson Pr Wttrstrand Txtr och matrial Maurits Vallntin Johansson Alxandr
247 Hemsjukvårdsinsats för boende i annan kommun
PROTOKOLLSUTDRAG Sammanträdsdatum 2015-11-10 1 (1) KOMMUNSTYRELSEN Dnr KSF 2015/333 247 Hmsjukvårdsinsats för bond i annan kommun Bslut Kommunstyrlsn förslår kommunfullmäktig bsluta: 1. Hmsjukvårdsinsatsr
Kurs: HF1903 Matematik 1, Moment TEN2 (Analys) Datum: 21 augusti 2015 Skrivtid 8:15 12:15. Examinator: Armin Halilovic Undervisande lärare: Elias Said
Kurs: HF9 Matmatik, Momnt TEN (Anals) atum: augusti 5 Skrivtid 8:5 :5 Eaminator: Armin Halilovic Undrvisand lärar: Elias Said För godkänt btg krävs av ma 4 poäng. Btgsgränsr: För btg A, B, C,, E krävs,
1. Låt M, +,,, 0, 1 vara en Boolesk algebra och x,
Matmatik CTH&GU Tntamn i matmatiska mtodr E (TMA04), dl A, 000-0-, kl.45-.45 Tlfon: Andrs Logg, tl. 0740-4590 OBS: Ang linj och inskrivningsår samt namn och prsonnummr på skrivningsomslagt. Ang namn och
Uppskatta ordersärkostnader för tillverkningsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 12 Uppskatta rdrsärkstnadr för tillrkningsartiklar Md rdrsärkstnadr för tillrkningsartiklar ass alla d kstnadr sm tör dn dirkta ärdförädlingn är förknippad
Uppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d kstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
SEPARABLA DIFFERENTIALEKVATIONER
Sparabla diffrntialkvationr SEPARABLA DIFFERENTIALEKVATIONER En diffrntialkvation DE av första ordningn sägs vara sparabl om dn kan skrivas på d formn P Q llr kvivalnt d P d Q d Dn allmänna lösningn till
Tentamen i Matematik 1 HF1901 (6H2901) 8 juni 2009 Tid:
Tntamn i Matmatik HF9 H9 juni 9 Tid: Lärar:Armin Halilovic Hjälpmdl: Formlblad Inga andra hjälpmdl utövr utdlat formlblad Fullständiga lösningar skall prsntras på alla uppgiftr Btygsgränsr: För btyg A,
Räkneövningar populationsstruktur, inavel, effektiv populationsstorlek, pedigree-analys - med svar
Räknövningar populationsstruktur, inavl, ffktiv populationsstorlk, pdigr-analys - md svar : Ndanstånd alllfrkvnsdata rhölls från tt stickprov. Bräkna gnomsnittlig förväntad htrozygositt. Locus A B C D
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA?
TEORETISKT PROBLEM 3 VARFÖR ÄR STJÄRNOR SÅ STORA? Stjärnorna är klot av ht gas Flrtalt lysr ftrsom d fusionrar vät till hlium i sina ntrala dlar I dtta problm kommr vi att använda bgrpp från båd klassisk
Föreläsning 1. Metall: joner + gas av klassiska elektroner =1/ ! E = J U = RI = A L R E = J = I/A. 1 2 mv2 th = 3 2 kt. Likafördelningslagen:
Förläsning 1 Eftr lit information och n snabbgnomgång av hla kursn börjad vi md n väldigt kort rptition av några grundbgrpp inom llära. Vi pratad om Ohms lag, och samband mllan ström, spänning och rsistans
Slumpjusterat nyckeltal för noggrannhet vid timmerklassningen
Jacob Edlund VMK/VMU 2009-03-10 Slumpjustrat nyckltal för noggrannht vid timmrklassningn Bakgrund När systmt för dn stockvisa klassningn av sågtimmr ändrads från VMR 1-99 till VMR 1-07 år 2008 ändrads
Vid tentamen måste varje student legitimera sig (fotolegitimation). Om så inte sker kommer skrivningen inte att rättas.
UPPSALA UNIVERSITET Nationalkonomiska institutionn Vid tntamn måst varj studnt lgitimra sig (fotolgitimation). Om så int skr kommr skrivningn int att rättas. TENTAMEN B/MAKROTEORI, 7,5 POÄNG, 7 FEBRUARI
1 (3k 2)(3k + 1) k=1. 3k 2 + B 3k(A + B)+A 2B =1. A = B 3A =1. 3 (3k 2) 1. k=1 = 1. k=1. = (3k + 1) (n 1) 2 1
Uppgift Visa att srin (3k 2)(3k + ) konvrgrar och bstäm summan Lösning Vi har att a k = (3k 2)(3k+) Vi kan använda partialbråksuppdlning för att skriva om a k : a k = (3k 2)(3k + ) = A 3k 2 + B 3k(A +
Hittills på kursen: E = hf. Relativitetsteori. vx 2. Lorentztransformationen. Relativistiskt dopplerskift (Rödförskjutning då källa avlägsnar sig)
Förläsning 4: Hittills å kursn: Rlativittstori Ljusastigtn i vakuum dnsamma för alla obsrvatörr Lorntztransformationn x γx vt y y z z vx t γt där γ v 1 1 v 1 0 0 Alla systm i likformig rörls i förålland
Anmärkning1. L Hospitals regel gäller även för ensidiga gränsvärden och dessutom om
L HOSPITALS REGEL L Hospitals rgl (llr L Hopitals rgl ff( aa gg( ff ( aa gg ( används vid bräkning av obstämda uttryck av typ llr Sats (L Hospitals rgl Låt f och g vara två funktionr md följand gnskapr
KONTINUERLIGA STOKASTISKA VARIABLER ( Allmänt om kontinuerliga s.v.)
Kontinurliga fördlningar KONTINUERLIGA STOKASTISKA VARIABLER Allmänt om kontinurliga s.v. Dfinition. En stokastisk variabl ξξ. kallas kontinurlig om fördlningsfunktionn FF ξ är kontinurlig. Egnskar: Fördlningsfunktionn
TENTAMEN Kurs: HF1903 Matematik 1, Moment: TEN2 (analys) Datum: Lördag, 9 jan 2016 Skrivtid 13:00-17:00
TENTAMEN Kurs: HF9 Matmatik, Momnt: TEN anals atum: Lördag, 9 jan Skrivtid :-7: Eaminator: Armin Halilovi Rättand lärar: Frdrik Brgholm, Elias Said, Jonas Stnholm För godkänt btg krävs av ma poäng Btgsgränsr:
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF1004 TEN
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF004 TEN 05-06- Hjälpmdl: Formlblad och räkndosa. Fullständiga lösningar rfordras till samtliga uppgiftr. Lösningarna skall vara väl motivrad och så utförliga
TENTAMEN Datum: 28 maj 08 TEN1: Differentialekvationer, komplexa tal och Taylors formel
TENTAMEN Datum: 8 maj 08 TEN: Dffrntalkvatonr, kompla tal och Talors forml Kursr: Matmatk och matmatsk statstk, Matmatk TEN: Dffrntalkvatonr, kompla tal och Talors forml Kurskod HF000, HF00, H0, H000,
Lösningar till ( ) = = sin x = VL. VSV. 1 (2p) Lös fullständigt ekvationen. arcsin( Lösning: x x. . (2p)
Akadmin ör utbildnin, kultur oc kommunikation Avdlninn ör tillämpad matmatik Eaminator: Jan Eriksson Lösninar till TENTAMEN I MATEMATIK MAA0 oc MMA0 Basutbildnin II i matmatik Datum: auusti 00 Skrivtid:
Föreläsning 10 Kärnfysiken: del 2
Förläsning 10 Kärnfysikn: dl 2 Radioaktivsöndrfall-lag Koldatring α söndrfall β söndrfall γ söndrfall Radioaktivitt En radioaktiv nuklid spontant mittrar n konvrtras till n annorlunda nuklid. Radioaktivitt
Tryckkärl (ej eldberörda) Unfired pressure vessels
SVENSK STANAR SS-EN 3445/C:004 Fastställd 004-07-30 Utgåva Trykkärl ( ldbrörda) Unfird prssur vssls ICS 3.00.30 Språk: svnska ublirad: oktobr 004 Copyright SIS. Rprodution in any form without prmission
där a och b är koefficienter som är större än noll. Här betecknar i t
REALRNTAN OCH PENNINGPOLITIKEN Dt finns flra sätt att närma sig frågan om vad som är n långsiktigt önskvärd nivå på dn pnningpolitiska styrräntan. I förliggand ruta diskutras dnna fråga md utgångspunkt
Tentamen i SG1140 Mekanik II, Inga hjälpmedel förutom: papper, penna, linjal, passare. Lycka till!
Institutionn för Mkanik S4-945 ntamn i S4 Mkanik II 945 Inga hjälpmdl förutom: pappr pnna linjal passar. Lcka till! ) A r l 45 o B Problm Radin A md längdn r på tt svänghjul som rotrar md n konstant vinklhastight
arctan x tan x cot x dx dz dx arcsin x x 1 ln x 1 log DERIVERINGSREGLER och några geometriska tillämpningar
DERIVERINGSREGLER och några gomtriska tillämpningar DERIVERINGSREGLER ( f ( ) + g( )) ) + g ( ) ( af ( )) a ) a konstant ( af ( ) + bg( )) a ) + bg ( ) a b konstantr Produktrgln: ( f ( ) g( )) ) g( ) +
Revisionsrapport 2010. Hylte kommun. Granskning av överförmyndarverksamheten
Rvisionsrapport 2010 Hylt kommun Granskning av övrförmyndarvrksamhtn Karin Hansson, Ernst & Young sptmbr 2010 Innhållsförtckning SAMMANFATTNING... 3 1 INLEDNING... 4 1.1 SYFTE OCH AVGRÄNSNING... 4 1.2
KEMA02 Oorganisk kemi grundkurs F9
KEMA02 Organisk kemi grundkurs F9 Elektrkemi Redxreaktiner ch Galvaniska er 1 Atkins & Jnes kap 13.1 13.5 Översikt kapitel 13.1 13.5 Redxreaktiner Halvreaktiner Balansering av redxreaktiner Galvaniska
TNA003 Analys I Lösningsskisser, d.v.s. ej nödvändigtvis fullständiga lösningar, till vissa uppgifter kap P4.
TN00 nals I Lösningsskissr, d.v.s. j nödvändigtvis ullständiga lösningar, till vissa uppgitr kap P. P.5a) Om gränsvärdt istrar så motsvarar dt drivatan av arctan i. Etrsom arctan är drivrbar i d så istrar
2. Bestäm en ON-bas i det linjära underrummet [1 + x, 1 x] till P 2 utrustat med skalärprodukten
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: 6 januari 03 Skrivtid:
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2018
Mkanik och maritima vtnskapr, Chalmrs tkniska högskola ENAMEN I FINI ELEMENMEOD MHA 9 AUGUSI 8 id och plats: 4 8 i M hust Hjälpmdl: ypgodkänd räknar. Lösningar Lärar: Ptr Möllr, tl (77) 55. Bsökr sal ca.
Meddelande. Föreläsning 2.5. Repetition Lv 1-4. Kemiska reaktioner. Kemi och biokemi för K, Kf och Bt 2012
Energi Kemi ch bikemi för K, Kf ch Bt 2012 Föreläsning 2.5 Kemiska reaktiner Meddelande 1. Justerat labschema Lv5-7. Berör K6, Bt6, Bt2, Kf3 2. Mittmötet. Rättning av inlämningsuppgifter. Knstruktiv kritik
Uppgift 1. (4p) (Student som är godkänd på KS1 hoppar över uppgift 1.) b) Bestäm volymen av parallellepipeden som spänns upp av vektorerna
TENTAMEN 5-Okt-6, HF6 och HF8 Momnt: TEN (Lnjär algbra), hp, skrftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF6 Klassr: TIELA, TIMEL, TIDAA Td:.5-7.5, Plats: Campus Hanng Lärar:
ATLAS-experimentet på CERN (web-kamera idag på morgonen) 5A1247, modern fysik, VT2007, KTH
ATLAS-xprimntt på CERN (wb-kamra idag på morgonn) 5A1247, modrn fysik, VT2007, KTH Laborationr: 3 laborationr: AM36: Atomkärnan. Handlar om radioaktivitt, absorbtion av gamma och btastrålning samt mätning
TENTAMEN I FINIT ELEMENTMETOD MHA AUGUSTI 2017
Institutionn för tillämpad mkanik, Chalmrs tkniska högskola ENAMEN I FINI EEMENMEOD MHA 3 AUGUSI 7 id plats: 4 8 i M hust Hjälpmdl: Ordböckr, lxikon typgodkänd räknar. ärar: Ptr Möllr, tl (77 55. Bsökr
Om i en differentialekvation saknas y, dvs om DE har formen F ( x, . Ekvationen z ) 0. Med andra ord får vi en ekvation av ordning (n 1).
Armin Halilovic: EXTRA ÖVNINGAR, SF676 Rduktion av ordning REDUKTION AV ORDNING I) Diffrntialkvationr där saknas ( n) Om i n diffrntialkvation saknas, dvs om DE har formn F (,,,, ) 0, då kan vi sänka kvationns
Tentamen i Molekylär växelverkan och dynamik, KFK090 Lund kl
entamen i lekylär växelverkan ch dynamik, KFK9 Lund 57 kl 4. 9. illåtna hjälpmedel: iniräknare ( med tillhörande handbk, utdelat frmelblad samt knstantblad, KFK9. Slutsatser skall mtiveras ch beräkningar
Uppskatta ordersärkostnader för inköpsartiklar
Handbk i matrialstyrning - Dl B Paramtrar ch ariablr B 11 Uppskatta rdrsärkstnadr för inköpsartiklar Md rdrsärkstnadr för inköpsartiklar ass alla d särkstnadr sm är förknippad md att gnmföra n anskaffningsprcss,
ANALYS AV DITT BETEENDE - DIREKTIV
Karl-Magnus Spiik Ky Tst / 1 ANALYS AV DITT BETEENDE - DIREKTIV Bifogat finnr du situationr där man btr sig på olika sätt. Gnom att svara på dssa frågor får du n bild av ditt gt btnd (= din människotyp).
Elementær diskret matematikk, MA0301, våren 2011
Lösningsförslag Elmntær iskrt matmatikk, MA00, vårn 0 Oppgav Varj or motsvarar n prmutation av storlk från 9 bokstävrna i TRONDHEIM Alltså är antalt sökta or P(9,) = 9 8 7 6 På liknan sätt får vi att t
lim lim Bestäm A så att g(x) blir kontinuerlig i punkten 2.
Tntamn i Matmatik HF9 7 januai kl 7 Hjälpmdl: Endast omlblad miniäkna ä int tillåtn Fö godkänt kävs poäng av möjliga poäng Btgsgäns: Fö btg A B C D E kävs 9 6 spktiv poäng Dn som uppnått 9 poäng å btgt
Per Sandström och Mats Wedin
Raltids GPS på rn i Vilhlmina Norra samby Pr Sandström och ats Wdin Arbtsrapport Svrigs lantbruksunivrsitt ISSN Institutionn för skoglig rsurshushållning ISRN SLU SRG AR SE 9 8 UEÅ www.srh.slu.s Tfn: 9-786
Revisionsrapport 7/2010. Åstorps kommun. Granskning av intern kontroll
Rvisionsrapport 7/2010 Åstorps kommun Granskning av intrn kontroll Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Rvisorrna Innhållsförtckning SAMMANFATTNING...
INTRODUKTION. Akut? RING: 031-51 20 12
INTRODUKTION Btch AB är i grundn tt gränsövrskridand nätvrk av ingnjörr, tknikr, tillvrkar (producntr) som alla har myckt lång rfarnht inom Hydraulik branschn. Dtta inkludrar allt från tillvrkning och
spänner upp ett underrum U till R 4. Bestäm alla par av tal (r, s) för vilka vektorn (r 3, 1 r, 3, 22 3r + s) tillhör U. Bestäm även en bas i U.
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA9 Linjär algbra Datum: augusti 04 Skrivtid:
Tentamen 1 i Matematik 1, HF sep 2017, kl. 9:00-13:00
Tnamn i Mamaik, H9 sp 7, kl. 9:-: Eaminaor: rmin Halilovic Undrvisand lärar: Nils Dalarsson, Jonas Snholm, Elias Said ör godkän bg krävs av ma poäng. gsgränsr: ör bg,,, D, E krävs, 9, 6, rspkiv poäng.
Villaelpanna. Installation, drift och skötsel
Installation, drift oh skötsl Villalpanna 250 Arklstorpsvägn 88 tl 044-22 63 20 info@varmbaronn.s 291 94 Kristianstad fax 044-22 63 58 www.varmbaronn.s ELOMAX_250_v2_sv_2010-09-23_4.13 utg: v.4.13 Ersättr:
Tentamensskrivning i Mekanik, Del 2 Dynamik för M, Lösningsförslag
Tntamnsskivning i Mkanik Dl Dynamik fö M 558 Lösningsföslag. Låt v btckna kulans fat fö stöt och v kulans fat ft stöt. Låt btckna impulsn fån golvt på kulan. Enligt impulslagn gäll: ( ) : = mv cos mv cos
Del 1 Teoridel utan hjälpmedel
inköings Univrsitt TMH9 Sörn Sjöström --, kl. 4- Dl Toridl utan hjälmdl. I figurn gs ulrs fra knäckfall (balkarna är idntiska, bara randvillkorn skiljr sig åt). Skriv n tta () vid dt fall som har lägst
Revisionsrapport 2/2010. Åstorps kommun. Granskning av lönekontorets utbetalningsrutiner
Rvisionsrapport 2/2010 Åstorps kommun Granskning av lönkontorts utbtalningsrutinr Bngt Sbring, ordf Tord Stursson, 1: v ordf. Bngt Johns, 2: v ordf. Stig Andrsson Nils Prsson Innhållsförtckning SAMMANFATTNING...
Tentamen i Kemisk termodynamik kl 8-13
entamen i emisk termdynamik 004-08-6 kl 8- Hjälmedel: Räknedsa, BE ch Frmeamling för kurserna i kemi vid H. Endast en ugift er blad! Skriv namn ch ersnnummer å varje blad! lla använda ekvatiner sm inte
Matematisk statistik
Tntamn TEN HF -- Matmatisk statistik Kuskod HF Skivtid: 8:-: Läa: Amin Halilovic Hjälpmdl: Bifogat fomlhäft "Foml och tabll i statistik " och miniäkna av vilkn typ som hlst. Skiv namn på vaj blad och använd
DEMONSTRATION TRANSFORMATORN I. Magnetisering med elström Magnetfältet kring en spole Kraftverkan mellan spolar Bränna spik Jacobs stege
FyL VT06 DEMONSTRATION TRANSFORMATORN I Magntisring md lström Magntfältt kring n spol Kraftvrkan mllan spolar Bränna spik Jacobs stg Uppdatrad dn 9 januari 006 Introduktion FyL VT06 I littraturn och framför
Knagge. Knaggarna tillverkas av 2,0 ± 0,13 mm galvaniserad stålplåt och har 5 mm hål för montering med ankarspik eller ankarskruv.
Knagg Knaggarna kan t.x. användas vid förbindning mllan ar och ar. I kombination md fäst är bärförmågan stor vid vältand och lyftand kraftr. Knaggarna tillvrkas av 2,0 ± 0,13 mm galvanisrad stålplåt och
Tentamen i Linjär algebra 2010 05 21, 8 13.
LINKÖPINGS UNIVERSITET Mamaika Iniuionn Ulf Janfalk Kurkod: ETE Provkod: TEN Tnamn i Linjär algbra,. Inga hjälpmdl. Ej räkndoa. Rula mddla vi -po. För godkän räckr poäng och min uppgifr md llr poäng. Godkända
Tentamen 2008_03_10. Tentamen Del 1
Tntamn 28_3_ Tntamn Dl KS motsvarar (Dluppgift -2) Dluppgift Dt dcimala hltalt 95 är givt. a) Ang talt i dt hadcimala talsstmt. b) Ang talt i dt binära talsstmt. c) Ang talt md BCD-kod Dluppgift 2 z z
Revisionsrapport 2010. Hylte kommun. Granskning av samhällsbyggnadsnämndens och tillsynsnämndens styrning och ledning. Iréne Dahl, Ernst & Young
Rvisionsrapport 2010 Hylt kommun Granskning av samhällsbyggnadsnämndns och tillsynsnämndns styrning och ldning Irén Dahl, Ernst & Young Augusti 2010 Hylt kommun Rvisorrna Innhållsförtckning SAMMANFATTNING...
TRAFIKUTREDNING SILBODALSKOLAN. Tillhör detaljplan för Silbodalskolan Årjängs kommun. Upprättad av WSP Samhällsbyggnad, 2012-12-04
TRAFIKUTRDNIN SILBODALSKOLAN Tillhör dtaljplan för Silbodalskolan Årjängs kommun Upprättad av WSP Samhällsbyggnad, 0--04 Innhåll Innhåll... INLDNIN... Bakgrund... Syft md utrdningn... NULÄS- OCH PROBLMBSKRIVNIN...
Distributionsförare. Loggbok för vuxna. Underlag för APL-handledare/-instruktör på APL-företag
A Distributions ktör på DISTRIBUTIONSFÖRARE 1(5) Arbtsplatsförlagd dl av tstmodul, validring llr utbildning När du dokumntrar dn arbtsplatsförlagda dln i ndanstånd chcklista gör då ävn bdömning inom säkrhts-,
NYTT STUDENT. från Växjöbostäder. Nu öppnar vi portarna på Vallen, kom och titta, sidan 3. Så här håller du värmen, sidan 4.
STUDENT DECEMBER 2014 NYTT från Växjöbostädr p p a n d m t l k n d i Boka tvätt ttar ä r b s u p m a C å ig p Områdsansvar Nu öppnar vi portarna på Valln, kom och titta, sidan 3. Så här hållr du värmn,
(x y) 2 e x2 y 2 da, D. där D är den triangelskiva som har sina hörn i punkterna (0, 0), (0, 2) och (2, 0). dx + y 3 e y dy,
MÄLARDALENS HÖGSKOLA Akadmin för utbildning, kultur och kommunikation Avdlningn för tillämpad matmatik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA8 Diffrntial- och intgralkalkyl III Datum:
Bengt Sebring September 2002 Sida: 1 Ordförande GRANSKNINGSRAPPORT 2/2002
ÅSTORPS KOMMUN GRANSKNING AV DELÅRSBOKSLUTET 2002-06-30 Bngt Sbring Sptmbr 2002 Sida: 1 Ordförand GRANSKNINGSRAPPORT 2/2002 1. Inldning I dnna rapport kommr vi att kommntra våra notringar utifrån vår rvision
i) exakt en lösning ii) oändligt många lösningar iii) ingen lösning.
TENTAMEN -Dc-9, HF och HF8 Momnt: TEN (Lnjär algbra, hp, srftlg tntamn Kursr: Analys och lnjär algbra, HF8, Lnjär algbra och analys HF Klassr: TIELA, TIMEL, TIDAA Td: -7, Plats: Campus Flmngsbrg Lärar:
TENTAMEN I FINIT ELEMENTMETOD MHA APRIL 2016
Institutionn för tillämpad mkanik, Calmrs ENAMEN I FINI EEMENMEOD MHA 9 APRI 6 id oc plats: 4 8, Eklandagatan 86 Hjälpmdl: Ordböckr, likon oc typgodkänd räknar. ösningar ärar: Ptr Möllr, tl (77 55. Bsökr
EKOTRANSPORT 2030. Vägen till en fossiloberoende fordonsflotta. #eko2030
FOTO: CHINAFACE #ko2030 mmmnn m m o k o ä k l V Vä ssnn oom n n r r f ttiillll kkoonf hållbaarraa ns ffrraam mtid tt occhh rröörrlliigghh rtrr ort trtraannssppo EKOTRANSPORT 2030 Vägn till n fossilobrond
Bilaga 1 Kravspecifikation
Bilaga 1 Kravspcifikation Prövning av anbud Skallkrav Ndan följr d skall-krav som ställs i dnna upphandling. Anbudsgivarn ombds fylla i ndanstånd tabll md tt kryss i JA llr NEJ rutorna för rspktiv fråga.
NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR. Fördelningsfunk. t 2
Likformig, Eponntial-, Normalfördlning NÅGRA OFTA FÖREKOMMANDE KONTINUERLIGA FÖRDELNINGAR Fördlning Rktangl (uniform, likformig) Eponntial Frkvnsfunk. f (), a b b a 0 för övrigt Fördlningsfunk. F () a,
Fasta tillståndets fysik.
Förläsning 17 Fasta tillståndts fysik. (Fasta ämnn: kristallr, mtallr, halvldar, supraldar) Atomr kan ävn bindas samman till fasta ämnn, huvudsaklign i kristallform där d är ordnad på tt rglbundt sätt.
S E D K N O F I AVM 960 AVM 961 AVM 971. www.whirlpool.com
AVM 960 AVM 961 AVM 971 S D K N O F I.hirlpool.com 1 S INNAN APPARATN MONTRAS INSTALLATION KONTROLLRA ATT ugnsutrymmt är tomt för installationn. KONTROLLRA att apparatn int är skadad innan dn montras i
TENTAMEN I FINIT ELEMENTMETOD MHA JANUARI 2017
Institutionn för tillämpad mkanik, Chalmrs id och plats: Hjälpmdl: ENAMEN I FINI EEMENMEOD MHA 2 9 JANUARI 27 4 8 i M hust ypgodkänd räknar. ösningar ärar: Ptr Möllr, tl (772) 55. Bsökr sal ca. 5 samt
Tentamen i Kemisk termodynamik kl 14-19
Tentamen i Kemisk termodynamik 2005-11-07 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
4. så många platser för fjäderfän, slaktsvin eller suggor att platserna tillsammans motsvarar mer än 200 djurenheter definierade som i 1.20.
Sidan 1 av 41 AVDELNING 1 Miljöfarlig vrksamht för vilkn tillstånds- llr anmälningsplikt gällr nligt 5 llr 21 förordningn (1998:899) om miljöfarlig vrksamht och hälsoskydd samt viss annan vrksamht, s k
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18
Tentamen i Kemisk Termodynamik 2011-01-19 kl 13-18 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Aktivitet Beskrivning Ansvarig Startdatum Slutdatum 1. Adminstration. Bokföringsfirma. Vattenråd
MALL AKTIVITETSPLAN - stöd inom lokalt ldd utvckling Dn här malln aktivittslan kan du använda när du sökr stöd inom lokalt ldd utvckling. Dn är frivillig och tänkt som tt stöd i r lanring. Ni kan ävn använda
Tentamen (TEN1) TMEL08 Eltekniska system
ISY/Elktrnika krtar ch ytm Tntamn (TEN) TMEL08 Eltknika ytm Tid: 5 ktbr 08, klckan 4 8 Plat: Lärar: TERE, TER4, TER Sivrt Lndgrn Tntamn btår av 6 prblm à 0 päng. För fll päng kräv att löningarna är flltändiga
re (potensform eller exponentialform)
Armn Hallovc: EXTRA ÖVNINGAR Kompla tal. Polär form och potnsform KOMPLEXA TAL I POLÄR FORM och KOMPLEXA TAL I POTENSFORM, där, R (rktangulär form r(cos sn (polär form n n r (cosn sn n D Movrs forml r
Sommarpraktik - Grundskola 2017
Sommarpraktik Grundskola 2017 1. Födlsår 1996 1997 1998 1999 2000 2001 2002 2003 2. Inom vilkt praktikområd har du praktisrat? 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Förskola/fritidshm Fritid/kultur
KEMA02 Oorganisk kemi grundkurs F10
KEMA02 Organisk kemi grundkurs F10 Elektrkemi Redxreaktiner ch Galvaniska er 2 Atkins & Jnes kap 13.6 13.9 E = E RT nf lnq Walther Nernst 1864 1941. Nbelpris i kemi 1920. Senast Redxreaktiner Halvreaktiner
Enkätsvar Sommarpraktik - Grundskola 2016
Enkätsvar Sommarpraktik - Grundskola 2016 1. Födlsår 2. Inom vil praktikområd har du praktisrat? 3. Hur är du md dn information du fick på informationsmött. Svara på n skala mllan 1-5 där 1 btydr och 5
Robin Ekman och Axel Torshage. Hjälpmedel: Miniräknare
Umå univritt Intitutionn för matmatik oh matmatik tatitik Roin Ekman oh Axl Torhag Tntamn i matmatik Introduktion till dikrt matmatik Löningförlag Hjälpmdl: Miniräknar Löningarna kall prntra på tt ådant
om de är minst 8 år gamla
VIKTIGA SÄKERHETSINSTRUKTIONER LÄS NOGGRANT OCH SPARA FÖR FRAMTIDA REFERENS VÄRM INTE UPP OCH ANVÄND INTE BRANDFARLIGA MATERIAL i llr nära ugnn. Ångor kan skapa n risk för brand llr xplosion. ANVÄND INTE
Lösningsförslag: Tentamen i Modern Fysik, 5A1246,
Lösningsförslag: Tntamn i Modrn Fysik, 5A146, 6-6- Hjälpmdl: 1 A4-blad md gna antkningar (på båda sidor), Bta oh fikkalkylator samt institutionns tabllblad utdlat undr tntamn. Examinatorr: Vlad Kornivski
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2011-06-09 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
Försättsblad till skriftlig tentamen vid Linköpings Universitet
Försättsblad till skriftlig tentamen vid Linköings Universitet Datum för tentamen 203-05-30 Sal TER3 Tid 4-8 Kurskd TFKE52 Prvkd TEN Kursnamn/benämning Prvnamn/benämning Grundläggande kemi Skriftlig tentamen
Krav på en projektledare.
Crtifiring av projktldar. PIE. EKI. LiU. Run Olsson vrsion 20050901 sid 1 av 5 Krav på n projktldar. Intrnationlla organisationr som IPMA och PMI har formulrat vilka krav som ska ställas på n projktldar.
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
Tentamen i Kemisk Termodynamik kl 14-19
Tentamen i Kemisk Termodynamik 2009-12-16 kl 14-19 Hjälpmedel: Räknedosa, BETA och Formelsamling för kurserna i kemi vid KTH. Endast en uppgift per blad! Skriv namn och personnummer på varje blad! Alla
INFORMATIONSFOLDER FRÅN HUMANUS. Nya. Arbetslivsinriktat rehabiliteringsstöd Outplacement
INFORMATIONSFOLDER FRÅN HUMANUS Nya r t h g i l j ö m t v i l s t b r ia Arbtslivsinriktat rhabilitringsstöd Outplacmnt & WWW.HUMANUS.SE Rhabilitringsplan 3 vckor Nulägsanalys, kartläggning och slutrdovisning